Advanced Algorithm Design and Analysis (Lecture 13)

SW5 fall 2007
Simonas Šaltenis
3.2.12
simas@cs.aau.dk
Text-search Algorithms

- Goals of the lecture:
 - *Naive text-search algorithm and its analysis*;
 - *Rabin-Karp* algorithm and its analysis;
 - *Knuth-Morris-Pratt* algorithm ideas
 - *Boyer-Moore-Horspool* algorithm
Text-Search Problem

- **Input:**
 - *Text* T = “at the thought of”
 - $n = \text{length}(T) = 17$
 - *Pattern* P = “the”
 - $m = \text{length}(P) = 3$

- **Output:**
 - *Shift* s – the smallest integer $(0 \leq s \leq n - m)$ such that $T[s \ldots s+m-1] = P[0 \ldots m-1]$. Returns -1, if no such s exists.

 \[
 \begin{array}{cccccccccccccccc}
 0 & 1 & 2 & 3 & \ldots & & & & n-1 \\
 \text{at the thought of} \\
 \text{the} \\
 \end{array}
 \]
Naïve Text Search

- Idea: Brute force
 - Check all values of s from 0 to n – m

\[\text{Naive-Search}(T,P)\]

\[
01 \text{ for } s \leftarrow 0 \text{ to } n - m \\
02 \quad j \leftarrow 0 \\
03 \quad \text{// check if } T[s..s+m-1] = P[0..m-1] \\
04 \quad \text{while } T[s+j] = P[j] \text{ do} \\
05 \quad \quad j \leftarrow j + 1 \\
06 \quad \quad \text{if } j = m \text{ return } s \\
07 \text{ return } -1
\]

- Let \(T = "\text{at the thought of}" \) and \(P = "\text{though}" \)
 - What is the number of character comparisons?
Analysis of Naïve Text Search

- **Worst-case:**
 - Outer loop: \(n - m + 1 \)
 - Inner loop: \(m \)
 - Total \((n-m+1)m = O(nm)\)
 - *What is the input that gives this worst-case behavior?*

- **Best-case:** \(n - m + 1 \)
 - *When?*

- **Completely random text and pattern:**
 - \(O(n-m) \)
Fingerprint idea

- Assume:
 - We can compute a fingerprint $f(P)$ of P in $O(m)$ time.
 - If $f(P) \neq f(T[s..s+m-1])$, then $P \neq T[s..s+m-1]$
 - We can compare fingerprints in $O(1)$
 - We can compute $f' = f(T[s+1..s+m])$ from $f(T[s..s+m-1])$, in $O(1)$
Algorithm with Fingerprints

- Let the alphabet $\Sigma=\{0,1,2,3,4,5,6,7,8,9\}$
- Let fingerprint to be just a decimal number, i.e., $f("1045") = 1\times10^3 + 0\times10^2 + 4\times10^1 + 5 = 1045$

Fingerprint-Search(T,P)

01 fp \leftarrow compute $f(P)$
02 $f \leftarrow$ compute $f(T[0..m-1])$
03 for $s \leftarrow 0$ to $n - m$ do
04 \hspace{1em} if $fp = f$ return s
05 \hspace{1em} $f \leftarrow (f - T[s]\times10^{m-1})\times10 + T[s+m]$
06 return -1

- Running time $2O(m) + O(n-m) = O(n)$!
- *Where is the catch?*
Using a Hash Function

- **Problem:**
 - We can not assume we can do arithmetics with m-digits-long numbers in $O(1)$ time!

- **Solution:** Use a hash function $h = f \mod q$
 - For example, if $q = 7$, $h(“52”) = 52 \mod 7 = 3$
 - $h(S_1) \neq h(S_2) \Rightarrow S_1 \neq S_2$
 - But $h(S_1) = h(S_2)$ does not imply $S_1 = S_2$!
 - For example, if $q = 7$, $h(“73”) = 3$, but “73” ≠ “52”

- **Basic “mod q” arithmetics:**
 - $(a+b) \mod q = (a \mod q + b \mod q) \mod q$
 - $(a\times b) \mod q = (a \mod q)*(b \mod q) \mod q$
Preprocessing and Stepping

- **Preprocessing:**
 - \(fp = P[m-1] + 10*(P[m-2] + 10*(P[m-3]+
 ... + 10*(P[1] + 10*P[0]))...)) \mod q \)
 - In the same way compute \(ft \) from \(T[0..m-1] \)
 - Example: \(P = "2531" \), \(q = 7 \), what is \(fp \)?

- **Stepping:**
 - \(ft = (ft - T[s]*10^{m-1} \mod q)*10 + T[s+m]) \mod q \)
 - \(10^{m-1} \mod q \) can be computed once in the preprocessing
 - Example: Let \(T[...] = "5319" \), \(q = 7 \), what is the corresponding \(ft \)?

![Diagram](image-url)
Rabin-Karp Algorithm

Rabin-Karp-Search(T, P)
01 q \leftarrow a prime larger than m
02 c \leftarrow 10^{m-1} mod q // run a loop multiplying by 10 mod q
03 fp \leftarrow 0; ft \leftarrow 0
04 for i \leftarrow 0 to m-1 // preprocessing
05 fp \leftarrow (10*fp + P[i]) mod q
06 ft \leftarrow (10*ft + T[i]) mod q
07 for s \leftarrow 0 to n – m // matching
08 if fp = ft then // run a loop to compare strings
09 if P[0..m-1] = T[s..s+m-1] return s
10 ft \leftarrow ((ft - T[s]*c)*10 + T[s+m]) mod q
11 return -1

- How many character comparisons are done if
 $T = \"2531978\"$ and $P = \"1978\"$ (and $q = 7$)?
Analysis

- If q is a prime, the hash function distributes m-digit strings evenly among the q values
 - Thus, only every q-th value of shift s will result in matching fingerprints (which will require comparing strings with $O(m)$ comparisons)

- Expected running time (if $q > m$):
 - Preprocessing: $O(m)$
 - Outer loop: $O(n-m)$
 - All inner loops: $\frac{n-m}{q} \cdot m = O(n-m)$
 - Total time: $O(n-m)$

- Worst-case running time: $O(nm)$
Rabin-Karp in Practice

- If the alphabet has \(d \) characters, interpret characters as radix-\(d \) digits (replace 10 with \(d \) in the algorithm).

- Choosing prime \(q > m \) can be done with randomized algorithms in \(O(m) \), or \(q \) can be fixed to be the largest prime so that \(10^*q \) fits in a computer word.

- Rabin-Karp is simple and can be easily extended to two-dimensional pattern matching.
Searching in n comparisons

- The goal: each character of the text is compared only once!
- Problem with the naïve algorithm:
 - Forgets what was learned from a partial match!
 - Examples:
 - $T = "\text{Tweedledee and Tweedledum}"$ and $P = "\text{Tweedledum}"$
 - $T = "\text{pappappappar}"$ and $P = "\text{pappar}"$
General situation

- **State of the algorithm:**
 - Checking shift s,
 - q characters of P are matched,
 - we see a non-matching character α in T.

- **Need to find:**
 - Largest prefix "$P-$" such that it is a suffix of $P[0..q-1]\alpha$:
 - New $q' = \max\{k \leq q \mid P[0..k-1] = P[q-k+1..q-1]\alpha\}$
Finite automaton search

Algorithm:
- **Preprocess:**
 - For each q ($0 \leq q \leq m-1$) and each $\alpha \in \Sigma$ pre-compute a new value of q. Let’s call it $\sigma(q,\alpha)$
 - Fills a table of a size $m|\Sigma|
- **Run through the text**
 - Whenever a mismatch is found ($P[q] \neq T[s+q]$):
 - Set $s = s + q - \sigma(q,\alpha) + 1$ and $q = \sigma(q,\alpha)$

Analysis:
- ☺️ Matching phase in $O(n)$
- ☹️ Too much memory: $O(m|\Sigma|)$, too much preprocessing: at best $O(m|\Sigma|)$.
Prefix function

- **Idea:** forget unmatched character (α)!

- **State of the algorithm:**
 - Checking shift s,
 - q characters of P are matched,
 - we see a non-matching character α in T.

- **Need to find:**
 - Largest prefix "$P-$" such that it is a suffix of $P[0..q-1]$:
 - New $q' = \pi[q] = \max\{k < q \mid P[0..k-1] = P[q-k..q-1]\}$
Prefix table

- We can pre-compute a prefix table of size m to store values of $\pi[q]$ ($0 \leq q \leq m$)

<table>
<thead>
<tr>
<th>P</th>
<th>p</th>
<th>a</th>
<th>p</th>
<th>p</th>
<th>a</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>$\pi[q]$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

- Compute a prefix table for: $P = \text{"dadadu"}$
Knuth-Morris-Pratt Algorithm

KMP-Search (T, P)

01 $\pi \leftarrow \text{Compute-Prefix-Table}(P)$
02 $q \leftarrow 0$ // number of characters matched
03 for $i \leftarrow 0$ to $n-1$ // scan the text from left to right
 04 while $q > 0$ and $P[q] \neq T[i]$ do
 05 $q \leftarrow \pi[q]$
 06 if $P[q] = T[i]$ then $q \leftarrow q + 1$
 07 if $q = m$ then return $i - m + 1$
08 return -1

- **Compute-Prefix-Table** is essentially the same KMP search algorithm performed on P.

- **What is the running time?**
Analysis of KMP

- Worst-case running time: $O(n+m)$
 - Main algorithm: $O(n)$
 - Compute-Prefix-Table: $O(m)$
- Space usage: $O(m)$