

Memory Allocation
Morten Kühnrich

mokyhn@cs.aau.dk

Implementing myalloc, myfree
and myrealloc

Introduction

• A memory allocator (MA) manages the
memory.

• A process may perform the following
operations

– Request memory: void *mymalloc(size_t s);
– Free memory: void myfree(void *p);
– Get more (or less) memory: void

*myrealloc(void *p, size_t s);

Functional specification
 void *mymalloc(size_t s);

• A call to mymalloc returns a pointer to a
free memory part of size s -bytes.

• If there is not room enough – return the
NULL pointer.

• Caution The user might supply strange
numbers for s, such as 0 or 17. Your MA
should be able to handle that.

Functional specification
 void myfree(void *p);

• The function releases the allocated
memory chunk with start adress *p.

• Caution Running myfree on some pointer
*p without a previous allocation for *p is
not defined. You can do whatever you like.

Functional specification
void *myrealloc(void *p, size_t s);
• The function extends (or shrinks) an

allocated memory chunk at *p to a size of
s bytes.

• When extending a chunk it should not
change the memory content of the
previosly allocated area.

Functional specification
void *myrealloc(void *p, size_t s);
• If the new size of the memory chunk can

be obtained though an extension of the
present chunk, do so.

• If the new size of the memory chunk
requires movement of the chunk
then free the space for the previous
allocation and return a pointer to a new
area

• If the space cannot be allocated, return
NULL.

Implementation ideas

• You are advised to use a linked list.

Memory layout

DataYes No No

Null

Pointer to next memory chunk
Status bit. Yes means "In use" and No means "Unused"

The concrete data area available to a process

Implementation ideas..
• Initial memory layout

• The first allocation

– Memory is divided in two chunks

No

Null

Yes

Null

NoData

Implementation ideas....
• On allocation more

• A deallocation

Yes

Null

NoData Yes Data

Yes

Null

NoData No Data

A deallocation changes the status bit

Implementation ideas......

• The previous memory layout repeated

• A memory cleanup

Yes

Null

NoData No Data

Yes

Null

NoData No Data

This pointer was changed. The effect: One big free block of memory

Implementation ideas........

• Given the memory layout

• do a reallocation (simple)

Yes

Null

NoData No Data

Yes

Null

NoData No

A pointer to this chunk is returned from
realloc

Implementation ideas..........

• Given the memory layout

• do a reallocation (difficult)

Yes Data

Null

NoYes Data

No Data

Null

Yes DataYes Data No

A pointer to this chunk is returned from
realloc

In pratice

• You should implement a simple cleanup
function, otherwise you might end up
having trouble.

• The cleanup collapses consecutive chunks
which are free.

• Since different threads might allocate and
deallocate memory there is a mutual
exclusion problem.

• You implementation should therefore be
thread safe.

In pratice..

• Use the code templates from the webpage
• It should pass the test by running
testalloc.c

• Do you own tests of myrealloc.
• Use buddy blocks if time permits and you

want to.

Output from a test session
Welcome to the test program ver 1.0

On this architecture, an integer is of size 4 bytes
On this architecture, an size_t is of size 8 bytes
Good luck...
The size of the header is 16
Beginning basic test
---part 1
---part 2
---part 3
---part 4
---part 5
---part 6
Basic test passed
Beginning stress test
Doing cycle 0 out of 25
Doing cycle 5 out of 25
Doing cycle 10 out of 25
Doing cycle 15 out of 25
Doing cycle 20 out of 25
Stress test passed
Beginning thread test
Cycle 1 of 5
Cycle 2 of 5
Cycle 3 of 5
Cycle 4 of 5
Cycle 5 of 5
Thread test passed
Congratulations, all tests passed

