Go to the first, previous, next, last section, table of contents.


Example

Integrate-system integrates the system

  y'_k = f_k(y_1, y_2, ..., y_n), k = 1, ..., n

of differential equations with the method of Runge-Kutta.

The parameter system-derivative is a function that takes a system state (a vector of values for the state variables y_1, ..., y_n) and produces a system derivative (the values y'_1, ..., y'_n). The parameter initial-state provides an initial system state, and h is an initial guess for the length of the integration step.

The value returned by integrate-system is an infinite stream of system states.

  (define integrate-system
    (lambda (system-derivative initial-state h)
      (let ((next (runge-kutta-4 system-derivative h)))
        (letrec ((states
                  (cons initial-state
                        (delay (map-streams next
                                            states)))))
          states))))

Runge-Kutta-4 takes a function, f, that produces a system derivative from a system state. Runge-Kutta-4 produces a function that takes a system state and produces a new system state.

  (define runge-kutta-4
    (lambda (f h)
      (let ((*h (scale-vector h))
            (*2 (scale-vector 2))
            (*1/2 (scale-vector (/ 1 2)))
            (*1/6 (scale-vector (/ 1 6))))
        (lambda (y)
          ;; y is a system state
          (let* ((k0 (*h (f y)))
                 (k1 (*h (f (add-vectors y (*1/2 k0)))))
                 (k2 (*h (f (add-vectors y (*1/2 k1)))))
                 (k3 (*h (f (add-vectors y k2)))))
            (add-vectors y
              (*1/6 (add-vectors k0
                                 (*2 k1)
                                 (*2 k2)
                                 k3))))))))
  (define elementwise
    (lambda (f)
      (lambda vectors
        (generate-vector
          (vector-length (car vectors))
          (lambda (i)
            (apply f
                   (map (lambda (v) (vector-ref  v i))
                        vectors)))))))
  (define generate-vector
    (lambda (size proc)
      (let ((ans (make-vector size)))
        (letrec ((loop
                  (lambda (i)
                    (cond ((= i size) ans)
                          (else
                           (vector-set! ans i (proc i))
                           (loop (+ i 1)))))))
          (loop 0)))))
  (define add-vectors (elementwise +))
  (define scale-vector
    (lambda (s)
      (elementwise (lambda (x) (* x s)))))

Map-streams is analogous to map: it applies its first argument (a procedure) to all the elements of its second argument (a stream).

  (define map-streams
    (lambda (f s)
      (cons (f (head s))
            (delay (map-streams f (tail s))))))

Infinite streams are implemented as pairs whose car holds the first element of the stream and whose cdr holds a promise to deliver the rest of the stream.

  (define head car)
  (define tail
    (lambda (stream) (force (cdr stream))))

The following illustrates the use of integrate-system in integrating the system

  C * (dv_C / dt) = -i_L - (v_C / R)
  L * (di_L / dt) = v_C

which models a damped oscillator.

  (define damped-oscillator
    (lambda (R L C)
      (lambda (state)
        (let ((Vc (vector-ref state 0))
              (Il (vector-ref state 1)))
          (vector (- 0 (+ (/ Vc (* R C)) (/ Il C)))
                  (/ Vc L))))))
  (define the-states
    (integrate-system
       (damped-oscillator 10000 1000 .001)
       '#(1 0)
       .01))


Go to the first, previous, next, last section, table of contents.