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Abstract. We propose a partial order reduction method for reachabil-
ity analysis of networks of timed automata interacting via synchronous
channel communication and via shared variables. Our method is based
on (classical) symbolic delay transition systems and exploits the urgent
behavior of a system, where time does not introduce dependencies among
actions. In the presence of urgent behavior in the network, we apply par-
tial order reduction techniques for discrete systems based on stubborn
sets. We first describe the framework in the general setting of symbolic
delay time transition systems and then instantiate it to the case of timed
automata. We implement our approach in the model checker Uppaal and
observe a substantial reduction in the reachable state space for case stud-
ies that exhibit frequent urgent behaviour and only a moderate slowdown
on models with limited occurence of urgency.

1 Introduction

Partial order reduction techniques [4] based on persistent sets [14], ample sets [23]
or stubborn sets [17,28] have proved beneficial for the state space exploration
of systems that exhibit high degree of concurrency. As many actions in such
systems can be (in a syntax-driven manner) considered as independent, these
techniques will explore only a subset of the possible interleavings of independent
actions while preserving the property of the system we are interested in.

The techniques of partial order reductions for untimed system have only
recently been extended to timed systems with indication of success. For more
than two decades timed systems have resisted several partial order reduction
attempts, largely caused by the fact that time introduces additional dependencies
between actions that will normally be considered as independent. In [15] the
authors show a potential for stubborn reductions for networks of timed automata,
however using only approximate abstraction approach. A new idea of exploiting
urgency in timed systems in order to facilitate efficient partial order reduction
appeared in [8] in the context of timed-arc Petri nets with discrete time.

We take the idea of urgency-based [24] partial order reduction one step fur-
ther and extend the method towards the case of networks of extended timed
automata in the Uppaal style, including handshake and broadcast communi-
cation primitives, communication over shared variables as well as a C-like im-
perative programming language allowing for complex computation over discrete
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(b) Fragment of the full and reduced transition systems for the system in Figure 1a

Fig. 1: Simplified Fire Alarm System

structured variables. Our main contribution is a partial order reduction method
for urgent behavior based on the classical (zone-based) symbolic semantics for
networks of timed automata and its efficient implementation in the industrial
strength real-time verification tool Uppaal. An additional challenge is to de-
velop static analysis for the rich modeling language of Uppaal and combine it
with symbolic model checking techniques in a sound way. On a number of ex-
periments we show the applicability of the proposed method w.r.t. state-space
and time reduction.

Fire Alarm System Example. To illustrate the effect of our urgency-based partial
order reduction technique, we consider a simplified version of an industrial fire
alarm system [11]. The system uses a communication protocol based on the
Time Division Multiple Access (TDMA) paradigm, and has over 100 sensors
each of them assigned a unique time slot for sending and receiving messages.
Figure 1a shows a down-scaled and simplified version of the system with three
sensors, each modeled as a timed automaton. Each sensor has its own clock
xi, with the corresponding TDMA slot modeled by guards in (xi ≥ 1500) and
invariants (xi ≤ 1500). At the end of the TDMA cycle i.e. when xi = 1500 every
sensor resets its clock and goes back to its initial location. Figure 1b left shows
the fragment of the reachable transition system starting at the configuration
s = ((l1,3, l2,3, l3,3), x1 = x2 = x3 = 1500) where time progress is disabled
due to the invariants xi ≤ 1500. The transitions are induced by the edges ei =
〈li,3, τ, xi ≥ 1500, xi = 0, li,0〉. States of the form ◦ denote the so-called zero time
states where time cannot progress, whereas the filled state • denotes a situation
where time can delay. Figure 1b right shows the corresponding reduced transition
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system that contains only one interleaving sequence that allows us to reach the
state where time can delay again.

Related Work. The most related work in [8] presents an urgent partial order
reduction method for discrete time systems based on stubborn set construc-
tion [17,28]. The method is instantiated to timed-arc Petri nets and compared
to our case, it does not consider discrete data structures nor any communica-
tion primitives. In our work we focus on continuous time systems modeled as
networks of timed automata, requiring us to use symbolic transition system as
the underlying semantic model. The idea of applying partial order reduction for
independent events that happen at the same time also appeared in [9] however
this methods is not as efficient as ours because it is static (precomputed before
the state space exploration). In our approach we apply a dynamic reduction that
on-the-fly identifies independent actions even in the presence of communication
between the components, possibly sharing some resources.

Partial order reduction techniques applied to timed automata [2] include the
early works [7,20,10] based on the notion of local and global clocks or the concept
of covering as generalized dependencies. However, there is not provided any
experimental evaluation of the proposed techniques. There exist also techniques
based on event zones [19,22] and on merging zones from different interleaved
executions [26]. These are exact techniques comparable to approximate convex-
hull abstraction which is by now superseded by the exact LU-abstraction [5].
More recently, over-approximative methods based on abstracted zone graphs
were also studied in [15]. The main difference is that our approach is an exact
method that is applicable directly to the state-of-the-art techniques implemented
in Uppaal.

Finally, quasi-equal clocks [16] are clocks for which in all computations their
values are equal or if one clock gets reset then a reset must urgently eventually oc-
cur also for the other clocks, assuming that resets occur periodically. Reductions
using quasi-equal clocks yield exponential savings and have been used to ver-
ify a number of industrial systems. However, this approach is based on syntactic
transformations and requires a method for detecting quasi-equal clocks [21]. Our
approach fully automatizes reductions based on quasi-equal clocks and further
generalizes to scenarios where clock resets have irregular reset periods.

2 Partial Order Reduction for Symbolic Delays

We describe the general idea of our partial order reduction technique in terms
of symbolic delay transition systems. Intuitively a symbolic delay corresponds
to time elapsing in the zone graph for timed automata or flow in the region
graph of a hybrid system. Let A be a set of actions and δ a symbolic delay with
A ∩ {δ} = ∅.

Definition 1 (Symbolic Delay Transition System). A symbolic delay tran-
sition system is a tuple (S, s0,−→) where S is a set of states, s0 ∈ S is the initial
state, and −→⊆ S × (A ∪ {δ})× S is the transition relation.
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If (s, α, s′) ∈−→ we write s
α−→ s′. In this paper we consider only deterministic

systems: a transition system is deterministic if s
α−→ s′ and s

α−→ s′′ implies s′ =
s′′. For the rest of this section, let us assume a fixed symbolic delay transition
system (S, s0,−→) and a set of goal states G ⊆ S.

A state s ∈ S is zero time if it can not delay, denoted by zt(s) and defined

by zt(s) iff ∀s′ ∈ S, α ∈ A ∪ {δ}. s α−→ s′ =⇒ α ∈ A. A reduction is a
function St : S → 2A. A reduced transition relation is a relation −→

St
⊆−→ such

that s
α−→
St

s′ iff s
α−→ s′ and α ∈ St(s) ∪ {δ}. For a given state s ∈ S we define

St(s)
def
= A \ St(s) to be the set of all actions not in St(s). Given a sequence of

labels w = α1α2α3 . . . αn ∈ (A ∪ {δ})∗ we write s
w−→ s′ iff s

α1−→ . . .
αn−−→ s′. If

a sequence w of length n is such that s
w−→ s′ we also write s −→n s′. The set of

enabled actions at state s ∈ S is En(s)
def
= {a ∈ A | ∃s′ ∈ S. s a−→ s′}.

The reachability problem, given a symbolic delay transition system (S, s0,−→)
and a set of goal states G, is to decide whether there is s′ ∈ G such that s0 −→∗ s′.
Definition 2 (Reachability Preserving Reduction). A reduction St is reach-
ability preserving if it satisfies the following conditions:

(Z) ∀s ∈ S. ¬zt(s) =⇒ En(s) ⊆ St(s)

(D) ∀s, s′ ∈ S. ∀w ∈ St(s)
∗
. zt(s) ∧ s w−→ s′ =⇒ zt(s′)

(R) ∀s, s′ ∈ S. ∀w ∈ St(s)
∗
. zt(s) ∧ s w−→ s′ ∧ s 6∈ G =⇒ s′ 6∈ G

(W) ∀s, s′ ∈ S. ∀w ∈ St(s)
∗
. ∀a ∈ St(s). zt(s) ∧ s wa−−→ s′ =⇒ s

aw−−→ s′

If a delay is possible at state s Condition Z will ensure that there is no reduc-
tion. Condition D ensures that states which can delay are preserved. ConditionR
ensures that goal states are preserved and finally Condition W corresponds to
the classical stubborn set requirement that stubborn actions can be commuted
to the beginning of the execution. The following theorem was proved in [8] for
the case of timed transitions systems.

Theorem 1 (Reachability Preservation). Let St be a reachability preserving
reduction. Let s ∈ S and s −→n s′ for some s′ ∈ G then s −→

St
m s′′ for some s′′ ∈ G

where m ≤ n.

3 Extended Timed Automata (XTA)

We apply our method to the theory of timed automata [2]. Our formal model
is extended timed automata and it is an abstract representation of modeling
formalism used in the tool Uppaal [6].

Clocks and Discrete Variables. Let X be a set of clocks. A clock valuation is a
function µ : X → R≥0. We use V(X) to denote the sets of all valuations for
clocks in X. Let V be a set of discrete variables. The function D assigns to
each variable v ∈ V a finite domain D(v). A variable valuation is a function
ν : V →

⋃
v∈V D(v) that maps variables to values such that ν(v) ∈ D(v). We

use V(V ) to denote the set of all variable valuations. We let µ0 resp. ν0 to denote
the valuation that maps every clock resp. variable to the value 0.
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Expressions. We use expr to denote an expression over V . We assume that
expressions are well typed and for expression expr we use D(expr) to denote
its domain. Given a variable valuation ν and an expression expr, we use exprν ∈
D(expr) to denote the value of expr under ν. We use V (expr) ∈ 2V to denote the
set of variables in expr such that for all v ∈ V (expr) and for all ν, ν′ ∈ V(V ) if
ν(v) = ν′(v) then exprν = exprν

′
.

Constraints. The set B(X) is the set of clock constraints generated by the gram-
mar φ ::= x ./ expr | φ1 ∧ φ2, where x ∈ X, D(expr) is the domain of all natural
numbers N and ./∈ {<,≤,≥, >}. The set B(V ) is a set of Boolean variable con-
straints over V . The set B(X,V ) of constraints comprises B(X), B(V ), and con-
junctions over clock and variable constraints. Given a constraint φ ∈ B(X,V ),
we use X(φ) to denote the set of clocks in φ, and V (φ) to denote the set of
variables in φ. We define the evaluation of a constraint φ ∈ B(X,V ) as φν where
expressions in φ are evaluated under ν.

Updates. A clock update is of the form x := expr where x ∈ X, and D(expr) = N.
A variable update is of the form v := expr where v ∈ V and D(v) = D(expr).
The set U(X,V ) of updates contains all finite, possibly empty sequences of clock
and variable updates. Given clock valuation µ ∈ V(X), variable valuation ν ∈
V(V ), and update r ∈ U(X,V ), we use rν to denote the update resulting after
evaluating all expressions in r under ν, we use X(r) to denote the set of clocks
in r, and V (r) to denote the set of variables in r. We let JrνK : V(X) ∪ V(V )→
V(X) ∪ V(V ) be a map from valuations to valuations. We use µ[rν ] to denote
the updated clock valuation JrνK(µ). Analogously, for variable valuation ν′, we
use ν′[rν ] to denote the updated variable valuation JrνK(ν′).

Channels. Given a set C of channels, the set H(C) of synchronizations over
channels is generated by the grammar h ::= c[expr]! | c[expr]? | τ , where c ∈ C,
D(expr) = N, and τ represents an internal action. Given a variable valuation
ν, for synchronization h of the form c[expr]! we use hν to denote c[exprν ]!, and
similar for synchronizations of the form c[expr]?.

Definition 3 (Extended Timed Automata XTA). A extended timed au-
tomaton A is a tuple (L,Lu, Lc, l0, X, V,H(C), E, I) where: L is a set of loca-
tions, Lu ⊆ L denotes the set of urgent locations in L, Lc ⊆ L denotes the set of
committed locations in L and Lu ∩ Lc = ∅, l0 ∈ L is the initial location, X is a
nonempty the set of clocks, V is the set of variables, H(C) is a set of channels
expressions for set of channels C, E ⊆ L×H(C)×B(X)×B(V )×U(X,V )×L
is a set of edges between locations with a channel expressions, a clock guard, a
variable guard, an update set, and I : L → B(X) assigns clock invariants to
locations.

Definition 4 (Network of XTA). A network N of XTA consists of a finite
sequence A1, . . . ,An of XTA, where Ai = (Li, L

u
i , L

c
i , l

0
i , Xi, Vi, H(C)i, Ei, Ii)

for 1 ≤ i ≤ n. Locations are pairwise disjoint i.e. Li ∩ Lj = ∅ for 1 ≤ i, j ≤ n
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and i 6= j. The set of locations is L = ∪ni=1Li, analogously for urgent Lu and
committed Lc locations. The set of clocks is X = ∪ni=1Xi and the set of variables
is V = ∪ni=1Vi. The set of channel expressions is H(C) = ∪ni=1H(C)i. The

set of edges is E = ∪ni=1Ei. A location vector is a vector ~l = (l1, . . . , ln), and
~l0 = (l01, . . . , l

0
n) is the initial location vector. The invariant function over location

vectors is I(~l) =
∧
i Ii(li).

We write ~l[l′i/li] to denote the vector where the i-th element li of ~l is replaced

by l′i. We write ~li to denote the i-th element of ~l.

Zones. We assume the canonical satisfaction relation “|=” between valuations
and constraints in B(X) and B(V ). The set B+(X) of extended clock constraints
is generated by the grammar φ ::= x ./ c | φ1 ∧ φ2 | x− y ./ c, where x, y ∈ X,
c ∈ N and ./∈ {<,≤,≥, >}. A zone JZK is a set of clock valuations described

by an extended clock constraint Z ∈ B+(X) where JZK def
= {µ ∈ V(X) | µ |= Z}.

When it is clear from the context, we use Z and JZK interchangeably. We define

Z↑
def
= {µ+d | µ ∈ Z, d ∈ R≥0}, where for d ∈ R≥0, µ+d maps each clock x ∈ X

to the value µ(x) + d. For zone Z and update r we define Z[r]
def
= {µ[r] | µ ∈ Z}.

For timed automata we consider the set of actions A = 2E that corresponds
to the discrete transitions induced by the edges E, and δ is the delay action
induced by non-zero delay transitions. We can now define the symbolic semantics
of networks of timed automata in terms of a zone graph (see e.g. [1]).

Definition 5 (Semantics of a Network of XTA). Let N = A1, . . . ,An
be a network of TA. Its semantics is defined as a symbolic delay transition
system (zone graph) (S, s0,−→), where S ⊆ (Li × · · · × Ln) × B+(X) × V(V ) is
the set of states comprising a location vector, a zone, and a variable valuation,
s0 = (~l0, {µ0}, ν0) is the initial state, and −→⊆ S× (A∪{δ})×S is the transition
relation defined by:

– delay transition, (~l, Z, ν)
δ−→ (~l, Z↑ ∧ I(~l)ν , ν) if ~li 6∈ Lui ∪ Lci for 1 ≤ i ≤ n,

and ∃µ ∈ Z, d ∈ R≥0.d > 0 ∧ µ+ d |= I(~l)ν ,

– internal transition, (~l, Z, ν)
{ei}−−−→ (~l[l′i/li], Z

′, ν′) if ei = (li, τ, φ, ψ, r, l
′
i) ∈ Ei

s.t. Z ′ = (Z∧I(~l)ν ∧φν)[rν ]∧I(~l[l′i/li])
ν′ , where Z ′ 6= ∅, ν′ = ν[rν ], ν |= ψν ,

and if ~lk ∈ Lck for some 1 ≤ k ≤ n then li ∈ Lci ,

– handshake transition, (~l, Z, ν)
{ei,ej}−−−−→ (~l[l′j/lj , l

′
i/li], Z

′, ν′) if there exists ei =
(li, hi!, φi, ψi, ri, l

′
i) ∈ Ei and ej = (lj , hj?, φj , ψj , rj , l

′
j) ∈ Ej s.t. hνi = hνj ,

and Z ′ = (Z ∧ I(~l)ν ∧ φνi ∧ φνj )[rνi ][rνj ] ∧ I(~l[l′j/lj , l
′
i/li])

ν′ , where Z ′ 6= ∅,
ν |= (ψνi ∧ ψνj ), ν′ = ν[rνi ][rνj ], and if ~lk ∈ Lck for some 1 ≤ k ≤ n then
li ∈ Lci or lj ∈ Lcj.

In the following, we are given a network of TAN = A1, . . . ,An with locations
L, clocks X, variables V , and induced symbolic transition system (S, s0,−→).
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Fig. 2: Two components with actions a1 and a2. Actions are enabled at zone Z.
Note that executing a1 will disable a2 and vice versa.

Definition 6 (Properties). A formula is given by the grammar φ ::= deadlock |
l | x ./ c | ψv | φ1 ∧ φ2, where l ∈ L, x ∈ X, ./∈ {<,≤,≥, >}, c ∈ N, and ψv is

a Boolean constraint for v ∈ V . Let (~l, Z, ν) ∈ S be a state. The satisfaction of
a formula is inductively defined as follows:

(~l, Z, ν) |= deadlock iff ∃µ ∈ Z,∀d ∈ R≥0.En((~l, {µ+ d}, ν)) = ∅
(~l, Z, ν) |= l iff ~li = l for some i with 1 ≤ i ≤ n
(~l, Z, ν) |= x ./ c iff ∃µ ∈ Z. µ |= x ./ c

(~l, Z, ν) |= ψv iff ν |= ψv
(~l, Z, ν) |= φ ∧ ψ iff (~l, Z, ν) |= φ and (~l, Z, ν) |= ψ

A network satisfies φ iff its initial state can reach a state that satisfies φ.

4 Reachability Preserving Reduction for XTA

In this section we provide syntactic based sound approximations for all the ele-
ments required by our technique. In Subsection 4.1 we give a semantic definition
for independence of actions, then we describe a syntactic independence relation.
In Subsection 4.2 we identify the relevant actions which need to be included in
the stubborn set to preserve states which can delay. Finally, in Subsection 4.3
we describe the stubborn sets for preserving goal states. For the rest of this
section we are given a network N = A1, . . . ,An, with edges E and components
Ai = (Li, L

u
i , L

c
i , li0 , Xi, Vi, H(C)i, Ei, Ii), the corresponding transition system

(S, s0,−→) with actions A = 2E , and state s = (~l, Z, ν).

4.1 Independence for Actions

The notion of independence of actions plays a key role in partial order reduction.
Intuitively two actions are independent if they can not disable each other and
they commute.
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Definition 7 (Independence of Actions). An independence relation for state
s ∈ S is a symmetric, anti-reflexive relation 6!s⊆ A×A satisfying the following
conditions for each (a1, a2) ∈ 6!s:

1. ∀s′ ∈ S. s a1−→ s′ ∧ a2 ∈ En(s) =⇒ a2 ∈ En(s′)

2. a1 ∈ En(s) ∧ a2 ∈ En(s) =⇒ ∃s′ ∈ S. s a1a2−−−→ s′ ∧ s a2a1−−−→ s′

If (a1, a2) ∈ 6!s they are independent at s denoted by a1 6!s a2. Otherwise
they are dependent at s denoted by a1!s a2.

In what follows we will provide a syntactic independence relation on actions.
Toward this goal, first we define operations on actions and we define a syntactic
independence relation on operations.

Additional Notation. For a given edge e = (l, h, φ, ψ, r, l′) ∈ E we use src(e),
dst(e) to denote the source location l and the destination location l′ of edge e.

Given actions a, a′ ∈ A, for action a we define its preset as Pre(a)
def
= {src(e) ∈

L | e ∈ a}, and its poset as Post(a)
def
= {dst(e) ∈ L | e ∈ a}. We use Active(a)

def
=

{Ai | Ai is in N and ∃l ∈ Pre(a). l ∈ Li} to denote the active components for

a. We use Parallel(a, a′)
def
= Active(a) ∩ Active(a′) = ∅ to denote that actions

a and a′ correspond to different components. For convenience we define Op-
erations for Actions in TA. The set of all operations is the set containing all
constraints and resets i.e. Op is the power set of B(X,V ) ∪U(X,V ). The set of

operations for action a ∈ A is given by, Op(a)
def
= Guard(a) ∪ Update(a). Where

the set of guards is Guard(a)
def
=

⋃
{φ ∧ ψ ∧ I(l) ∧ I(l′) | (l, h, φ, ψ, r, l′) ∈ a},

and the set of updates is Update(a)
def
=

⋃
{r | (l, h, φ, ψ, r, l′) ∈ a}. Given

an operation op ∈ Op, the set of variables which op increments is given by
Inc(op) = {v ∈ V (op)|∃r ∈ op and r includes v := v + 1 with D(v) = N}. Anal-
ogously the set Dec(op) contains the variables which op decrements Dec(op) =
{v ∈ V (op)|∃r ∈ op and r includes v := v − 1 with D(v) = N}. The clocks

and variables the operation writes is given by Write(op)
def
=

⋃
r∈op′{xv | r ∈

U(X,V ) and xv := expr is in r}, where op′ is obtained from op by removing
increment and decrement updates, formally op′ = op \ {xv := expr ∈ op |
expr is of the form xv+ 1 or xv− 1} The set Readleq(op) = {xv ∈ X ∪ V | xv ≤
expr ∈ op or xv < expr ∈ op} is the set containing clock and variables which
appear in less and equal comparisons. Analogously the set Readgeq(op) contains
clock and variables which appear in greater and equal comparisons in op. The

clocks and variables the operation reads is given by Read(op)
def
= X(op′)∪V (op′)

where op′ is obtained from op by removing less (greater) and equal compar-
isons, formally op′ = op \ {xv ./ expr ∈ op |./∈ {≤, <,>,≥}}. Note that
given a zone, a clock constraint can modify (write to) other clocks. Finally

Γx(Z)
def
= {µ(x) | µ ∈ Z} is the set of real values for clock x in zone Z.

Definition 8 (Independence of Operations). Given operations op1, op2 ∈
Op and state s, operation op1 is independent of operation op2 at s denoted by
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op1 6 ]
s op2 iff the following hold:

(1) Read(op1) ∩ (Write(op2) ∪ Inc(op2) ∪ Dec(op2)) = ∅
(2) Readleq(op1) ∩ (Write(op2) ∪ Inc(op2)) = ∅
(3) Readgeq(op1) ∩ (Write(op2) ∪ Dec(op2)) = ∅
(4) Write(op1) ∩ (Write(op2) ∪ Inc(op2) ∪ Dec(op2)) = ∅
(5) Inc(op1) ∩ (Write(op2) ∪ Dec(op2)) = ∅
(6) Dec(op1) ∩ (Write(op2) ∪ Inc(op2)) = ∅
(7) {x | x ∈ X(op1) ∪X(op2) and |Γx(Z)| 6= 1 and op1, op2 ∈ B(X,V )} = ∅
If op1 6 ]

s op2 and op2 6 ]
s op1 the we write op1 6!]

s op2 and say that op1 and
op2 are independent at s. We write op1!

]
s op2 iff op1 and op2 are dependent.

Intuitively two operations are independent if they read and write in different
variables, note that increments and decrements are treated specially. Addition-
ally for timed automata we need to consider that applying a guard affects a
number of clocks. As an example consider Figure 2, we have that Z ∩ φx 6= ∅
and Z ∩ φy 6= ∅. However, if we apply φx we have that (Z ∩ φx) ∩ φy = ∅ this
will cause the corresponding actions to disable each other. Condition (7) is not
satisfied for clocks x or y in zone Z. Therefore we have φx !]

s φy. Note that
Condition (7) is rather strong, since only zones which are lines or points will
satisfy it (which is often the case in urgent states), relaxing this condition is
subject of future work. Given two independent operations, we can conclude with
a number of rules which are useful for showing that two actions do not disable
each other and commute in extended timed automata.

Lemma 1. Given state s = (~l, Z, ν), constraints φ, φ′ ∈ B(X), update r ∈
U(X), and variable valuations ν, ν1 ∈ V(V ). The following hold:
(1) if φ 6!]

s r then J(Z ∧ φν)[rν ]K = JZ[rν ] ∧ φνK
(2) if J(Z ∧ φν)[rν ] ∧ φνK 6= ∅ then J(Z ∧ φν)[rν ] ∧ φνK = J(Z ∧ φν)[rν ]K
(3) if φ 6!]

s φ
′ and µ ∈ JZ ∧ (φ′)νK and JZ ∧ φν1K 6= ∅ then µ ∈ J(Z ∧ φν1)K

(4) if ∀x ∈ X(φ).|Γx(Z)| = 1 and JZ ∧ φνK 6= ∅ and JZ ∧ φν1K 6= ∅ then
JZ ∧ φνK = JZ ∧ φν1K

Lemma 1 (1) states that if a reset is independent of a constraint then the
reset does not affect the constraint. Lemma 1 (2) does not require independent
operations, in our proofs it is used to remove redundant application of invariants
from components which are not involved in transitions. Lemma 1 (3) implicitly
uses Condition (7) from Definition 8 to show that a valuation satisfying a guard
is preserved after applying another guard. Lemma 1 (4) states that if a guard φ
has been updated (via increment or decrement which in our case always produce
a “bigger” constraint), then because of the shape of the zone the intersections
will produce the same set.

Definition 9 (Syntactic Independence of Actions). Given a state s =

(~l, Z, ν) with ~l = (l1, . . . , ln) and two actions a1, a2 ∈ A]s. Actions a1 and a2
are syntactically independent at state s denoted by a1 6!]

s a2 if and only if the
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following conditions hold:
(Ind1) Pre(a1) ∩ Pre(a2) = ∅
(Ind2) ∃l ∈ F (a1). l ∈ Lc ⇐⇒ ∃l ∈ F (a2). l ∈ Lc for F ∈ {Pre,Post}.
(Ind3) ∀op1 ∈ Op(a1), op2 ∈ Op(a2). op1 6!]

s op2
(Ind4) ∀i ∈ {1, 2}, op ∈ Op(ai), j ∈ {1, . . . , n}. ~lj 6∈ Pre(ai) =⇒ op 6!]

s I(~lj)

Condition (Ind1) ensures that the source locations for the actions are disjoint.
Condition (Ind2) takes into account the semantics of committed locations and
prevents actions from disabling each other. Condition (Ind3) ensures that all the
operations on the actions are independent. Finally Condition (Ind4) ensures that
the operations in actions ai for i ∈ {1, 2} do not modify the invariant of other
components which could disable action a3−i. When these syntactic conditions
are satisfied we have the following theorem.

Theorem 2. Given a zero time state s ∈ S and two actions a1, a2 ∈ A]s. If
a1 6!]

s a2 then a1 6!s a2.

Our analysis uses the current state s = (~l, Z, ν) to conclude if two actions are
independent at s. In particular we use the zone Z in Definition 8 Condition (7)
to detect clock constraint dependencies. Due to this condition we can make
assumptions about the shape of the zone Z which allow us to conclude that
if the actions were syntactically independent at s then so they are in states
reachable via independent actions.

Corollary 1. Given state s, action a ∈ A]s, and A′ = {a′ ∈ A]s | a!]
s a
′}.

Then ∀s′ ∈ S.a′ ∈ (A]s\A′), w ∈ (A]s\A′)∗. zt(s)∧s
w−→ s′

a′−→ s′′ =⇒ a 6!]
s′a
′.

4.2 Preserving Non-Zero Time States

In order to satisfy Condition D from Definition 2, which ensures that the reduc-
tion preserves states that can delay, we need to include particular actions to the
stubborn set. In XTA time can not elapse at an urgent (committed) location or
if invariant is stopping time.

Definition 10 (Time Enabling Action). An action a ∈ A is a time enabling

action at zero time state s = (~l, Z, ν) if executing a may cause time to elapse.
Formally tea](a, s) iff (∃l ∈ Pre(a). l ∈ Lu ∪ Lc)

∨
(∀µ ∈ Z, d ∈ R≥0. µ + d |=

I(l) =⇒ d = 0).

Consider again Figure 1a and the zero time state s = ((l1,3, l2,3, l3,3), x1 =
x2 = x3 = 1500) and actions ai = {(li,3, τ, xi ≥ 1500, xi = 0, li,0)}. The actions
are time enabling actions i.e. tea](ai, s) for i ∈ {1, 2, 3}. Note that as long as a
time enabling action is enabled, time can not elapse. Thus executing independent
actions can not cause time to progress.

Lemma 2. Let s ∈ S, a ∈ En(s) with tea](a, s) and Delay]s
def
= {a} ∪ {a′ ∈ A]s |

a!]
s a
′}. Then ∀s′ ∈ S,w ∈ (A]s \Delay]s)∗. s

w−→ s′ ∧ zt(s) =⇒ zt(s′).
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4.3 Preserving Goal States

In order to satisfy Condition R from Definition 2, which ensures that the re-
duction preserves goal states, we need to include actions whose execution is
necessary to reach a goal state.

Definition 11 (Interesting Actions for Properties). For formula ϕ and
state s such that s 6|= ϕ. The set ϕ]s ⊆ A]s is defined recursively based on the
structure of ϕ as given by the following table:

Formula ϕ ϕ]s
l {a ∈ A]s | l ∈ Post(a)}

deadlock
pick a ∈ En(s) then {a}∪
{a′ ∈ A]s | (Pre(a) ∩ Pre(a′) 6= ∅) ∨ (Parallel(a, a′) ∧ a!]

s a
′}

x ./ c {a ∈ A]s | ∃op ∈ Update(a). x ./ c!]
s op}

ϕv for v ∈ V {a ∈ A]s | ∃op ∈ Op(a). ϕv!]
s op}

ϕ1 ∧ ϕ2 (ϕi)
]
s for some i ∈ {1, 2} where s 6|= ϕi

Lemma 3. Given a state s, a formula ϕ, and the set ϕ]s. Then ∀s′ ∈ S,w ∈
(A]s \ ϕ]s)∗. s

w−→ s′ ∧ zt(s) ∧ s 6|= ϕ =⇒ s′ 6|= ϕ.

5 Computing Stubborn Sets in Uppaal

We shall first provide a high level algorithm to compute a reachability preserving
reduction for networks of timed automata and then discuss details related to the
implementation of our technique in the model checker Uppaal.

5.1 Algorithm

Assume a given network of XTA and reachability formula ϕ. During the reacha-
bility analysis, we repeatedly use Algorithm 1 at every generated state s to com-
pute a reduction St] that satisfies the conditions from Definition 2. At Line 1,
we output En(s) should the state s be non-zero time state, thus satisfying Con-
dition Z. Line 3 includes all actions that are relevant for the preservation of the
reachabily of states that can delay or belong to the goal states. Together with
Lemma 2 and Lemma 3 this ensures that Condition D and Condition R are
satisfied. Finally, the while loop starting at Line 5 ensures Condition W . The
while loop considers an action a ∈ St]s, if this action is not enabled then it will
include all necessary actions which can enable it. This is done by adding actions
which modify the location vector at Line 11, or by adding actions which modify
the guards in a at Line 14. In the case where action a is enabled then the for
loop at Line 16 includes all actions that are not independent with a.

Additionally, note that the set A]s is finite and in each iteration the size of
St]s can only increase because the only operation applied to St]s is union. In the
worst case we have St]s = A]s and hence the algorithm terminates.

Theorem 3 (Total Correctness). Let N be a network of XTA and ϕ a for-
mula. Algorithm 1 terminates and St] is a reachability preserving reduction where
St](s) is the output of Algorithm 1 for every state s ∈ S.
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Algorithm 1 Computing conditional stubborn sets

Input Network A1, . . . ,An, state s = (~l, Z, ν), and formula ϕ.
Output Conditional stubborn set St]s
1: if ¬zt(s) then return En(s);

2: compute A]
s and ϕ]

s;
3: if ∀a ∈ ϕ]

s. ¬tea](a, s) then pick a ∈ En(s) with tea](a, s); ϕ] := ϕ] ∪ {a};
4: W := ϕ]

s; R := A]
s; St]s := W

5: while W 6= ∅ and En(s) ∩ St]s 6= En(s) do
6: Pick a ∈W ; W := W \ {a}; St]s := St]s ∪ {a}; R := R \ {a};
7: if a 6∈ En(s) then
8: for all e ∈ a do
9: if src(e) is not in ~l then

10: for all a′ ∈ R do
11: if src(e) ∈ Post(a′) then W := W ∪ {a′};
12: if exists g ∈ Guard({e}) such that s 6|= g then
13: for all a′ ∈ R do
14: if ∃r ∈ Update(a′). g!]

s r then W := W ∪ {a′};
15: if a ∈ En(s) then
16: for all a′ ∈ R do
17: if (Pre(a) ∩ Pre(a′) 6= ∅) ∨ (Parallel(a, a′) ∧ a!]

s a
′) then

18: W := W ∪ {a′};
19: return St]s;

5.2 Implementation Details

Algorithm 1 is inserted as a state successor filter after the state successors are
computed. This filter passes through only the states that are the result of stub-
born actions. To improve the efficiency, the stubborn set is computed only when
the origin state is urgent and has more than one successor, otherwise the filter
just forwards all successors without any reduction. In the following we describe
a number of optimizations that we included in our implementation.

Reachable Actions. In previous sections we have defined A = 2E , as the set
of actions. This set is unnecessary large and unpractical. The set of reachable

actions from s can be semantically defined as As
def
= {a ∈ A | ∃s′, s′′ ∈ S,w ∈

A∗. s
w−→ s′

a−→ s′′}. Our goal is to compute the smallest set A]s such that
As ⊆ A]s ⊆ A. Computing a small set has the advantage that potentially less
dependencies are introduced, additionally it will reduce the computation time
of stubborn sets. We implemented a static analysis in order to compute the set
A]s. Our analysis exploits the fact that time can not elapse at a state s, and
thus actions that require a delay to become enabled need not be included in
A]s. For the performance sake, the approximation A]s is computed in two steps.
The first step is prior to state exploration and is only executed once. In this
step for each edge we compute the set of edges it can reach without doing a
delay operation. The starting edge is assumed to be enabled and thus we start
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with all possible clock assignments in conjunction with the source invariant. If
clocks are compared against constants, we add the constraints. Otherwise, if
integer variables appear on the guards, we relax (loose) all the information on
the affected clock. The second step is executed at every urgent state and it is
done by using precomputed data structures from the previous step that collect
for every enabled edge the set of edges it can reach and then composes them
into actions.

Broadcast Channels. Many Uppaal models use broadcast channels, however
the set of possible broadcast synchronizations is exponentially large in terms of
the number of potential receivers (in contrast to linear complexity of handshake
synchronizations) and hence untenable for larger networks. Instead of computing
all possible synchronizations, we compute one super-action for each broadcast
sending edge, combining all potential receiving edges from other processes—this
serves as a safe over-approximation. Such combined treatment avoids exponen-
tial blowup of broadcast actions at the cost of overly-conservative dependency
checks, which considers a super-set of associated variables instead of precise sets
involving a particular subset of receiving edges. In addition to broadcast syn-
chronizations, the static analysis also supports arrays and C-like structures by
expanding them into individual variables. Array indices, references and functions
calls are over-approximated by using the ranges from variable types.

Precomputed Data Structures. To make our implementation fast, we precompute
a number of data structures required by our technique. Examples include, edges
leading to locations, some property base sets, reachable edges from locations. In
particular, in order to compute the dependence between actions, the associated
variable sets are also precomputed in advance for each action. These variable sets
are then used to construct a dependency matrix over all reachable actions, thus
making the action dependency check a constant-time lookup during verification.

6 Experiments

Table 1 shows the results of our POR implementation applied on a number of
industrial case studies1. The experiments were run on a cluster with AMD EPYC
7551 processor with the timeout of 10 hours (and 15GB of RAM) for all models
except for SecureRideSharing where the timeout was 48 hours (and 200GB of
RAM). The model instances are suffixed with a number indicating the increasing
amount of parallel components (sensors and the like).

FireAlarm is a simplified version of IndustFireAlarm [11] for the communica-
tion protocol of a wireless sensor network from German Company SeCa GmbH
as described in Section 1. The AGless300 corresponds to a requirement from EN-
54 standard that a sensor failure is reported in less than 300 seconds. A stricter
property AGless100 is added to evaluate the performance when a property does

1 Reproducibility package https://github.com/DEIS-Tools/upor

https://github.com/DEIS-Tools/upor
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Model Query
without POR with POR reduction ratio

states time sec. states time sec. states time

FireAlarm4 AGnotdeadlock 27 <0.01 22 <0.01 1.23 –
FireAlarm20 AGnotdeadlock 1048635 148.41 270 0.01 3883.83 14841
FireAlarm100 AGnotdeadlock – OOM 5350 5.18 – –

IndustFireAlarm13 AGless100* 931496 97.57 24296 2.81 38.34 34.72
IndustFireAlarm15 AGless100* 3684136 571.75 27672 3.84 133.14 148.89
IndustFireAlarm17 AGless100* 14694312 2884.18 31496 5.09 466.55 566.64
IndustFireAlarm19 AGless100* 58734632 15878.47 35768 7.20 1642.1 2205.34
IndustFireAlarm30 AGless100* – OOM 67272 27.92 – –
IndustFireAlarm100 AGless100* – OOM 585272 2753.54 – –

IndustFireAlarm13 AGless300 3731370 439.50 102570 12.73 36.38 34.52
IndustFireAlarm15 AGless300 14742718 2570.36 116862 17.69 126.15 145.30
IndustFireAlarm17 AGless300 58784210 12833.69 132946 23.15 442.17 554.37
IndustFireAlarm19 AGless300 – OOM 150822 32.83 – –
IndustFireAlarm30 AGless300 – OOM 281172 128.08 – –
IndustFireAlarm100 AGless300 – OOM 2380752 12715.08 – –

IndustFireAlarm13 AGnotdeadlock 3731320 388.63 63618 4.96 58.65 78.35
IndustFireAlarm15 AGnotdeadlock 14742668 2215.16 65654 5.68 224.55 389.99
IndustFireAlarm17 AGnotdeadlock 58784160 11202.80 67818 6.47 866.79 1731.50
IndustFireAlarm19 AGnotdeadlock – OOM 70110 8.00 – –
IndustFireAlarm30 AGnotdeadlock – OOM 85004 17.85 – –
IndustFireAlarm100 AGnotdeadlock – OOM 270504 530.46 – –

SecureRideSharing6 AGlessMaxFail 200141 2.23 200141 5.60 1 0.40
SecureRideSharing7 AGlessMaxFail 7223770 95.60 7223770 252.61 1 0.38
SecureRideSharing8 AGlessMaxFail* 85622469 1467.49 85622469 3691.46 1 0.40
SecureRideSharing9 AGlessMaxFail* 1961298623 43548.8 1961298623 106223.46 1 0.41

SecureRideSharing6 AGnotdeadlock 200141 3.05 184973 6.3 1.08 0.48
SecureRideSharing7 AGnotdeadlock 7223770 122.29 2428033 93.21 2.98 1.31
SecureRideSharing8 AGnotdeadlock 97539581 2058.40 39387328 1845.46 2.48 1.12
SecureRideSharing9 AGnotdeadlock – OOM 944892374 55481.09 – –

TTAC4 AGnotdeadlock 12213203 308.40 11414483 379.51 1.07 0.81
TTAC5 AGnotdeadlock 217259289 6724.25 204152089 8679.56 1.06 0.77

TTPA6 AGnotdeadlock 668421 27.30 668421 55.82 1 0.49
TTPA7 AGnotdeadlock 3329080 166.34 3329080 337.06 1 0.49
TTPA8 AGnotdeadlock 18073077 1096.79 18073077 2229.04 1 0.49

FB14 AGnotdeadlock 98310 138.22 98310 139.5 1 0.99
FB15 AGnotdeadlock 196614 698.54 196614 702.61 1 0.99
FB16 AGnotdeadlock 393222 2794.58 393222 2788.83 1 1

Table 1: Experimental results. Satisfiability results agree for all queries. Queries
with * were not satisfied. The reduction is the ratio of performance without POR
and with POR. OOM indicates out of memory.

not hold. Results show exponentially increasing savings in both number of states
and computation time.

The SecureRideSharing models a fault-tolerant, duplicate-sensitive aggrega-
tion protocol for wireless sensor networks [12,3]. This case study did not show
reductions until special treatment for broadcast synchronizations and variable
increments was implemented. The AGnotdeadlock property shows substantial
reductions, and one instance times out when POR is not used, however for the
AGlessMaxFail query the state space is not reducible and the verification time
is more than doubled due to variables reverenced in the query.

The TTAC models a Timed Triggered Architecture protocol [13] used in
drive-by-wire vehicles. The TTPA models a Time-Triggered Protocol for SAE
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class A sensor/actuator networks [27]. The model FB models the Field Buss
scheduling protocol [25]. These case studies were selected as they do not allow
for any state space reduction, thus allowing us to observe the time-overhead of
our method. This overhead varies from almost no overhead for the FB models
to twice as slow for the TTPA models.

7 Conclusion

We presented an application of partial order reduction based on stubborn sets
to the model of network of timed automata in the Uppaal style, including a
detailed analysis of both clock and discrete variable dependencies among the
different components. The method allows us to reduce the state space in the
situations where a sequence of mutually independent actions is performed while
the network is in an urgent configuration where time cannot elapse (caused
by the fact that at least one component is in urgent/committed location or
there is a clock invariant imposing the urgency). Our method is implemented in
the tool Uppaal and the experiments confirm that for the models with enough
independent concurrent behavior in urgent situations, we can achieve exponential
speedup in the reachability analysis. For models with limited urgent behavior,
the overhead of our method is still acceptable (with the worst-case ratio of about
0.4 slowdown). These results are highly encouraging, yet further optimizations
can be achieved by a more detailed static analysis of independent actions, one
of the directions for future research.

Acknowledgments. We thank Christian Herrera and Sergio Feo Arenis for pro-
viding the models we use in our experimental section.
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A Over Approximation for Reachable Actions

A.1 Abstract Zone Successor

Since we do not have a state we do not know the current integer variable assign-
ments, thus the abstract successor will relax the zone for all clocks. The abstract
zone successor succ] : L × B+(X) × E → B+(X) takes a location a zone, and
an edge and returns a a zone. Formally: succ](l, Z, (l, h, φ, ψ, r, l′)) = Z ′ where

Z ′ =

{
(Z ∩ I(l) ∩ φ)[r] ∩ I(l′) if V (φ) = V (I(l)) = V (I(l′)) = V (r) = ∅
> otherwise

A.2 Reachable Edges for an Enabled Edge

Given an enabled edge i.e. e = (l, h, φ, ψ, r, l′) ∈ E such that e ∈ a for some
a ∈ En(s) for some s. We define a function RE : L × B+(X) × E → 2E from
a location, a zone, and an edge to a set of edges it could reach without time
delays. The set of reachable edges for an enabled edge e with initial zone Z = >
is defined as the least fixed point of the following system of equations:

RE(l, Z, e ≡ (l, h, φ, ψ, r, l′)) ={e | if Z 6= ∅}⋃
e′=(l′,h′,φ′,ψ′,r′,l′′)∈E

RE(l′′, succ](l′, Z, e′), e′) (1)

We have implemented an efficient algorithm for computing the local fixed
point for a given location. Our Algorithm is an instantiation of the algorithm
proposed by Liu & Smolka [18]. Finally, we construct the set A]s by taking the
union of all reachable edges for every component union all possible synchroniza-
tions among reachable edges.

Theorem 4. The set A]s is an over approximation of the set of reachable ac-
tions, formally: As ⊆ A]s.

Algorithm for computing reachable edges Equation 1 stabilizes when a global
fixpoint is reached, i.e. a fixpoint for every edge in a component Ai is reached.
For our purposes we only need the fixpoint for the current edge. Algorithm 2
computes a local fixpoint for a given location. The Algorithm is our instantiation
of the algorithm proposed by Liu & Smolka [18]. It maintains a waiting list W
and a list P of passed states.

Finally we can build the set A]s by composing the set of all reachable edges
into actions.

Definition 12 (Reachable Actions for a Network). Given a state s =

(~l, Z, ν) ∈ S and a set of syntactic reachable edges for every component in a
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Algorithm 2 Computing Reachable Edges for an enabled edge

Input Enabled edge e = (l, h, φ, ψ, r, l′),
Output Fixpoint of reachable edges for enabled edge e RE(l, Z = >, e)
1: RE := ∅, P := ∅,W := {(l′, succ](l,>, e))}
2: while W 6= ∅ do
3: Pick (l, Z) ∈W and let W := W \ {(l, Z)}
4: if ∀(l, Z′) ∈ P. Z 6⊆ Z′ then
5: P := P ∪ (l, Z)
6: for all e = (l, h, φ, ψ, r, l′) ∈ E do
7: Z′ := succ](l, Z, e)
8: if Z′ 6= ∅ then
9: RE := RE ∪ {e}

10: W := W ∪ {(l′, Z′)}
11: return RE;

network RE(s,Mi,~l
i), the set of syntactic reachable actions for a network is

defined as:

A]s =
⋃n
i=1{{e} | e = (l, τ, φ, ψ, r, l′) ∈ RE(s,Mi,~l

i)}∪⋃n
i=1{{ei, ej} | ei = (li, hi?, φi, ψi, ri, l

′
i) ∈ RE(s,Mi,~l

i)∧
∃j ∈ {1, . . . , n}.ej = (lj , hj?, φj , ψj , rj , l

′
j) ∈ RE(s,Mj ,~l

j)}

B Proofs

B.1 Proof of Lemma 1

Proof (Lemma 1). Since we are given a variable valuation ν, expressions in
φν ,(φ′)ν , and rν are evaluated to constans in N. In this proof for readability
we use φ, φ′, r instead of φν ,(φ′)ν , and rν and we now use Z for a zone JZK.

Statement (1). (⊆) By structural induction on φ. As I.H. let the claim hold
for subformulas of φ. Let µ[r] ∈ (Z ∩ φ)[r].

– Case φ ≡ x ./ expr with ./∈ {<,≤,≥, >}.
Case x := expr1 ∈ r we have x := expr1!

]
s φ a contradiction.

Case x := expr1 6∈ r and y := expr2 ∈ r for some y ∈ X with x 6= y then
µ[r](x) = µ(x) and since µ ∈ Z ∩ φ we have µ[r] ∈ φ.

– Inductive step φ ≡ φ1 ∧ φ2 and µ[r] ∈ (Z ∩ φ1 ∩ φ2)[r]. By I.H we have
µ[r] ∈ Z[r] ∩ φ1 and µ[r] ∈ Z[r] ∩ φ2 therefore µ[x] ∈ Z[r] ∩ φ1 ∩ φ2.

(⊇) By structural induction on φ. As I.H. let the claim hold for subformulas
of φ. Let µ[r] ∈ Z[r] ∩ φ.

– Case φ ≡ x ./ expr with ./∈ {<,≤,≥, >}
Case x := expr1 ∈ r we have x := expr1!

]
s φ a contradiction.

Case x := expr1 6∈ r and y := expr2 ∈ r for some y ∈ X with x 6= y then
µ[r](x) = µ(x) and since µ ∈ Z[r] ∩ φ we have µ[r] ∈ φ.
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– Inductive step φ ≡ φ1 ∧ φ2 and µ[r] ∈ (Z ∩ φ1 ∩ φ2)[r]. By I.H we have
µ[r] ∈ Z[r] ∩ φ1 and µ[r] ∈ Z[r] ∩ φ2 therefore µ[x] ∈ Z[r] ∩ φ1 ∩ φ2.

Statement (2). Assume (Z ∩ φ)[r] ∩ φ 6= ∅. Show (Z ∩ φ)[r] ∩ φ = (Z ∩ φ)[r].
The ⊆ direction follows trivially since (Z ∩ φ)[r]∩ φ ⊆ (Z ∩ φ)[r]. We now proof
the (⊇) directon by structural induction on φ. As I.H. let the claim hold for
subformulas of φ. Let µ[r] ∈ (Z ∩ φ)[r].

– Case φ ≡ x ./ expr and x := expr1 6∈ r. Then µ[r](x) = µ(x) and since
µ ∈ Z ∩ φ we have µ[r] ∈ φ.

– Case φ ≡ x ./ expr and x := expr1 ∈ r. Consider the following cases:

• exprν = exprν1 . Then µ[r](x) = µ(x) and µ[r] ∈ φ.
• exprν < exprν1 . Consider the cases:

* x ./ expr with ./∈ {<,≤} then (Z ∩ φ)[r] ∩ φ 6= ∅.
* x ./ expr with ./∈ {>,≥} then µ[r] ∈ φ

• exprν > exprν1 . Consider the cases:

* x ./ expr with ./∈ {<,≤} then µ[r] ∈ φ.
* x ./ expr with ./∈ {>,≥} then (Z ∩ φ)[r] ∩ φ 6= ∅.

– Inductive step φ ≡ φ1 ∧ φ2 and µ[r] ∈ (Z ∩ φ1 ∩ φ2)[r]. By I.H we have
µ[r] ∈ (Z ∩ φ1)[r] ∩ φ1 and µ[r] ∈ (Z ∩ φ2)[r] ∩ φ2. Therefore µ[r] ∈ φ1 ∩ φ2
and µ[r] ∈ (Z ∩ φ1 ∩ φ2)[r] ∩ φ1 ∩ φ2.

Statement (3). By structural induction on φ and φ′. As I.H. let the claim
hold for subformulas of φ and φ′.

– Case φ ≡ x ./ expr and φ′ ≡ x ./ expr1. Since φ 6!]
s φ
′ we have |Γx(Z)| = 1.

By assumption we are given µ ∈ Z, µ ∈ φ′,and Z ∩ φ 6= ∅. If µ ∈ φ we are
done. Otherwise µ 6∈ φ which implies that µ(x) 6|= φ, but since Z ∩ φ 6= ∅
there must exists a µ′ ∈ Z s.t. µ′(x) |= φ, that is µ(x) 6= µ′(x). Yielding
|Γx(Z)| 6= 1, a contradiction.

– Case φ ≡ x ./ expr and φ′ ≡ y ./ expr1. Since φ 6!]
s φ
′ we have |Γx(Z)| = 1

and |Γy(Z)| = 1. In addition we have Z ∩ φ 6= ∅. Let µ′ ∈ Z ∩ φ, then µ′ ∈ φ
and since |Γx(Z)| = 1 we have that all valuations in Z are in φ i.e. Z ⊆ φ
which is equivalent to Z = Z ∩ φ. By asumption µ ∈ Z thus µ ∈ Z ∩ φ.

– Inductive step: given φ and φ′ ≡ φ′1 ∧ φ′2. By assumption µ ∈ φ′1 ∧ φ′2. Then
µ ∈ φ′1 and by I.H. µ ∈ Z∩φ′1. Also µ ∈ φ′2 and by I.H. µ ∈ Z∩φ′2. Therefore,
µ ∈ Z ∩ φ′1 ∩ φ′2.

– Inductive step: given φ ≡ φ1∧φ2 and φ′. By assumption µ ∈ φ′ and Z∩φ1∩
φ2 6= ∅. By I.H. we have µ ∈ Z∩φ1 and µ ∈ Z∩φ2. Therefore µ ∈ Z∩φ1∩φ2.

Statement (4). (⊆) By structural induction on φ. As I.H. let the claim hold
for subformulas of φ and φ′.

– Case φ ≡ x ./ expr with ./∈ {<,≤}. Then µ(x) ∈ Z ∩ φν and µ(x) ≤ exprν .
Now by contradiction assume µ(x) > exprν1 i.e. µ(x) 6∈ φν1 then this implies
Z ∩ φν1 = ∅ (a contradiction) because |Γx(Z)| = 1.

– Case φ ≡ x ./ expr with ./∈ {>,≥}. Symmetric to the previous case.
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– Case φ ≡ x ./ expr1∧y ./ expr2 with ./∈ {<,≤,≥, >}. We have µ ∈ Z ∩x ./
exprν1 ∩ y ./ exprν2 . Then µ(x) ∈ Z ∩ x ./ exprν1 and µ(y) ∈ Z ∩ y ./ exprν2 . By
I.H. µ(x) ∈ Z ∩ x ./ exprν11 and µ(y) ∈ Z ∩ y ./ exprν12 . Then µ ∈ Z ∩ x ./
exprν11 ∩ y ./ expr

ν1
2 .

The case (⊆) is symmetric. ut

B.2 Proof of Theorem 2

Proof (Theorem 2). In the following, let s = (~l, Z, ν) and the successors states

of s after a1 and a2 be s
a1−→ s1 = (~l1, Z1, ν1) and s

a2−→ s2 = (~l2, Z2, ν2). We use
∃i as a shorthand for ∃i ∈ {1, . . . , n}. For the rest of the proof we can assume
a1 6!]

s a2. First consider the case when a1 6∈ En(s) or a2 6∈ En(s). Then the
conditions from Definition 7 trivially hold and we have a1 6!s a2.

Consider the more involved case when a1 ∈ En(s) and a2 ∈ En(s).

We show Definition 7 Condition 1 , Consider s
a1−→ s1 we show that a2 ∈ En(s1).

Condition (Ind1) implies Pre(a1) ∩ Pre(a2) = ∅ i.e. ∀e ∈ a2. ∃i. ~li1 = src(e),

therefore all sources for edges in a2 are still in ~l1. By (Ind2) committed locations
do not disable a2. By (Ind3) and (Ind4) all guards and invariants of a2 are enabled
after a1. (We now devote to demonstrate this).

Without loss of generality let a1 = {ei} a2 = {ej} with i 6= j, ei =
(li, τ, φi, ψi, ri, l

′
i) ∈ Ei and ej = (lj , τ, φj , ψj , rj , l

′
j) ∈ Ej . Let µ[rνi ] ∈ Z1 i.e.

µ[rνi ] ∈ (Z ∩ I(~l)ν ∩ (φi)
ν)[rνi ] ∩ (I(~l)[l′i/li])

ν1 .

By the semantics of resets we have

µ ∈ Z ∩ I(~l)ν ∩ φνi .

By Lemma 1(3) since φi 6!]
s φj , Z ∩ I(~l)ν ∩ φνj 6= ∅ and µ ∈ Z ∩ I(~l)ν ∩ φνi . We

obtain
µ ∈ Z ∩ I(~l)ν ∩ φνi ∩ φνj .

By the semantics of reset we have

µ[rνi ] ∈ (Z ∩ I(~l)ν ∩ φνi ∩ φνj )[rνi ].

By assumption ri 6!]
s φj and by using Lemma 1(1) we have

(Z ∩ I(~l)ν ∩ φνj ∩ φνi )[rνi ] = (Z ∩ I(~l)ν ∩ φνi )[rνi ] ∩ φνj ,

therefore
µ[rνi ] ∈ (Z ∩ I(~l)ν ∩ φνi )[rνi ] ∩ φνj .

and by assumption

µ[rνi ] ∈ (Z ∩ I(~l)ν ∩ φνi )[rνi ] ∩ I(~l[l′i/li])
ν1 ∩ φνj .
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Since ri 6!]
s φj we have that V (ri) ∩ V (φj) = ∅ which means that ν|V (φj) =

ν1|V (φj) i.e. valuations agree for all discrete variables in φj , which implies φνj =

φν1j . Otherwise if V (ri)∩V (φj) 6= ∅ since ri 6!]
s φj we have the case that exists

v ∈ V (ri) and ri contains the expression v := v+ 1 an increment (or decrement)
and φj contains a constraint of the form x ≤ expr (or x ≥ expr for decrements)
where v occurs in expr, then note ν(v) ≤ ν1(v) (or ν(v) ≥ ν1(v) in the case of
decrements) then we have φνj ⊆ φ

ν1
j and thus

µ[rνi ] ∈ (Z ∩ I(~l)ν ∩ φνi )[rνi ] ∩ I(~l[l′i/li])
ν1 ∩ φν1j . (2)

Which means that the guard of a2 is satisfied after executing a1. Let ν12 =
ν1[rν1j ] be the variable valuation after executing a2 from s1. Now, we need to
show that the destination invariant of a2 is also satisfied. We need to show
µ[rνi ][rν1j ] ∈ ((Z ∩ I(~l)ν ∩ φνi )[rνi ] ∩ I(~l[l′i/li]) ∩ φ

ν1
j )[rν1j ] ∩ I(~l[l′i/li, l

′
j/lj ])

ν12 . By
the semantics of reset and continuing from 2 we have

µ[rνi ][rν1j ] ∈ ((Z ∩ I(~l)ν ∩ φνi )[rνi ] ∩ I(~l[l′i/li])
ν1 ∩ φν1j )[rν1j ]

Note that I(~l[l′i/li])
ν1 =

⋂{1,...,n}\{i}
k I(~lk)ν1 ∩ I(l′i)

ν1 . By assumption rj 6!]
s

I(~lk) for k ∈ {1, . . . , n} \ {j} and rj 6!]
s I(l′i). By Lemma 1(1) we obtain:

((Z ∩ I(~l)ν ∩ φνi )[rνi ] ∩ I(~l[l′i/li])
ν1 ∩ φν1j )[rν1j ]

= ((Z ∩ I(~l)ν ∩ φνi )[rνi ] ∩ I(lj)
ν1 ∩ φν1j )[rν1j ]

⋂{1,...,n}\{i,j}
k I(~lk)ν1 ∩ I(l′i)

ν1

By assumption rj 6!]
s I(~lk) for k ∈ {1, . . . , n} \ {j} and rj 6!]

s I(l′i). Which
implies (as above) that ν1 and ν12 agree on all discrete variables in all invariants
except possible for some variables which have been incremented or decremented
(c.f. above for 2 ) thus we have

((Z ∩ I(~l)ν ∩ φνi )[rνi ] ∩ I(lj)
ν1 ∩ φν1j )[rν1j ]

⋂{1,...,n}\{i,j}
k I(~lk)ν1 ∩ I(l′i)

ν1

⊆ ((Z ∩ I(~l)ν ∩ φνi )[rνi ] ∩ I(lj)
ν1 ∩ φν1j )[rν1j ]

⋂{1,...,n}\{i,j}
k I(~lk)ν12 ∩ I(l′i)

ν12

Therefore

µ[rνi ][rν1j ] ∈ ((Z∩I(~l)ν∩φνi )[rνi ]∩I(lj)
ν1∩φν1j )[rν1j ]

{1,...,n}\{i,j}⋂
k

I(~lk)ν12∩I(l′i)
ν12 .

(3)

Then we need to show that µ[rνi ][rν1j ] ∈ I(l′j)
ν12 . By assumption (Z ∩ I(~l)ν ∩

(φj)
ν)[rνj ] ∩ (I(~l)[l′j/lj ])

ν2 6= ∅. From Derivation 3 we obtain

µ[rνi ][rν1j ] ∈ ((Z ∩ I(~l)ν ∩ φνi )[rνi ] ∩ φν1j )[rν1j ]

Since ri 6!]
s φj by Lemma 1(1) we obtain

µ[rνi ][rν1j ] ∈ ((Z ∩ I(~l)ν ∩ φνi ∩ φ
ν1
j )[rνi ])[rν1j ]

We have that ri 6!]
s rj . In particular the only allowed shared variables in

the updates are the integer variables being incremented (decremented) in both
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updates and for every zone Z ′ and any valuations νi, νj since the updates do not
share clocks. we have Z ′[rνii ][r

νj
j ] = Z ′[r

νj
j ][rνii ] . Therefore we obtain

µ[rν1j ][rνi ] ∈ ((Z ∩ I(~l)ν ∩ φνi ∩ φ
ν1
j )[rν1j ])[rνi ]

By the semantics of resets we have

µ[rν1j ] ∈ (Z ∩ I(~l)ν ∩ φνi ∩ φ
ν1
j )[rν1j ]

Since ri 6!]
s rj clock are not shared in updates and ν1 = ν[rνi ] we have rνj

and rν1j agree on clock updates (for any zone Z we have Z[rν1j ] = Z[rνj ] ).

Further φi 6!]
s rj we have φνj ⊆ φν1j (because of incs, decs) (then for any zone

Z ∩ φν ⊇ Z ∩ φν1). Thus

µ[rν1j ] ∈ (Z ∩ I(~l)ν ∩ φνi ∩ φνj )[rνj ] (4)

By using Lemma 1(3) and using zone Z ′ as template from the Equation 4 without

constraint φi and since by assumption Z ′ ∩ I(~l[l′j/lj ])
ν2 6= ∅. We have that

µ[rν1j ] ∈ I(~l[l′j/lj ])
ν2 and in particular µ[rν1j ] ∈ I(l′j)

ν2 . Since ri 6!]
s I(l′j) no clock

in I(l′j) is updated by ri and we have µ[rν1j ][rνi ] ∈ I(l′j)
ν2 i.e. µ[rν1j ][rνi ] ∈ I(l′j)

ν2 .
In particular we have that I(l′j)

ν2 ⊆ I(l′j)
ν12 (because of possible incs and decs

in ri). Thus we have that µ[rνi ][rν1j ] ∈ I(l′j)
ν12 . Finally we obtain

µ[rνi ][rν1j ] ∈ ((Z ∩ I(~l)ν ∩ φνi )[rνi ] ∩ I(lj)
ν1 ∩ φν1j )[rν1j ] ∩ I(l′i)

ν12 ∩ I(l′j)
ν12 .

That is a2 ∈ En(s1) if the variable guards are satisfied. The case for variables is
easier, since the only shared variables are the ones in increments or decrements.
The case for s

a2−→ s2 and a1 ∈ En(s2) is symmetric. Therefore we conclude that
Definition 7 Statement 1 hold.

We now show Definition 7 Condition 2 , s
a1a2−−−→ s′ iff s

a2a1−−−→ s′. Since Defini-
tion 7 Statement 1 holds, we have s

a1−→ s1
a2−→ s′1 and s

a2−→ s2
a1−→ s′2. We need

to show that s′1 = s′2. Let s′1 = (~l′1, Z
′
1, ν
′
1) and s′2 = (~l′2, Z

′
2, ν
′
2). First consider

a1 = {(li, τ, φi, ψi, ri, l′i)} and a2 = {(lj , τ, φj , ψj , rj , l′j)}. In particular note that
since Pre(a1) ∩ Pre(a2) = ∅ we have that li 6= lj .

We show that ~l′1 = ~l′2, by staring at ~l and executing a1 we obtain ~l[l′i/li]

and by executing a2 we obtain ~l[l′i/li, l
′
j/lj ]. By starting at ~l and executing a2

we obtain ~l[l′j/lj ] and by executing a1 we obtain ~l[l′j/lj , l
′
i/li]. Since i 6= j the

substitutions occur at different positions in ~l and ~l′[l′j/lj , l
′
i/li] = ~l′[l′i/li, l

′
j/lj ].

We show that ν′1 = ν′2. Assume ν′1 6= ν′2 Then a variable is modified by a1 and
a2, but the only shared variables are when both actions are either increments
or decrements of a variable. Since increments and decrements commute we have
ν′1 = ν′2.

Now we show that Z ′1 = Z ′2. Note that Z = Z ∩ I(~l). We have the following:

Z ′1 = ((Z ∩ φνi )[rνi ] ∩ I(~l[l′i/li])
ν1 ∩ φν1j )[rν1j ] ∩ I(~l[l′i/li, l

′
j/lj ])

ν′1 6= ∅
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By definition of invarinat we have

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν∩φνi )[rνi ]

{1,...,n}\{i}⋂
k

I(~lk)ν1∩I(l′i)
ν1∩φν1j )[rν1j ]∩I(~l[l′i/li, l

′
j/lj ])

ν′1

Note that because
⋂{1,...,n}\{i}
k I(~lk) 6!]

s ri and ν1 = ν[rνi ] we have that φ ≡⋂{1,...,n}\{i}
k I(~lk) we have φν ⊆ φν1 . By using Lemma 1 (4) we have

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν∩φνi )[rνi ]

{1,...,n}\{i}⋂
k

I(~lk)ν∩I(l′i)
ν1∩φν1j )[rν1j ]∩I(~l[l′i/li, l

′
j/lj ])

ν′1

by Lemma 1(2) we obtain

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν ∩ φνi )[rνi ] ∩ I(l′i)
ν1 ∩ φν1j )[rν1j ] ∩ I(~l[l′i/li, l

′
j/lj ])

ν′1

since φj 6!]
s ri by Lemma 1 (4) we have

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν ∩ φνi )[rνi ] ∩ I(l′i)
ν1 ∩ φνj )[rν1j ] ∩ I(~l[l′i/li, l

′
j/lj ])

ν′1

by Lemma 1(1)

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν ∩ φνi ∩ φνj )[rνi ] ∩ I(l′i)
ν1)[rν1j ] ∩ I(~l[l′i/li, l

′
j/lj ])

ν′1

by Lemma 1(1)

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν ∩ φνi ∩ φνj )[rνi ])[rν1j ] ∩ I(l′i)
ν1 ∩ I(~l[l′i/li, l

′
j/lj ])

ν′1

since ri 6!]
s rj

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν ∩ φνi ∩ φνj )[rν1j ])[rνi ] ∩ I(l′i)
ν1 ∩ I(~l[l′i/li, l

′
j/lj ])

ν′1

Note that I(~l[l′i/li, l
′
j/lj ])

ν′1 contains I(l′i)
ν′1 and since ν′1 = ν1[rj ] with I(l′i) 6!]

s

rj we have I(l′i)
ν1 ⊆ I(l′i)

ν′1 . By using Lemma 1 (4) we have

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν ∩ φνi ∩ φνj )[rν1j ])[rνi ] ∩ I(~l[l′i/li, l
′
j/lj ])

ν′1

Note that I(~l[l′i/li, l
′
j/lj ])

ν′1 contains I(l′j)
ν′1

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν ∩ φνi ∩ φνj )[rν1j ])[rνi ] ∩ I(l′j)
ν′1 ∩ I(~l[l′i/li, l

′
j/lj ])

ν′1
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In the following let r|X be the sequence of clock updates obtained from r.
Since rj 6!]

s ri it is the case that rνj |X = rν1j |X , Otherwise if rνj |X 6= rν1j |X
we have that there exists an update x := expr with exprν 6= exprν1 and some
variable v ∈ Read(x := expr) being modified by ri. By definition we have that
v ∈Write(ri) ∪ Inc(ri) ∪ Dec(ri) and rj!]

sri a contradiction thus rνj |X = rν1j |X
and we obtain

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν ∩ φνi ∩ φνj )[rνj ])[rνi ] ∩ I(l′j)
ν′1 ∩ I(~l[l′i/li, l

′
j/lj ])

ν′1

by Lemma 1(1)

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν ∩ φνj )[rνj ] ∩ φνi )[rνi ] ∩ I(l′j)
ν′1 ∩ I(~l[l′i/li, l

′
j/lj ])

ν′1

Since rj 6!]
s ri it is the case that rνi |X = rν2i |X , Otherwise if rνi |X 6= rν2i |X we

obtain a contradiction as above thus

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν ∩ φνj )[rνj ] ∩ φνi )[rν2i ] ∩ I(l′j)
ν′1 ∩ I(~l[l′i/li, l

′
j/lj ])

ν′1

Note that ν′1 = ν′2 thus

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν ∩ φνj )[rνj ] ∩ φνi )[rν2i ] ∩ I(l′j)
ν′2 ∩ I(~l[l′i/li, l

′
j/lj ])

ν′2

We have I(l′j) 6!]
s ri and ν′2 = ν2[rν2i ] then I(l′j)

ν2
i ⊆ I(l′j)

ν′2
i thus by Lemma 1 (4)

we have

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν ∩ φνj )[rνj ] ∩ φνi )[rν2i ] ∩ I(l′j)
ν2 ∩ I(~l[l′i/li, l

′
j/lj ])

ν′2

by Lemma 1(1)

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν ∩ φνj )[rνj ] ∩ I(l′j)
ν2 ∩ φνi )[rν2i ] ∩ I(~l[l′i/li, l

′
j/lj ])

ν′2

We have φi 6!]
s rj and ν2 = ν[rνj ] then φνi ⊆ φ

ν2
i thus by Lemma 1 (4) we have

Z ′1 = ((Z

n⋂
k=1

I(~lk)ν ∩ φνj )[rνj ] ∩ I(l′j)
ν2 ∩ φν2i )[rν2i ] ∩ I(~l[l′i/li, l

′
j/lj ])

ν′2

Since
⋂{1,...,n}\{j}
k I(~lk) 6!]

s rj by Lemma 1(1) we have

Z ′1 = ((Z∩I(~lj)ν∩φνj )[rνj ]

{1,...,n}\{j}⋂
k

I(~lk)ν∩I(l′j)
ν2∩φν2i )[rν2i ]∩I(~l[l′i/li, l

′
j/lj ])

ν′2
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we have ν2 = ν[rνj ] and φ ≡
⋂{1,...,n}\{j}
k I(~lk) we have φν ⊆ φν2 . By using

Lemma 1 (4) we have

Z ′1 = ((Z∩I(~lj)ν∩φνj )[rνj ]

{1,...,n}\{j}⋂
k

I(~lk)ν2∩I(l′j)
ν2∩φν2i )[rν2i ]∩I(~l[l′i/li, l

′
j/lj ])

ν′2

Finally, by grouping the invariants we get

Z ′1 = ((Z ∩ φνj )[rνj ] ∩ I(~l[l′j/lj ])
ν2 ∩ φν2i )[rν2i ] ∩ I(~l[l′i/li, l

′
j/lj ])

ν′2 = Z ′2

Therefore we conclude that Definition 7 Statement 2 holds. ut

B.3 Proof of Corollary 1

Proof (Corollary 1). By induction on the length n of w. As I.H. let the claim
hold for lengths < n. Base |w| = 0. By definition of A′ we have that a 6!]

sa
′.

Since s′ = s we have a 6!]
s′a
′. Inductive step |w| = n. Let w = a1 . . . an.

We need to show s0
a1−→ . . .

an−1−−−→ sn−1
an−−→ s′

a′−→ s′′ =⇒ a 6!]
s′a
′. As

I.H. we have a 6!]
sn−1

a′. In addition we have that a 6!]
s0an. We need

to show that conditions (Ind1), (Ind2), (Ind3), and (Ind4) hold at state s′ for
a and a′. Conditions (Ind1), (Ind2) are state independent and hold for state
s′. We need to show that conditions (Ind3) and (Ind4) hold for s′. Conditions
(Ind3) and (Ind4) use Definition 8 Independence of Operations. Conditions in
Definition 8 are state independed except for Condition (7) which is {x | x ∈
X(op1) ∪ X(op2) and |Γx(Z)| 6= 1 and op1, op2 ∈ B(X,V )} = ∅. This means
that we only need to show that Condition (7) holds at state sn. Without loss
of generality let a = {(l1, τ, φ1, ψ1, r1, l

′
1)}, a′ = {(l2, τ, φ2, ψ2, r2, l

′
2)}, an =

{(ln, τ, φn, ψn, rn, l′n)}, sn−1 = (~ln−1, Zn−1, νn−1), and, sn = (~ln, Zn, νn).
By I.H. we have |Γx(Zn−1)| = 1 for any clock in x ∈ X(Guard(φ1)) ∪

X(Guard(φ2)) ∪ X(
⋂
{I(~lj0) ∧ · · · ∧ I(~ljn−1) | ~lj 6∈ Pre(i) and 1 ≤ j ≤ n} for

i ∈ {a, a′}).
Let x by a clock in x ∈ X(Guard(φ1)) ∪ X(Guard(φ2)) ∪ X(

⋂
{I(~lj0) | ~lj 6∈

Pre(i) and 1 ≤ j ≤ n} for i ∈ {a, a′}). Note that reset rn can not cause
|Γx(Zn−1)| 6= 1. In addition, intersections with guards φn and I(ln) can not
increase the valuations of x causing |Γx(Zn)| > 1, because it will imply that
Zn−1 ∩ φn ⊃ Zn−1. Therefore, we have |Γx(Zn)| = 1. ut

B.4 Proof of Lemma 2

Proof (Lemma 2). By induction on w. As I.H. assume that the claim holds for
all sequences of length smaller and equal to the one of w.

Base case |w| = 0 then s = s′ and zt(s′).

Inductive step |w′a′| = n + 1 Assume s0
w′−→ sn

a′−→ s′ ∧ zt(s0). By I.H. we
have that zt(si) for 0 ≤ i ≤ n. By definition we have Delay]s0 = {a} ∪ {a′ ∈ A]s |
a!]

s0 a
′}. By assumption we have tea](a, s0) with a ∈ En(s0) and a 6!]

s0 a
′.
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From Corollary 1 we obtain a 6!]
si a

′ for i ≤ n. Therefore a ∈ En(s′). Let

s0 = (~l, Z, ν) and s′ = (~l′, Z ′, ν′) by definition of tea](a, s0) we have to consider
two cases:

– Case ∃l ∈ Pre(a). l ∈ Lu ∪Lc. By Definition 9 and condition (Ind1) we have

∃i. ~l′i ∈ Pre(a)∧ (~l′)i ∈ Lu∪Lc (i.e. the urgent/committed location stopping

time is still in ~l′). By the semantics of the transition relation we have zt(s′).
– Case ∃l ∈ Pre(a). ∀µ ∈ Z, d ∈ R≥0. µ + d |= I(l) =⇒ d = 0. Since

Condition (Ind1) holds, we have that ∃i. (~l′)i ∈ Pre(a) such that I((~l′)i)
is stopping time. We continue by contradiction assume ∀l ∈ Pre(a). ∃µ′ ∈
Z ′, d ∈ R≥0. µ′ + d |= I(l) ∧ d > 0. This implies that the invariant I((~l′)i)
has been relaxed by a clock reset in some action a′′ in w′a′. By definition
we have Delay]s0 ⊆ {a

′ ∈ A]s | ∃l ∈ Pre(a), r ∈ Update(a′). X(r) ∈ X(I(l))}
implied by the dependency relation!]

s0 and such an a′′ can not be in w′a′.
ut

B.5 Lemma 4

Lemma 4. Given basic formula ϕ, the following holds: ∀s, s′ ∈ S, a ∈ (A]s \
ϕ]). s

a−→ s′ ∧ s 6|= ϕ =⇒ s′ 6|= ϕ

Proof. By structural induction on ϕ. Let s = (~l, Z, ν) and s′ = (~l′, Z ′, ν′). For
the I.H. let the proposition hold for all subformulas of ϕ. We continue by the
base cases:

– ϕ ≡ l, then for all i ∈ {1, . . . , n} we have ~li 6= l. Assume (~l′, Z ′, ν′) |= l,

then there exist i ∈ {1, . . . , n} such that (~l′)i = l, by definition of tran-

sition relation we have either ~l′ = ~l[l′i/li] or ~l′ = ~l[l′j/lj , l
′
i/li] if there ex-

ists edges ei = (li, τ, φ, ψ, r, l
′
i) ∈ Ei or ei = (li, c?, φi, ψi, ri, l

′
i) ∈ Ei and

ej = (lj , c!, φj , ψj , rj , l
′
j) ∈ Ej . Since l = l′i or l = l′j , l ∈ Post(a) and thus

a ∈ ϕ]s.
– ϕ ≡ deadlock, by definition we have an a′ ∈ En(s) in deadlock]s. We also

have that a 6!]
s a
′. By Theorem 2 we have that a 6!s a

′, and by definition
of !s we have that a ∈ En(s′). Therefore s′ 6|= deadlock.

– ϕ ≡ x ./ c ./∈ {<,≤,≥, >}, we have s 6|= x ./ c and s′ |= x ./ c. Since s time
can not elapse with action transitions, this is only possible if there was a reset
for x in a. Thus we have x := expr ∈ Update(a) with x ./ expr′!]

s x := expr
and thus a ∈ ϕ]s.

– ϕ ≡ ϕv for v ∈ V . By assumption we have ν(v) 6|= ϕv and s′ |= ϕv which
means that ν′(v) |= ϕv. Thus the valuation of v has been updated which
means ∃op ∈ Op(a). ϕv!]

s op. Therefore, a ∈ ϕ]s.
– We continue with the inductive case: ϕ ≡ ϕ1 ∧ ϕ2. Then either s 6|= ϕ1

or s 6|= ϕ2. Without loss of generality let s 6|= ϕ1, then ϕ]s = (ϕ1)]s. Since
s′ |= ϕ1∧ϕ2, we have that s′ |= ϕ1 by firing a. By I.H. we have that a ∈ (ϕ1)]s
and thus a ∈ ϕ]s.

ut
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B.6 Proof of Lemma 3

We proof this lemma with help from Lemma 4.

Proof (Lemma 3). We continue by induction on w. As I.H. assume that the claim
holds for all sequences of length smaller and equal to the one of w.

Base case |w| = 0 then s = s′ and s′ 6|= ϕ.

Inductive Step |wa| = n+1, we have s0
w−→ sn

a−→ sn+1. If exists si in the path
from s0 to sn such that si |= ϕ by I.H. we are done. Therefore let sn 6|= ϕ and
sn+1 |= ϕ. By Lemma 4 we have that a ∈ ϕ]sn . We need to show that a ∈ ϕ]s0 . For
this we need to consider the structure of the formula to infer their corresponding
sets. We continue by structural induction on ϕ. As I.H. let a ∈ ϕ]s0 for all sub
formulas of ϕ.

– Basis ϕ ≡ l, ϕ ≡ x = y, ϕ ≡ x ./ c ϕ ≡ ϕv, the set of actions definition is
independent of s0 (same set for all states) and we have ϕ]s0 = ϕ]sn and since
a ∈ ϕ]sn we have a ∈ ϕ]s0 .

– Basis ϕ ≡ deadlock, If a ∈ ϕ]s0 then we are done. Otherwise we have a 6∈
ϕ]s0 . By definition of ϕ]s0 we have ∃a′ ∈ ϕ]s0 such that a′ ∈ En(s0) and
a′ 6!]

s0 a
′′ for all a′′ in wa. By Corollary 1 we have a′ 6!]

sn a and therefore
a′ ∈ En(sn+1) and sn+1 6|= deadlock a contradiction. Therefore a ∈ ϕ]s0 .

– Inductive step ϕ ≡ ϕ1∧ϕ2. Then either sn 6|= ϕ1 or sn 6|= ϕ2. Without loss of
generality let sn 6|= ϕ1, then ϕ]sn = (ϕ1)]sn . By I.H. we have that a ∈ (ϕ1)]s0 .

ut

B.7 Proof of Theorem 3

Proof (Theorem 3).

Termination The set A]s is finite and so is the set ϕ]s ⊆ A]s. The Algorithm starts
with St]s := ϕ]s, in each iteration the size of St]s can only increase because the
only operation applied to St]s is union. In the worst case we have St]s = A]s.

Correctness We show that the algorithm satisfies the conditions of Definition 2.

– Definition 2 Condition Z this condition follows from Line 1 where the output
is En(s).

– Definition 2 Condition D By line 3 there is an action a ∈ St]s with tea](a, s)
and a ∈ En(s). Because of the loop from Line 16 we have {a} ∪ {a′ ∈ A]s |
a!]

s a
′} ⊆ St]s. By using Lemma 2 this condition is satisfied.

– Definition 2 Condition R When the algorithm exists the main while loop
from Line 5 we have to cases:
• Case En(s) ∩ St]s 6= En(s), in this case there was no reduction and the

condition trivially holds.
• Case W = ∅, From Line 4 we have that all actions from ϕ]s are in W .

From Line 6 all elements from ϕ]s have been added to St]s. By applying
Lemma 3 the condition is satisfied.



28 Kim G. Larsen, Marius Mikučionis, Marco Muñiz, and Jǐŕı Srba

– Definition 2 Condition W ∀a ∈ St(s), w ∈ St(s)
∗
. zt(s) ∧ s wa−−→ s′ =⇒

s
aw−−→ s′ Recall that St(s) is defined as St]s. If the while loop from Line 5

terminates with En(s)∩St]s = En(s) then transitions with w are not possible
and the claim trivially holds. Contrary we have two cases:

• Case a 6∈ En(s), by contradiction, consider the sequence s0
w−→ sn

a′−→
sn+1 there exists a transition ai in wa′ such that a 6∈ En(si) and a ∈
En(si+1). Let si = (~li, Zi, νi) and si+1 = (~li+1, Zi+1, νi+1). Action a can
become enabled in si+1 in the following cases:

Source locations of a are not in ~li but are in ~li+1, this case is captured
by Line 11.
A guard g ∈ Guard(a) becomes enabled, this case is captured by Line 14.
Therefore, such an action ai can not be in w.

• Case a ∈ En(s). The following is an invariant of the main while loop in
Line 5 A]s = St] ∪ R. In addition the following is an invariant from the
for loop in Line 16.

∀a ∈ St]s, a
′ ∈ R.a ∈ En(s)∧

((Pre(a) ∩ Pre(a′) 6= ∅) ∨ (Parallel(a, a′) ∧ a!]
s a
′)) =⇒ a′ ∈ St]s

(5)

Let w = a1a2 . . . an and s
a1−→ s1 . . .

an−−→ sn. By Invariant 5 we have that
a 6!]

sai with ai in w. From Corollary 1 we have a 6!]
siai. This means

that a is independed with all actions in w and since a ∈ En(s) we can

move a to produce s
aw−−→ s′.

ut

B.8 Proof of Theorem 4

Proof. By Definition we have thatAs
def
= {a ∈ A | ∃s′, s′′ ∈ S,w ∈ A∗. s w−→ s′

a−→
s′′}. We continue by induction on the length of w. As I.H. assume that the claim

holds for all paths of length at most |w|. In the Following let s = (~l, Z, ν).

– Case |w| = 0 then we have a = ∅ and a ∈ A]s.
– Case |w| = n+ 1 then we have s

w−→ s′
a−→ s′′. By I.H. we have that a′ ∈ A]s

for all a′ in w. We continue by case distinction on a. For the rest of the proof
let s′ = (~l′, Z ′, ν′).

• Case a ≡ {e} for some e = (l, h, φ, ψ, r, l′) ∈ Ei. Since the transition is
executed we have Z ′ |= φ and ν′ |= ψ and Z ′ |= I(l′)∨∃x ∈ X(I(l′)).x ∈
M. Assume that for some v ∈ V in ψ we have ν(v) 6= ν′(v) then we have
that v ∈ M or v is not local and a ∈ A]s. Otherwise we have ν |= ψ. For
zone Z, since time can not elapse by actions in w we have two cases: (1)
Z ⊇ Z ′, because intersections from the guards on w will only produce
subsets of Z. Since Z ′ |= φ we have Z |= φ and a ∈ A]s. (2) Z 6⊇ Z ′,
assume Z 6|= φ but Z ′ |= φ in this case there was a reset to some clock
x. By definition of RE we have x ∈ M and a ∈ A]s.
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• Case a ≡ {ei, ej} for some ei ∈ Ei and ej ∈ Ej . By definition of
{ei,ej}−−−−→ we have (~l, Z, ν)

{ei,ej}−−−−→ (~l[l′j/lj , l
′
i/li], Z

′, ν′) if there exists ei =
(li, hi!, φi, ψi, ri, l

′
i) ∈ Ei and ej = (lj , hj?, φj , ψj , rj , l

′
j) ∈ Ej s.t. hνi =

hνj , and Z ′ = (Z∧I(~l)ν ∧φνi ∧φνj )[rν ]∧I(~l[l′j/lj , l
′
i/li])

ν′ , where JZ ′K 6= ∅,
ν |= (ψνi ∧ ψνj ), ν′ = ν[rνi ∪ rνj ], and if ~lk ∈ Lck for some 1 ≤ k ≤ n then
li ∈ Lci or lj ∈ Lcj . From the definition we have that Z ′ |= φi,ν |= ψi and
and Z ′ |= I(l′i) ∨ ∃x ∈ X(I(l′i)).x ∈ Mi. Therefore {ei} ∈ RE(s,Mi, li).
Analogously we have {ej} ∈ RE(s,Mj , lj). By Definition 12 we have
a ∈ A]s.

ut
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