Modeling, Storing and Mining Moving Object Databases

 Appeared in: Proceedings of the International Database Engineering And Application Symposium (IDEAS’04) 2004

 Sotiris Brakatsoulas Dieter Pfoser Nectaria Tryfona

 Research Academic Computer Technology Institute
 Athens, Greece

 November 15, 2006

 Presented by Nermin Mudzelet
Motivation

- **Problems in traffic management**
 - Find alternatives for troublesome situations (e.g. traffic jams)

![Figure 1: Rush hour](image)
Motivation

- **Build MOD (Moving Object Database)**
 - Spatial data (roads, buildings, obstructions)
 - Non-spatial data (attributes, texts, pictures)
 - Trajectory data

- **Spatial Mining Language (SML)**

- **ΙΧΝΗΛΑΤΗΣ (Pathfinder) – Traffic Management System**
 - General Secretariat of Research and Development, Greece
 - Use real data from a fleet of moving vehicles to analyze, model, process and extract further knowledge
 - Routing optimization
Concepts

- **Moving object**
 - e.g. delivery truck, public transport, taxi

- **Trajectory (trace of the vehicle in time)**
 - Properties (speed, heading, covering area, etc.)
 - Relations (stay within, leave, enter, cross, bypass)

Figure 2: Trajectory of moving object

Figure 3: Relationships: trajectory/environment
Figure 4: Database scheme of MOD
Storing

- **Trajectory data storage**
 - NW_TRAJECTORY(trajectory_id, edge_id, time1, time2)
 - records trajectory segments
 - NODE(node_id, 2D-point)
 - represents the spatial aspect of the street network
 - EDGE_NODES(edge_id, node_id1, node_id2)
 - start/end nodes for each network edge
 - NODE_EDGES(node_id, edge_id)
 - capture the incident edges of nodes

![Figure 5: Relations between tables](image-url)
Storing

- For query optimization used various indexes
 - Spatial, B-tree index

- Stored 26000 trajectories
 - Size in database 1GB

<table>
<thead>
<tr>
<th>Network Schema</th>
<th>Size (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table or Index</td>
<td></td>
</tr>
<tr>
<td>NW_TRAJECTORY</td>
<td>476.41</td>
</tr>
<tr>
<td>NW_TRAJECTORY_INDEX</td>
<td>480.2</td>
</tr>
<tr>
<td>NODE</td>
<td>5.95</td>
</tr>
<tr>
<td>NODE_INDEX</td>
<td>12.53</td>
</tr>
<tr>
<td>NODE_EDGES</td>
<td>6.12</td>
</tr>
<tr>
<td>NODE_EDGES_INDEX</td>
<td>9.22</td>
</tr>
<tr>
<td>EDGE_NODES</td>
<td>5.9</td>
</tr>
<tr>
<td>EDGE_NODES_INDEX</td>
<td>3.4</td>
</tr>
<tr>
<td>Total</td>
<td>999.73</td>
</tr>
</tbody>
</table>

Table 1: Trajectory data storage occupation
Overview

1. Motivation
2. Modeling, Storing and Mining
3. Related Work
4. Relation to Our Projects
5. Strong and Weak Points
Data mining functions – query existing information to extract knowledge

- Characterization
 - assigning a new attribute to a class based on some attribute values
- Clustering
 - new object class based on the values of some attributes
- Association
 - relationship between object classes

Spatial Mining Language (SML) of the ΙΧΝΗΛΑΤΗΣ system

Generic syntax:

```
MINE mining function
ON/AMONG object class(-es)
AS composite spatial constraint
```
Mining

Example

- **Query**: Find all vehicles with a traveled distance of 15 to 20 km from the center of Athens towards South, between 10:00 to 10:30 and cluster them as ‘equivalent_routes’.

```
MINE CLUSTERING 'equivalent_routes'
ON trajectory
AS (15 km < distance(GetPosition(10:00) -
GetPosition(10:30)) < 20 km) and (170 <
GetHeading(spatial extent: center±20km,
temporal extent: 10:00 - 10:30) < 190
(degrees))
```

Figure 7: Spatiotemporal range
Overview

1. Motivation
2. Modeling, Storing and Mining
3. Related Work
4. Relation to Our Projects
5. Strong and Weak Points
Most of the related work includes tools in spatial data mining and traffic management

- The paper provides abstract data type extension to a DBMS data model and query language for moving objects, and it is basis for data types in this paper

“Querying the Trajectories of On-Line Mobile Objects” by Dieter Pfoser and Christian S. Jensen
- The paper presents a technique for querying trajectories, and it is used as basis on this paper for manipulating trajectories
Relation to our projects

- **Motivation close to ours**
 - Analyses and processing of traffic data
- **GPS data points are map matched to road segments**
- **We are using data warehouse**
 - Discrete spatial locations and trajectories approach
- **We can use storage model**
Overview

1. Motivation
2. Modeling, Storing and Mining
3. Related Work
4. Relation to Our Projects
5. Strong and Weak Points
Strong and weak points

Strong points
- Contribution of paper is clearly pointed out
- Explanation of SML language includes examples

Weak points
- Actual implementation and performance of system not included
- Explanation of Figure 3 in the paper not clear enough
Thank You!