Representing Spatiality in a Conceptual Multidimensional Model

Appeared in "Proceedings of the 12th annual ACM international workshop on Geographic information systems", November 12-13, 2004 Washington DC, USA

Elzbieta Malinowski Esteban Zimányi
Departement of Computer & Network Engineering, Université Libre de Bruxelles, Belgium

October 18, 2006

Presented by Nermin Mudzelet
Introduction

- **Data Warehouse (DW)** – “as a collection of subject-oriented, integrated, non-volatile, and time-variant data supporting management’s decisions”, *W. Inmon*
 - Fact tables
 - Measures (e.g. sales of cost, representing analysis in a quantified form)
 - Dimension tables
 - Descriptive attributes (e.g. store number, manager’s name)
 - Hierarchy
 - Attributes can form *hierarchy* (e.g. City-State-Country)

- **Spatial DW (SDW)** – combines DW and spatial databases (SDB)
 - Where we have included spatial locations
 - Improve data analysis, visualization and manipulation

- **Multidimensional Model**
 - Widely used in DW’s
 - Establish communication between users and designers
Contents

- Introduction
- Conceptual Multidimensional Model
- Multidimensional Model for Spatial Data
- Related work
- Relation to Our Project
- Strong and Weak Points
Conceptual Multidimensional Model (CMM)

- CMM – “as finite set of dimensions and fact relationships”
- Introduce CMM based on ER graphical notations
 - Dimensions includes hierarchies
 - Basic
 - Several levels
 - Cardinality
- Level
 - Category attributes
 - used for grouping
 - Property attributes
 - descriptive

- Criterion
 - Different structures
 - geographical location
 - organizational structure

- Fact relationship
 - Measure
Example of CMM

- CMM model of Sales DW with hierarchy in the Store and Product dimensions
Introduction

Conceptual Multidimensional Model

Multidimensional Model for Spatial Data

Related work

Relation to Our Project

Strong and Weak Points
Spatial dimension of CMM

- Spatial dimension
 - Spatial level
 - Geometry represented using spatial data
 - Simple and complex
- Topological relationships
Spatial hierarchy in the Client dimension

- buying behavior
- thematic
- enriches queries
“as a fact relations that requires a spatial join between two or more spatial dimensions”

Model for analyzing the maintenance of a highway:

Query:
- a) “Whether all highway section pass through some cities”
- b) “Whether some highway sections belongs to more than one city”
Spatial measures

- Spatial measure
 - “as a measure that is represented by a geometry and defines a spatial function used for aggregation along the hierarchies”
 - or “represents a numerical value that is calculated using spatial or topological operators”

- Regular functions (e.g. sum, min, count, and average)

- Spatial functions (e.g. geometric union, geometric intersection)

- When geometry is involved then spatial function needs to be specified
Multidimensional model with a spatial measure: location

Queries

<table>
<thead>
<tr>
<th>Sales Model</th>
<th>Accident Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sales in store X of products of category Y in year Z.</td>
<td>Locations where a client X had accidents covered by an insurance of category Y in year Z.</td>
</tr>
<tr>
<td>Total sales in year X grouped by city.</td>
<td>Locations of accidents in year X grouped by client age group.</td>
</tr>
</tbody>
</table>
Multidimensional model with a non-spatial measure

<table>
<thead>
<tr>
<th>Queries</th>
<th>Sales Model</th>
<th>Accident Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sales in store X of products of category Y in year Z.</td>
<td></td>
<td>Locations where a client X had accidents covered by an insurance of category Y in year Z.</td>
</tr>
<tr>
<td>Total sales in year X grouped by city.</td>
<td></td>
<td>Locations of accidents in year X grouped by client age group.</td>
</tr>
</tbody>
</table>
Related Work

- Conceptual modeling of SDB and DW based on ER-model or UML

- Miquel et al. distinguish difference between spatial and regular measures
 - Members hold spatial representation

- Jensen et al. present a general-usage scenario for location-based services
 - Multidimensional model with hierarchies
Goals in our project:
- Calculate travel times in road network
- Using GPS logs of taxi, bus and ordinary drivers

Common with our project:
- Using DW with some spatial characteristic
- We can use geometry to defined zones more precisely
Strong and Weak Points

- **Strong Points**
 - Related work
 - Picture examples
 - Contribution to spatial data analyses

- **Weak Points**
 - Implementation is not included
 - High level of abstraction
Thank You!