Business Intelligence, Data Warehousing and Multidimensional Databases

Torben Bach Pedersen
Business Intelligence Overview

• Why Business Intelligence?
• Data analysis problems
• Data Warehouse (DW) introduction
• Analysis technologies that use the DW
 ■ OLAP
 ■ Data mining
 ■ Visualization
 ■ A good DW is a prerequisite for using these technologies
What is Business Intelligence?

- Combination of technologies
 - Data Warehousing (DW)
 - On-Line Analytical Processing (OLAP)
 - Data Mining (DM)
 - Data Visualization (VIS)
 - Decision Analysis (what-if)
 - Customer Relationship Management (CRM)
 - Vertical solutions composed of the base technologies

- Buzzword compliant (still ?)
 - Extension/integration of the technologies above
BI Is Important

- Palo Alto Management Group: BI = $113 bio. in 2002
- The Web makes BI more necessary
 - Customers do not appear "physically" in the store
 - Customers can change to other stores more easily
- Thus:
 - Know your customers using data and BI!
 - Web logs makes is possible to analyze customer behavior in a more detailed than before (what was not bought?)
 - Combine web data with traditional customer data
- Next step is the Wireless Internet
 - Customers are always "online"
 - Customer’s position is known
 - Combine position and customer knowledge => very valuable!
Data Analysis Problems

- The same data found in many different systems
 - Example: customer data in 14 (now 23) systems!
 - The same concept is defined differently (Nykredit)
- Data is suited for operational systems (OLTP)
 - Accounting, billing, etc.
 - Do not support analysis across business functions
- Data quality is bad
 - Missing data, imprecise data, different use of systems
- Data are "volatile"
 - Data deleted in operational systems (6 months)
 - Data change over time – no historical information
Data Warehousing

• Solution: new analysis environment (DW) where data are
 ■ Subject oriented (versus function oriented)
 ■ Integrated (logically and physically)
 ■ Stable (data not deleted, several versions)
 ■ Time variant (data can always be related to time)
 ■ Supporting management decisions (different organization)

• Data from the operational systems are
 ■ Extracted
 ■ Cleansed
 ■ Transformed
 ■ Aggregated?
 ■ Loaded into DW

• "Getting multidimensional data into the DW”

• A good DW is a prerequisite for successful BI
DW: Purpose and Definition

• The purpose of a data warehouse is to support decision making

• Data is collected from a number of different sources
 ■ Finance, billing, web logs, personnel, …

• It is made easy to perform advanced analyses
 ■ Ad-hoc analyses and reports
 ■ Data mining: identification of trends
 ■ Management Information Systems

• A data warehouse is a store of information organized in a unified data model.
DW Architecture – Data as Materialized Views

Existing databases and systems (OLTP)

OLAP

New databases and systems (OLAP)

Data mining

"Global" Data Warehouse

Visu- lization

Data Marts

DAT5 course, September 24, 2007
OLTP vs. OLAP

• On-Line Transaction Processing
 ■ Many, ”small” queries
 ■ Frequent updates
 ■ The system is always available for both updates and reads
 ■ Smaller data volume (few historical data)
 ■ Complex data model (normalized)

• On-Line Analytical Processing
 ■ Fewer, but ”bigger” queries
 ■ Frequent reads, in-frequent updates (daily)
 ■ 2-phase operation: either reading or updating
 ■ Larger data volumes (collection of historical data)
 ■ Simple data model (multidimensional/de-normalized)
Function- vs. Subject Orientation

Function-oriented systems

- Appl.
- DB
- DB
- DB
- DB

Subject-oriented systems

- DM
- DM
- D-Appl.
- D-Appl.
- D-Appl.

All subjects, integrated

Selected subjects

DAT5 course, September 24, 2007
$n \times m$ versus $n + m$
Top-down vs. Bottom-up

Top-down:
1. Design of DW
2. Design of DMs

Bottom-up:
1. Design of DMs
2. Maybe integration of DMs in DW
3. Maybe no DW

"In-between":
1. Design of DW for DM1
2. Design of DM2 and integration with DW
3. Design of DM3 and integration with DW
4. ...
Data’s Way To The DW

• Extraction
 ■ Extract from many heterogeneous systems

• Staging area
 ■ Large, sequential bulk operations => flat files best ?

• Cleansing
 ■ Data checked for missing parts and erroneous values
 ■ Default values provided and out-of-range values marked

• Transformation
 ■ Data transformed to decision-oriented format
 ■ Data from several sources merged, optimize for querying

• Aggregation?
 ■ Are individual business transactions needed in the DW ?

• Loading into DW
 ■ Large bulk loads rather than SQL INSERTs
 ■ Fast indexing (and pre-aggregation) required
Common DW Issues

• Metadata management
 - Need to **understand** data = metadata needed
 - Greater need that in OLTP applications as ”raw” data is used
 - Need to know about:
 - Data definitions, dataflow, transformations, versions, usage, security

• DW project management
 - DW projects are **large** and **different** from ordinary SW projects
 - 12-36 months and 1+ mio. US$ per project
 - Data marts are smaller and ”safer” (bottom up approach)
 - Reasons for failure
 - Lack of proper design methodologies
 - High HW+SW cost (not so much anymore)
 - Deployment problems (lack of training)
 - Organizational change is hard… (new processes, data ownership,..)
 - Ethical issues (security, privacy,..)
BI Summary

• Why Business Intelligence?
• Data analysis problems
• Data Warehouse (DW) introduction
• Analysis technologies that use the DW
 - OLAP
 - Data mining
 - Visualization

• BI can provide many advantages to your organization
 - A good DW is a prerequisite for BI
 - But, a DW is a means rather than a goal…it is only when it is heavily used that success is achieved
Multidimensional Databases

Torben Bach Pedersen

Aalborg University
Overview

- Motivation
- Cubes
- Dimensions
- Facts
- Measures
- Data warehouse queries
- Relational design
- Redundancy
- Strengths and weaknesses of the multidimensional model
- Case study
 - The grocery store
Why a new model?

- We know E/R and OO modeling
- All types of data are “equal”
- E/R and OO models: many purposes
 - Flexible
 - General
- No difference between:
 - What is important
 - What just describes the important
- ER/OO models are large
 - 50-1000 entities/relations/classes
 - Hard to get an overview
- ER/OO models implemented in RDBMSes
 - Normalized databases spread information
 - When analyzing data, the information must be integrated again
The multidimensional model

• One purpose
 ■ Data analysis

• Better at that purpose
 ■ Less flexible
 ■ Not suited for OLTP systems

• More built in “meaning”
 ■ What is important
 ■ What describes the important
 ■ What we want to optimize
 ■ Automatic aggregations means easy querying

• Recognized by OLAP/BI tools
 ■ Tools offer powerful query facilities based on MD design
 ■ Example: TARGIT Analysis
The multidimensional model

- Data is divided into:
 - **Facts**
 - **Dimensions**
- Facts are the **important** entity: a sale
- Facts have **measures** that can be aggregated: sales price
- Dimensions **describe** facts
 - A sale has the dimensions Product, Store and Time
- Facts “live” in a multidimensional **cube** (dice)
 - Think of an array from programming languages
- Goal for dimensional modeling:
 - Surround facts with as much context (dimensions) as possible
 - Hint: redundancy may be ok (in well-chosen places)
 - But you should **not** try to model **all** relationships in the data (unlike E/R and OO modeling!)
Cube Example

<table>
<thead>
<tr>
<th></th>
<th>Aalborg</th>
<th>Copenhagen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk</td>
<td>56</td>
<td>45</td>
<td>211</td>
</tr>
<tr>
<td>2000</td>
<td>123</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cubes

- A “cube” may have **many** dimensions!
 - More than 3 - the term ”hypercube” is sometimes used
 - Theoretically no limit for the number of dimensions
 - Typical cubes have 4-12 dimensions
- But only 2-3 dimensions can be viewed at a time
 - Dimensionality reduced by queries via projection/aggregation
- A cube consists of **cells**
 - A given combination of dimension values
 - A cell can be empty (no data for this combination)
 - A **sparse** cube has few non-empty cells
 - A **dense** cube has many non-empty cells
 - Cubes become sparser for many/large dimensions
Dimensions

• Dimensions are the core of multidimensional databases
 ■ Other types of databases do not support dimensions

• Dimensions are used for
 ■ Selection of data
 ■ Grouping of data at the right level of detail

• Dimensions consist of **dimension values**
 ■ Product dimension have values ”milk”, ”cream”, …
 ■ Time dimension have values ”1/1/2001”, ”2/1/2001”, …

• Dimension values may have an **ordering**
 ■ Used for comparing cube data across values
 ■ Example: ”percent sales increase compared with last month”
 ■ Especially used for Time dimension
Dimensions

- Dimensions have hierarchies with levels
 - Typically 3-5 levels (of detail)
 - Dimension values are organized in a tree structure
 - **Product**: Product->Type->Category
 - **Store**: Store->Area->City->County
 - **Time**: Day->Month->Quarter->Year
 - Dimensions have a bottom level and a top level (ALL)

- Levels may have attributes
 - Simple, non-hierarchical information
 - Day has Workday as attribute

- Dimensions should contain much information
 - Time dimensions may contain holiday, season, events,…
 - Good dimensions have 50-100 or more attributes/levels
Dimension Example

Location

Country

City

Schema

T

T

USA

New York

Berkeley

Aalborg

Denmark

Copenhagen

Instance
Facts

• Facts represent the **subject** of the desired analysis
 ■ The “important” in the business that should be analyzed

• A fact is most often identified via its dimension values
 ■ A fact is a non-empty cells
 ■ Some models give facts an explicit identity

• Generally a fact should
 ■ Be attached to **exactly one** dimension value in each dimension
 ■ Only be attached to dimension values in the bottom levels
 ■ Some models do not require this
Types Of Facts

- **Event** fact (transaction)
 - A fact for every *business event* (sale)
- **"Fact-less"** facts
 - A fact per event (customer contact)
 - **No** numerical measures
 - An event has happened for a given dimension value combination
- **Snapshot** fact
 - A fact for every dimension combination at given time intervals
 - Captures *current* status (inventory)
- **Cumulative snapshot** facts
 - A fact for every dimension combination at given time intervals
 - Captures *cumulative* status up to now (sales in year to date)
- Every type of facts answers **different** questions
 - Often both event facts and both kinds of snapshot facts exist
Granularity

- **Granularity** of facts is important
 - What does a single fact mean?
 - **Level of detail**
 - Given by combination of bottom levels
 - Example: "total sales per store per day per product"
 - Important for number of facts
 - Scalability
- Often the granularity is a single business transaction
 - Example: sale
 - Sometimes the data is aggregated (**total** sales per store per day per product)
 - Might be necessary due to scalability
- Generally, transaction detail can be handled
 - Except perhaps huge clickstreams etc.
Measures

• Measures represent the fact property that the users want to **study and optimize**
 - Example: total sales price

• A measure has two components
 - **Numerical value**: (sales price)
 - **Aggregation formula** (SUM): used for aggregating/combining a number of measure values into one
 - Measure value determined by dimension value combination
 - Measure value is meaningful for all aggregation levels

• Most multidimensional models have measures
 - A few do not
Types Of Measures

• Three types of measures

• Additive
 ■ Can be aggregated over all dimensions
 ■ Example: sales price
 ■ Often occur in event facts

• Semi-additive
 ■ Cannot be aggregated over some dimensions - typically time
 ■ Example: inventory
 ■ Often occur in snapshot facts

• Non-additive
 ■ Cannot be aggregated over any dimensions
 ■ Example: average sales price
 ■ Occur in all types of facts
Documentation Of Schema

- No well-defined standard

- Our own notation
 - Seen to the right
 - Level corresponds to ALL

- Modeling and OLAP tools have their own notation

![Diagram of schema with dimensions and measures]
Kimball Dimension Notation

- The granularity is Day
- There is an implicit "top" value which means "all days" or "the whole time axis".
 - This is selected by not mentioning the dimension in a query
ROLAP

• Relational OLAP
• Data stored in relational tables
 ■ Star (or snowflake) schemas used for modeling
 ■ SQL used for querying
• Pros
 ■ Leverages investments in relational technology
 ■ Scalable (billions of facts)
 ■ Flexible, designs easier to change
 ■ New, performance enhancing techniques adapted from MOLAP
 ◆ Indices, materialized views, special treatment of star schemas
• Cons
 ■ Storage use (often 3-4 times MOLAP)
 ■ Response times
MOLAP

• Multidimensional OLAP
• Special multidimensional data structures used
• Pros
 ■ Less storage use ("foreign keys" not stored)
 ■ Faster query response times
• Cons
 ■ Up till now not so good scalability (changing)
 ■ Less flexible, e.g., cube must be re-computed when design changes
 ■ Does not reuse an existing investment (but often bundled with RDBMS)
 ■ "New technology"
 ■ Not as open technology
HOLAP

- Hybrid OLAP
- Aggregates stored in multidimensional structures (MOLAP)
- Detail data stored in relational tables (ROLAP)
- Pros
 - Scalable
 - Fast
- Cons
 - Complexity
Relational Implementation

• The cube is often implemented in an RDBMS
• Fact table stores facts
 ■ One column for each measure
 ■ One column for each dimension (foreign key to dimension table)
 ■ Dimensions keys make up composite primary key
• Dimension table stores dimension
 ■ Integer key column (surrogate keys)
 ■ Don’t use production keys in DW!
• Goal for dimensional modeling: ”surround the facts with as much context (dimensions) as we can”
• **Granularity** of the fact table is important
 ■ What does one fact table row represent ?
 ■ Important for the size of the fact table
 ■ Often corresponding to a single business transaction (sale)
 ■ But it can be aggregated (sales per product per day per store)
Relational Design

• One completely de-normalized table
 - Bad: inflexibility, storage use, bad performance, slow update

• Star schemas
 - One fact table
 - De-normalized dimension tables
 - One column per level/attribute

• Snowflake schemas
 - Dimensions are normalized
 - One dimension table per level
 - Each dimension table has integer key, level name, and one column per attribute
Star Schema Example

<table>
<thead>
<tr>
<th>ProductID</th>
<th>Product</th>
<th>Type</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Top</td>
<td>Beer</td>
<td>Beverage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TimeID</th>
<th>Day</th>
<th>Month</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.</td>
<td>Maj</td>
<td>1997</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ProductID</th>
<th>StoreId</th>
<th>TimeId</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>Store</th>
<th>City</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trøjborg</td>
<td>Århus</td>
<td>Århus</td>
</tr>
</tbody>
</table>
Snow-flake Schema Example

<table>
<thead>
<tr>
<th>ProductID</th>
<th>StoreID</th>
<th>TimeID</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>Store</th>
<th>CityID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trojborg</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CityID</th>
<th>City</th>
<th>CountyID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Arhus</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TipoID</th>
<th>Type</th>
<th>CategoryID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beer</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ProductID</th>
<th>Product</th>
<th>TipoID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Top</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MonthID</th>
<th>Month</th>
<th>YearID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>May</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TimeID</th>
<th>Day</th>
<th>MonthID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.</td>
<td>1</td>
</tr>
</tbody>
</table>
(Relational) OLAP Queries

- **Aggregating** data, e.g., with SUM
- **Starting level**: (Quarter, Product)
- **Roll Up**: less detail, Quarter->Year
- **Drill Down**: more detail, Quarter->Month
- **Slice/Dice**: selection, Year=1999
- **Drill Across**: “join” on common dimensions
- **Visualization and exceptions**
- **Note**: only **two** kinds of queries
 - **Navigation queries** examine one dimension
 - SELECT DISTINCT l FROM d [WHERE p]
 - **Aggregation queries** summarize fact data
 - SELECT d1.l1,d2.l2,SUM(f.m) FROM d1,d2,f
 WHERE f.dk1=d1.dk1 AND f.dk2=d2.dk2 [AND p]
 GROUP BY d1.l1,d2.l2
OLAP Queries

- Fast, interactive analysis of large amounts of data
 - Sales, web, …
- “Spreadsheets on steroids”

- Aggregation queries
 - Per City and Year
- Roll up - get overview
- Drill down – more detail

- Fast answers required
 - A few seconds response time even for many gigabytes data
 - Achieved by pre-computation (pre-aggregation)
OLAP Queries

- Fast, interactive analysis of large amounts of data
 - Sales, web, ...
- “Spreadsheets on steroids”
- Aggregation queries
 - Per City and Year
- Roll up - get overview
- Drill down – more detail
- Fast answers required
 - A few seconds response time even for many gigabytes data
 - Achieved by pre-computation (pre-aggregation)
OLAP Queries

- Fast, interactive analysis of large amounts of data
 - Sales, web, …
- “Spreadsheets on steroids”

- Aggregation queries
 - Per City and Year
- Roll up - get overview
- Drill down – more detail

- Fast answers required
 - A few seconds response time even for many gigabytes data
 - Achieved by pre-computation (pre-aggregation)
Star Schemas

- Simple and easy overview -> ease-of-use
- Relatively flexible
- Fact table is normalized
- Dimension tables often relatively small
- “Recognized” by many RDBMSes -> good performance

- Hierarchies are ”hidden” in the columns
- Dimension tables are de-normalized
Snow-flake Schemas

- Hierarchies are made explicit/visible
- Very flexible
- Dimension tables use less space
- Harder to use due to many joins
- Worse performance
Redundancy In The DW

• Only very little redundancy in fact tables
 ■ Order head data copied to order line facts
 ■ The same fact data (generally) only stored in one fact table

• Redundancy is mostly in dimension tables
 ■ Star dimension tables have redundant entries for the higher levels

• Redundancy problems?
 ■ Inconsistent data – the central load process helps with this
 ■ Update time – the DW is optimized for querying, not updates
 ■ Space use: dimension tables typically take up less than 5% of DW

• So: **controlled** redundancy is good
 ■ Up to a certain limit
Limits – And Strengths

- Many-to-one relationship from fact to dimension
- Many-to-one relationships from lower to higher levels in the hierarchies
- Therefore, it is impossible to "count wrong"
- Hierarchies have a fixed height
- Hierarchies don’t change?
The Grocery Store

- Stock Keeping Units (SKUs)
- Universal Product Codes (UPCs)
- Point Of Sale (POS) system
- Stores
- Promotions
DW Design Steps

• Choose the **business process(es)** to model
 - Sales

• Choose the **grain** of the business process
 - SKU by Store by Promotion by Day
 - Low granularity is needed
 - Are individual transactions necessary/feasible?

• Choose the **dimensions**
 - Time, Store, Promotion, Product

• Choose the **measures**
 - Dollar_sales, unit_sales, dollar_cost, customer_count

• Resisting normalization and preserving browsing
 - Flat dimension tables makes browsing easy and fast
The Grocery Store Dimensions

• The Time dimension
 ■ Explicit time dimension is needed (events, holidays,..)

• The Product dimension
 ■ Six-level hierarchy allows drill-down/roll-up
 ■ Many descriptive attributes (often more than 50)

• The Store dimension
 ■ Many descriptive attributes
 ■ The Time dimension is an outrigger table (First opened,..)

• The Promotion dimension
 ■ Example of a causal dimension
 ■ Used to see if promotions work/are profitable
 ■ Ads, price reductions, end-of-aisle displays, coupons
 - Highly correlated (only 5000 combinations)
 - Separate dimensions ? (size&efficiency versus simplicity&understanding)
Time Dimension

- The Time dimension
- Explicit time dimension is needed
- Fiscal years
- Events
- Holidays
- …

<table>
<thead>
<tr>
<th>TimeID</th>
</tr>
</thead>
<tbody>
<tr>
<td>DayNoInMonth</td>
</tr>
<tr>
<td>Month</td>
</tr>
<tr>
<td>Quarter</td>
</tr>
<tr>
<td>Year</td>
</tr>
<tr>
<td>FiscalPeriod</td>
</tr>
<tr>
<td>DayNumberInYear</td>
</tr>
<tr>
<td>DayNumberOverall</td>
</tr>
<tr>
<td>MonthNumberInYear</td>
</tr>
<tr>
<td>MonthNumberOverall</td>
</tr>
<tr>
<td>Season/weather</td>
</tr>
<tr>
<td>Events</td>
</tr>
<tr>
<td>LastDayOfMonth</td>
</tr>
<tr>
<td>Holiday</td>
</tr>
<tr>
<td>…</td>
</tr>
</tbody>
</table>
Product Dimension

- The Product dimension
- Six-level hierarchy allows drill-down/roll-up
- **Many** descriptive attributes (often more than 50)
- Calculate sales per shelf space!

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProductID</td>
</tr>
<tr>
<td>SKU-Number</td>
</tr>
<tr>
<td>SKU_Description</td>
</tr>
<tr>
<td>Brand</td>
</tr>
<tr>
<td>Diet</td>
</tr>
<tr>
<td>Subcategory</td>
</tr>
<tr>
<td>Category</td>
</tr>
<tr>
<td>Department</td>
</tr>
<tr>
<td>ShelfWidth</td>
</tr>
<tr>
<td>ShelfHeight</td>
</tr>
<tr>
<td>ShelfDepth</td>
</tr>
<tr>
<td>PackageSize</td>
</tr>
<tr>
<td>RetailCaseSize</td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
Store Dimension

- The Store dimension
- Many descriptive attributes
- The Time dimension is an **outrigger** table (First opened,..)

<table>
<thead>
<tr>
<th>StoreID</th>
</tr>
</thead>
<tbody>
<tr>
<td>StreetAddress</td>
</tr>
<tr>
<td>Phone</td>
</tr>
<tr>
<td>Fax</td>
</tr>
<tr>
<td>Email</td>
</tr>
<tr>
<td>Manager</td>
</tr>
<tr>
<td>ZIP</td>
</tr>
<tr>
<td>City</td>
</tr>
<tr>
<td>County</td>
</tr>
<tr>
<td>SalesArea</td>
</tr>
<tr>
<td>Floorplan</td>
</tr>
<tr>
<td>Area_sqft</td>
</tr>
<tr>
<td>First_opened</td>
</tr>
<tr>
<td>Photo_processing</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
Promotion Dimension

- Example of a **causal** dimension
- Used to see if promotions work/are profitable
- Ads, price reductions, end-of-aisle displays, coupons
- Highly correlated (only 5000 combinations)
- Separate dimensions? (size&efficiency versus simplicity&understanding)
- Start+EndDate outrigger to Time dimension

<table>
<thead>
<tr>
<th>PromotionID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PromotionName</td>
</tr>
<tr>
<td>Ads</td>
</tr>
<tr>
<td>AdMedia</td>
</tr>
<tr>
<td>Displays</td>
</tr>
<tr>
<td>PriceReduction</td>
</tr>
<tr>
<td>Coupons</td>
</tr>
<tr>
<td>StartDate</td>
</tr>
<tr>
<td>EndDate</td>
</tr>
<tr>
<td>Cost</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
The Grocery Store Measures

- Dollar_sales
- Unit_sales
- Dollar_cost
- All **additive** across all dimensions
- Gross profit
 - Computed from sales and cost
 - Additive
- Gross margin
 - Computed from gross profit and sales
 - **Non-additive** across all dimensions
- Customer_count
 - Additive across time, promotion, and store
 - **Non-additive** across product
 - **Semi-additive**
Database Sizing

- Time dimension: 2 years = 730 days
- Store dimension: 300 stores reporting each day
- Product dimension: 30,000 products, only 3000 sell per day
- Promotion dimension: 5000 combinations, but a product only appears in one combination per day
- Number of fact records: 730*300*3000*1 = 657,000,000
- Number of fields: 4 key + 4 fact = 8 fields
- Total DB size: 657,000,000 * 8 fields * 4 bytes = 21 GB
- Small database by today’s standards?
- Transaction level detail is feasible today
Typical Fact Tables (Again)

- **Event/transaction table**
 - One record for every business event (sale)

- **Snapshot table**
 - One record for every dimension combination at given time intervals
 - Records **current** status (inventory)
 - Often, both event and snapshot tables are needed

- **Cumulative snapshot table**
 - One record for every dimension combination at given time intervals
 - Records **cumulative** status up till now (sales in year to date)

- **Fact-less fact table**
 - One record per event (customer contact)
 - **No** numeric measures
 - Used to capture that an event has happened for a particular dimension combination
MD Summary

• Motivation
• Cubes
• Dimensions
• Facts
• Measures
• Data warehouse queries
• Relational design
• Redundancy
• Strengths and weaknesses of the multidimensional model
• Case study
 ■ The grocery store
Business Dimensional Lifecycle

Dimensional Modeling

Project Planning
Business Requirements Definition
Deployment
Maintenance & Growth

Project Management

Data Staging Design & Development
End-User Application Specification
End-User Application Development
Advanced MD modeling I - Overview

• Handling change over time

• Changes in dimensions
 ■ No special handling
 ■ Versioning dimension values
 ■ Capturing the previous and the actual value
 ■ Timestamping
 ■ Split into changing and constant attributes
Changing Dimensions I

• So far, we have implicitly assumed that dimensions are stable over time.
 ■ At most, new rows in dimension tables are inserted.
 ■ The existing rows do not change.
• This assumption is not valid in practice.
 ■ The phenomenon is called “slowly changing dimensions”.
 ■ The intuition is, that dimension information change, but changes are (relatively) rare.

• We will look at a number of techniques for handling changes in dimensions.

• Schema changes are not considered now.
 ■ Then it becomes really funny!
Changing Dimensions II

- Descriptions of stores and products vary over time.
- A store is enlarged and changes size.
- A product changes description.
- Districts are changed.

Problems
- If we update the dimensions, wrong information will result.
- If we don’t update the dimensions, the DW is not up-to-date.
Changing Dimensions III

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>ItemsSold</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>ItemsSold</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>ItemsSold</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>2500</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>450</td>
</tr>
</tbody>
</table>
Changing Dimensions IV

• **Solution 1**: Overwrite the old values that change, in the dimension tables.

• Consequences
 - Old facts point to rows in the dimension tables with incorrect information.
 - New facts point to rows with correct information.
 - New facts are facts that are inserted after the dimension rows they point to are inserted/changed.

• Pros
 - Easy to implement
 - Ideal if the changes are due to erroneous registrations.
 - In some cases, the "imprecision" can be disregarded.

• Cons
 - "The solution" does not solve the problem of capturing change.
Changing Dimensions V

- **Solution 2**: Versioning of rows with changing attributes.
 - The key that links dimension and fact table, should now identify a *version* of a row, not just a "row".
 - The key is generalized.
 - If "stupid" ("non information-bearing", "surrogate") keys are used, there is no need for changes.

- **Consequences**
 - Larger dimension tables

- **Pros**
 - Correct information captured in DW
 - No problems when formulating queries

- **Cons**
 - It is not possible to capture the development over time of the subjects the dimensions describe.
Changing Dimensions VI

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>ItemsSold</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>Size</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>ItemsSold</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td></td>
<td>450</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>Size</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td></td>
<td>450</td>
<td></td>
</tr>
</tbody>
</table>
Changing Dimensions VII

- **Solution 3**: Create two versions of each changing attribute
 - One attribute contains the actual value
 - The other attribute contains the previous value
- **Consequences**
 - Two values are attached to each fact row.
- **Pros**
 - It is possible to compare across the change in dimension value (which is a problem with Solution 2).
 - Such comparisons are interesting in certain situations, where it is logical to work simultaneously with two alternative values.
 - Example: Categorization of stores and products.
- **Cons**
 - Not possible to see when the old value changed to the new.
 - Only possible to capture the two latest values.
Changing Dimensions VIII

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>ItemsSold</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>DistrictOld</th>
<th>DistrictNew</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>37</td>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>ItemsSold</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>DistrictOld</th>
<th>DistrictNew</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>37</td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>ItemsSold</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>2100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>...</th>
<th>DistrictOld</th>
<th>DistrictNew</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
<td>37</td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>
Changing Dimensions IX

- **Solution 2.1**: Use special facts for capturing changes in dimensions via the Time dimension.
 - When a change occurs and there is no simultaneous, new fact referring to the new dimension row, a new special fact is created that points to the new dimension row and thus timestamps the row via the fact row’s reference to the Time dimensions.

- **Pros**
 - It is possible to capture the development over time of the subjects that the dimensions describe.

- **Cons**
 - Even larger tables
Changing Dimensions X

<table>
<thead>
<tr>
<th>StoreID</th>
<th>TimeID</th>
<th>ItemsSold</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>234</td>
<td>2000</td>
<td>250</td>
</tr>
<tr>
<td>002</td>
<td>345</td>
<td>-</td>
<td>450</td>
</tr>
<tr>
<td>002</td>
<td>456</td>
<td>2500</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>TimeID</th>
<th>ItemsSold</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>234</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>345</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>456</td>
<td>2500</td>
<td>450</td>
</tr>
</tbody>
</table>
Changing Dimensions XI

- **Solution 2.2**: Versioning of rows with changing attributes like in Solution 2 + timestamping of rows.

- **Pros**
 - Correct information captured in DW

- **Cons**
 - Larger dimension tables
 - Consider whether Time dimension values and timestamps describe the same aspect of time.
Changing Dimensions XII

<table>
<thead>
<tr>
<th>StoreID</th>
<th>TimeID</th>
<th>ItemsSold</th>
<th>...</th>
<th>StoreID</th>
<th>Size</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>234</td>
<td>2000</td>
<td>...</td>
<td>001</td>
<td>250</td>
<td>98</td>
<td>-</td>
</tr>
<tr>
<td>002</td>
<td>450</td>
<td>-</td>
<td></td>
<td>002</td>
<td>450</td>
<td>00</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>TimeID</th>
<th>ItemsSold</th>
<th>...</th>
<th>StoreID</th>
<th>Size</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>234</td>
<td>2000</td>
<td>...</td>
<td>001</td>
<td>250</td>
<td>98</td>
<td>99</td>
</tr>
<tr>
<td>002</td>
<td>456</td>
<td>2500</td>
<td></td>
<td>002</td>
<td>450</td>
<td>00</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>StoreID</th>
<th>TimeID</th>
<th>ItemsSold</th>
<th>...</th>
<th>StoreID</th>
<th>Size</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>234</td>
<td>2000</td>
<td>...</td>
<td>001</td>
<td>250</td>
<td>98</td>
<td>99</td>
</tr>
<tr>
<td>002</td>
<td>456</td>
<td>2500</td>
<td></td>
<td>002</td>
<td>450</td>
<td>00</td>
<td>-</td>
</tr>
</tbody>
</table>
Changing Dimensions XIII

- **Solution 2.2**: examples
- Product descriptions are versioned, when products are changed, e.g., new package sizes.
- New facts can refer to both the newest and older versions of products, as old versions are still in the stores.
- Thus, the Time value for a fact should not necessarily be between the From and To values in the fact’s Product dimension row.
- This is unlike changes in Size for a store, where all facts from a certain point in time will refer to the newest Size value.
- This is also unlike alternative categorizations that one wants to choose between.
Changing Dimensions XIV

- Handling “rapidly changing dimensions”.
 - Difference between “slowly” and “rapidly” is subjective.
- Solution 2 is often still feasible.
 - The problem is the size of the dimension.
- Example
 - Assume an Employee dimension with 100,000 employees, each using 2K and many changes every year.
 - Kimball recommends Solution 2.2.
- Other typical examples of (large) dimensions with many changes are Product and Customer.
- Example
 - Some Customer dimensions can have 10M customers.
 - Use Solution 2 and suitable indexing!
Changing Dimensions XV

- Handling “rapidly changing monster dimensions”.
- The more attributes in a dimension table, the more changes per row can be expected.
- Solution 2 yields a dimension that is too large.
- Example
 - A Customer dimension with 100M customers and many attributes.
Changing Dimensions XVI

<table>
<thead>
<tr>
<th>CustID</th>
<th>Name</th>
<th>PostalAddress</th>
<th>Gender</th>
<th>DateOfBirth</th>
<th>Customerside</th>
<th>NoKids</th>
<th>MaritalStatus</th>
<th>CreditScore</th>
<th>BuyingStatus</th>
<th>Income</th>
<th>Education</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CustID</th>
<th>Name</th>
<th>PostalAddress</th>
<th>Gender</th>
<th>DateOfBirth</th>
<th>Customerside</th>
<th>NoKids</th>
<th>MaritalStatus</th>
<th>CreditScore</th>
<th>BuyingStatus</th>
<th>Income</th>
<th>Education</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DemographyID</th>
<th>NoKids</th>
<th>MaritalStatus</th>
<th>CreditScoreGroup</th>
<th>BuyingStatusGroup</th>
<th>IncomeGroup</th>
<th>EducationGroup</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Changing Dimensions XVII

• Solution
 - Make a "minidimension" with the often-changing (demographic) attributes.
 - Convert (numeric) attributes with many possible values into attributes with few possible values, representing groups of the original values.
 - Insert rows for all combinations of values from these new domains.
 - With 6 attributes with 10 possible values each, the dimension gets 1,000,000 rows.
 - Alternatively, (combination) rows can be inserted when needed.
 - If the minidimension is too large, it can be split into two or more minidimensions.
 - Here, synchronous attributes must be considered (and placed in the same minidimension).
 - The same attribute can be repeated in another minidimension.
Changing Dimensions XVIII

• Pros
 ■ DW size (dimension tables) is kept down.
 ■ Changes in a customer’s demographic values do not result in changes in dimensions.
 ◆ With the alternative solution, rows must be inserted into the minidimension.

• Cons
 ■ More dimensions and more keys in the star schema.
 ■ Using value groups gives less detail.
 ■ The construction of groups is irreversible and makes it hard to make other groupings.
 ■ Navigation of customer attributes is more cumbersome as these are in more than one dimension.
 ◆ An ActualDemography attribute can be added to the dimension with the stable values.
Changing dimensions - Summary

• Multidimensional models realized as star schemas support change over time to a large extent.

• This is important!
 ■ Applications change.
 ■ The modeled reality changes.

• A number of techniques for handling change over time at the instance level was described.
 ■ Solution 2 (and the derived, 2.1 og 2.2) is the most useful.
 ■ It is possible to capture change precisely.