FriendFinder: A Privacy Aware Grid Based Location Service

Ove Andersen Laurynas Siksnys Jeppe R. Thomsen

Aalborg University
Department of Computer Science
Selma Lagerløfs Vej 300, DK-9220 Aalborg Ø
Denmark

December 8, 2008
Introduction

- Project about a friend finding location based service (LBS).
- Notify a mobile user when any of his friends are within a certain distance.
- Dealing with location privacy issue.
- The server is said to be untrustworthy.
- Users do not want the LBS to know anything about their positions.
- Issuing continuous queries on private data.
Motivation

- How can location privacy be obtained if the LBS is untrusted?
- Can an anonymizer, which will be a single point of attack, be excessive?
- Is it possible to both retain sufficient privacy requirements and keep communication costs at a minimum?
- Not much work done on querying private data - most related work only considers private queries on public data.
Anonymizers are not Necessary

Private Queries in Location Based Services: Anonymizers are not Necessary.

- Proposes a framework to support private location-dependent queries.
- Does not require an anonymizer, since it’s a single point of attack.
- Uses cryptographic techniques to ensure privacy.
- Communication and CPU intense, because of encryption.
Buddy tracking - efficient proximity detection among mobile friends.

- Proposes a centralized server and a peer-to-peer method for tracking friends.
- Using the strips on the peer-to-peer algorithm - ensures privacy and reduces communication cost.
- Using a quadtree algorithm for the centralized algorithm.
- Still lot of communication using the peer-to-peer algorithm.
- Centralized server algorithm has a lot of overhead and is outperformed when lots of users has joined the service.
- Privacy is not discussed in this article.
Agreed on the problem and its setting
Develop a user location secure proximity detection approach
Designed a Friend-finder service
Develop a prototype
Performed a prototype testing
The Problem Definition

- We want a solution for friend-finder LBS
- Solution must be strong against attempts to intercept exact locations of any user
- The solution must be practical
The Setting of the Problem

Untrusted LBS server

Friends relationship

Wireless communication
Example of the Proximity Detection
Privacy-aware Proximity Detection Idea

The Contribution

Introduction

The Problem and Our Solution

Results

Conclusion

Proximity Detection Approach

Solutions for Proximity Detection Approach Problems

The Contribution

The Problem Definition

The Setting of the Problem

Privacy-aware Proximity Detection Idea
Privacy-aware Proximity Detection Idea

In Proximity

u1 u2

Jeppe, Laurynas, Ove
 FriendFinder
Privacy-aware Proximity Detection Idea
Privacy-aware Proximity Detection Idea

The Problem Definition
The Setting of the Problem
Proximity Detection Approach
Solutions for Proximity Detection Approach Problems
Limitation and solutions of this approach

Limitations of this approach:

1. It is inefficient for a big number of users
2. A proximity detection distance is fixed \((2d\sqrt{2})\)

Solutions for problems:

1. Grouping of friends
2. Dynamic grid approach
Grouping of friends

The solution:

- Users are grouped into friend-groups
- A single grid is assigned for every friend-group

Consequences:

- When user location changes, less secret values must be delivered to LBS server
Grouping of friends

Diagram showing relationships and groups of friends.
Grouping of friends
Dynamic Grid Approach

The solution:

- Assign a stack of grids with decreasing cell size for every friend-group
- Extend a basic proximity detection approach to support stack of grids

Consequences:

- Any pair of friends in friend-group will be able to choose a prefered proximity distance from a list
Dynamic Grid Approach

\[L_{\text{prox}}(u_1, u_2) = 2 \]
Dynamic Grid Approach

\[L_{\text{prox}}(u_1, u_2) = 2 \]

In proximity!

Level 0

Level 1

Level 2

Level 3
Dynamic Grid Approach

$L_{\text{prox}}(u_1, u_2) = 2$

In proximity!
In separation!

Level 0
Level 1
Level 2
Level 3

Jeppe, Laurynas, Ove
Dynamic Grid Approach

\begin{equation}
L_{\text{prox}}(u_1, u_2) = 2
\end{equation}

In proximity!

Level 0
Level 1
Level 2
Level 3
Dynamic Grid Approach

In proximity!

\[L_{\text{prox}}(u_1, u_2) = 2 \]

Switch to L1
Dynamic Grid Approach

\[L_{\text{prox}}(u_1, u_2) = 2 \]

Level 0

Level 1

Level 2

Level 3

In proximity!

In proximity!

In proximity!
Dynamic Grid Approach

\[L_{\text{prox}}(u_1, u_2) = 2 \]

In proximity with \(u_1 \)
In proximity with \(u_2 \)
In proximity!
Friend-finder service designs

Two Friend-finder service designs:

- **Basic Design**
 - Uses basic proximity detection approach
- **Dynamic Grid Design**
 - Uses dynamic grid approach

Features:

- Employs users grouping into friend-groups
- Assumes an existence of trusted 3rd party server
Testing Methodology

System Test Settings

- 200 users.
- 20 Position Points per user.
- Each user only in one group.
- Proximity level: 6
- Four data sets
 - 5 Users per Group (40 Groups).
 - 10 Users per Group (20 Groups).
 - 20 Users per Group (10 Groups).
 - 50 Users per Group (4 Groups).
5 Users in each Group / 40 Groups
10 Users in each Group / 20 Groups

![Graph showing message counts from TTS, TTS messages to others, LBS messages from TTS, and LBS messages to others.](image)

- **Messages from TTS**
- **Messages to TTS**
- **Messages from LBS**
- **Messages to LBS**
20 Users in each Group / 10 Groups

[Graph showing messages from TTS, messages to TTS, messages from LBS, and messages to LBS]
50 Users in each Group / 4 Groups

![Graph showing messages from TTS, messages to TTS, messages from LBS, and messages to LBS over 21 steps.]

- **Messages from TTS**
- **Messages to TTS**
- **Messages from LBS**
- **Messages to LBS**
Total Messages, Percent-wise distribution
Total Messages

- Messages from LBS
- Messages to LBS

Jeppe, Laurynas, Ove
FriendFinder
Conclusion

- Novel approach.
- System has a very low running cost in terms of messages
- Very resilient to attacks.
Future Work

Possible extensions

1. Different grid cell shapes.
Future Work

Possible extensions

1. Different grid cell shapes.
2. Notification of other users getting in proximity.
Future Work

Possible extensions

1. Different grid cell shapes.
2. Notification of other users getting in proximity.
3. Notification of a user getting in proximity of a static object.
Future Work

Possible extensions

1. Different grid cell shapes.
2. Notification of other users getting in proximity.
3. Notification of a user getting in proximity of a static object.
4. Notification of large groups of friends in proximity.
Future Work

Possible extensions

1. Different grid cell shapes.
2. Notification of other users getting in proximity.
3. Notification of a user getting in proximity of a static object.
4. Notification of large groups of friends in proximity.

Other Directions

1. Analyze user-levels on Server to find congested areas.
Future Work

Possible extensions

1. Different grid cell shapes.
2. Notification of other users getting in proximity.
3. Notification of a user getting in proximity of a static object.
4. Notification of large groups of friends in proximity.

Other Directions

1. Analyze user-levels on Server to find congested areas.
2. History analysis of user grid patterns, e.g. to find carpooling opportunities.
Future Work

Possible extensions

1. Different grid cell shapes.
2. Notification of other users getting in proximity.
3. Notification of a user getting in proximity of a static object.
4. Notification of large groups of friends in proximity.

Other Directions

1. Analyze user-levels on Server to find congested areas.
2. History analysis of user grid patterns, e.g. to find carpooling opportunities.
3. Make the idea fully or partially peer-to-peer
Questions

- Interesting future work?
- Would you use such a system?
- How can a group of friends, through an untrusted server, exchange private information (e.g. an encryption key)