Integration of the global positioning system and geographical information systems for traffic congestion studies

Appeared in ”Geographic Information Systems in Transportation Research” volume 8, 2000

Michael A. P. Taylor, Jeremy E. Woolley and Rocco Zito

Transport Systems Centre, School of Geoinformatics, Planning and Building, University of South Australia

October 11, 2006

Presented by Anders Jensen
Background

Congestion

Experiments

Relation to Our Project

Strong and Weak Points
GPS/GIS Integration

- Idea: Combine GPS-data with other data sources
- Why: Traffic studies (ex. travel times, congestion), environmental studies and planning
- How: Integrated GPS/GIS (Geographical Information Systems)
GPS/GIS Integration

- GPS-data (longitude, latitude)
- Environmental data (emissions, engine revolutions, gear, fuel consumption)
- Geographical data (topography, land-data)
GPS/GIS Integration

- Impact Analysis
- Travel Demand Modelling
- Forecasting
- Land use

INTEGRATED SPATIAL/TEXTUAL DATABASE

INDIVIDUAL DATABASES
- Traffic and Environmental Impacts
- Traffic Flows
- Socio economic and Demographic data
- Transport Networks
- Land/property Data
- Topography
Probe Vehicle

- GPS equipped car
- Additional equipment for recording ex. fuel consumption, engine revolutions and gear
- Expensive, not stock equipment

Table 1
Vehicle parameters logged in real time by the TSC probe vehicle

<table>
<thead>
<tr>
<th>Variable</th>
<th>Measurement units</th>
<th>Variable</th>
<th>Measurement units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>s</td>
<td>Air conditioning</td>
<td>on/off</td>
</tr>
<tr>
<td>Distance</td>
<td>m</td>
<td>Power/economy mode</td>
<td>on/off</td>
</tr>
<tr>
<td>Speed</td>
<td>km/h</td>
<td>Engine gear</td>
<td>gear (1–4)</td>
</tr>
<tr>
<td>Fuel consumption</td>
<td>l</td>
<td>Hydrocarbons (HC)</td>
<td>ppm</td>
</tr>
<tr>
<td>Engine revolutions</td>
<td>rpm</td>
<td>Nitrogen oxides (NOₓ)</td>
<td>ppm</td>
</tr>
<tr>
<td>Manifold pressure</td>
<td>Pa</td>
<td>Carbon monoxide (CO)</td>
<td>ppm</td>
</tr>
<tr>
<td>Throttle position</td>
<td>ratio</td>
<td>Carbon dioxide (CO₂)</td>
<td>ppm</td>
</tr>
<tr>
<td>Engine temperature</td>
<td>°C</td>
<td>Oxygen (O₂)</td>
<td>ppm</td>
</tr>
<tr>
<td>GPS position</td>
<td>Latitude + Longitude</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Moving Observer

- Appropriately equipped vehicle
- Records ex. travel times and queue lengths
- Represents the average driver
- Should traverse each route several times
Floating Car

- Is a moving observer
- Floats naturally through traffic
- Aims at being the "average" driver
- Should overtake the same number of cars as overtaken by
- Limits moving observer bias
Floating Car

▶ Mean travel time

\[t_{ab}^- = t_{ab} + \frac{O}{q} \]

, where \(t_{ab}^- \) is the travel time, \(t_{ab} \) is the recorded travel time, \(O \) is the number of cars overtaken minus the number of cars who overtake and \(q \) is the mean flow rate.

▶ Mean flow rate is calculated by having a second vehicle traveling in the opposite direction

\[q = \frac{m - O}{t_{ab} + t_{ba}} \]

, where \(m \) is the number of cars met and \(t_{ba} \) is the travel time for the opposite direction.
Congestion

- Congestion is traffic jams
- Congestion is a major issue in traffic both for drivers and planners
- When is a road congested?
- And how much?
Definition of Congestion

- Increased disruption of traffic movement
- Results in delays and queues
- "Is generated by the interactions amongst the flow units in a traffic stream or in intersecting traffic streams"
- Visible when the capacity of a road is exceeded
Congestion Measures

- Delay is when the recorded travel time is greater than the free-flow travel time

\[d = T - T_0 \]

, where \(T \) is the recorded travel time and \(T_0 \) is the free-flow travel time.

- Congestion can be measured using different methods:
 - Congestion Index
 - Proportion Stopped Time
 - Acceleration Noise
Congestion Index (CI)

- Delay on a piece of road will depend on the length of the road, road type and other characteristics
- CI enables comparison between roads with different characteristics
- Congestion Index is derived from Delay

\[CI = \frac{d}{T_0} \]

- A road or route will naturally have a CI of 0 in a state of free-flow
- The higher the CI gets, the more congested the road or route is
Proportion Stopped Time (PST)

- Travel time can be divided into running time T_r and stopped time T_s
- PST is the ratio of stopped time to the total journey time

$$PST = \frac{T_s}{T}$$

, where T is $T_s + T_r$

- Unlike CI, PST is usually not 0 as intersections will often induce stopped time
Acceleration Noise (AN)

- Acceleration Noise is calculated from a speed profile
- Idea: Congestion will induce more fluctuation in speed
Acceleration Noise (AN)

\[AN = \sqrt{\frac{1}{T_r} \sum_{i=1}^{n} \frac{\Delta v_i^2}{\Delta t_i}} \]

, where \(\Delta t_i \) is the time interval taken for a speed change \(\Delta v_i \)

- AN is different from CI and PST in that it provides a measure of the quality of the traffic flow
- AN is data-hungry as it requires prior knowledge about speed profiles on a specific road or route
Experiment setup
Experiments

- Construction of the new road does not consequently lower the travel times
- Travel times on the new road are lower, but the problems on the old road are not gone
Table 4
Congestion indices for the Southern Expressway

<table>
<thead>
<tr>
<th>Run code</th>
<th>Total distance (m)</th>
<th>Travel time (s)</th>
<th>Stopped time (s)</th>
<th>Mean journey speed (km/h)</th>
<th>Proportion stopped time</th>
<th>Acceleration noise</th>
<th>Mean velocity gradient</th>
<th>Congestion index</th>
</tr>
</thead>
<tbody>
<tr>
<td>301198amn1</td>
<td>8154.7</td>
<td>424.0</td>
<td>22.0</td>
<td>69.2</td>
<td>0.052</td>
<td>0.459</td>
<td>0.024</td>
<td>0.301</td>
</tr>
<tr>
<td>3011981mn3</td>
<td>8149.1</td>
<td>374.0</td>
<td>0.0</td>
<td>78.4</td>
<td>0.000</td>
<td>0.420</td>
<td>0.019</td>
<td>0.147</td>
</tr>
<tr>
<td>011298amn2</td>
<td>8141.8</td>
<td>469.0</td>
<td>61.0</td>
<td>62.5</td>
<td>0.130</td>
<td>0.548</td>
<td>0.032</td>
<td>0.439</td>
</tr>
<tr>
<td>011298amn4</td>
<td>8166.4</td>
<td>396.0</td>
<td>11.0</td>
<td>74.2</td>
<td>0.028</td>
<td>0.574</td>
<td>0.028</td>
<td>0.215</td>
</tr>
<tr>
<td>021298amn1</td>
<td>8142.8</td>
<td>365.0</td>
<td>0.0</td>
<td>80.3</td>
<td>0.000</td>
<td>0.481</td>
<td>0.022</td>
<td>0.120</td>
</tr>
<tr>
<td>021298amn3</td>
<td>8164.9</td>
<td>416.0</td>
<td>29.0</td>
<td>70.7</td>
<td>0.070</td>
<td>0.515</td>
<td>0.026</td>
<td>0.276</td>
</tr>
<tr>
<td>021298amn5</td>
<td>8167.6</td>
<td>376.0</td>
<td>18.0</td>
<td>78.2</td>
<td>0.048</td>
<td>0.440</td>
<td>0.020</td>
<td>0.153</td>
</tr>
<tr>
<td>031298amn1</td>
<td>8165.3</td>
<td>350.0</td>
<td>0.0</td>
<td>84.0</td>
<td>0.000</td>
<td>0.494</td>
<td>0.021</td>
<td>0.074</td>
</tr>
<tr>
<td>031298amn3</td>
<td>8153.3</td>
<td>378.0</td>
<td>0.0</td>
<td>77.7</td>
<td>0.000</td>
<td>0.400</td>
<td>0.019</td>
<td>0.160</td>
</tr>
<tr>
<td>031298amn5</td>
<td>8150.7</td>
<td>454.0</td>
<td>70.0</td>
<td>64.6</td>
<td>0.154</td>
<td>0.581</td>
<td>0.032</td>
<td>0.393</td>
</tr>
<tr>
<td>041298amn2</td>
<td>8144.2</td>
<td>379.0</td>
<td>5.0</td>
<td>66.4</td>
<td>0.013</td>
<td>0.473</td>
<td>0.022</td>
<td>0.163</td>
</tr>
<tr>
<td>041298amn4</td>
<td>8155.8</td>
<td>421.0</td>
<td>57.0</td>
<td>69.7</td>
<td>0.135</td>
<td>0.562</td>
<td>0.029</td>
<td>0.291</td>
</tr>
<tr>
<td>041298amn5</td>
<td>8158.9</td>
<td>382.0</td>
<td>24.0</td>
<td>76.9</td>
<td>0.063</td>
<td>0.503</td>
<td>0.024</td>
<td>0.172</td>
</tr>
</tbody>
</table>

Morning peak direction, Southern Expressway, free travel time = 326.0 s, all data collected in period 07:00–09:00
Our project

- Estimate travel times based on GPS-data collected by ex. cars and taxis
- Calculate fastest path from A to B for a number of A’s and B’s
- Identify/handle troublesome events such as rush hour
Relation to Our Project

- Our project is only concerned with traffic, not environment and other aspects
- We use multiple data collection vehicles which do not "float" but are moving observers
- We base our solution on travel time estimated from GPS-data, but not in the same way
- We might be able to use some of the congestion measures
 - Delay, CI and PST can be calculated using the data we receive, but might not be usable. We might need to do something like PST.
 - Given enough data we can use AN or speed profiles. We might store travel times in a manner that resembles speed profiles.
Strong and Weak Points

Strong points:
- Clear definitions of congestion measures
- Nice overview of GPS/GIS integration
- Practically usable experiments

Weak points:
- No clear contributions
- Data collection is based on a single probe vehicle
- Experiments could have been compared to the models used when designing the new road
Questions?