
On-the-Fly Synthesis for
Strictly Alternating Games

Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

Aalborg University, Denmark
{shyamlal,kgl,muniz,srba}@cs.aau.dk

Abstract. We study two-player zero-sum infinite reachability games
with strictly alternating moves of the players allowing us to model a
race between the two opponents. We develop an algorithm for deciding
the winner of the game and suggest a notion of alternating simulation in
order to speed up the computation of the winning strategy. The theory
is applied to Petri net games, where the strictly alternating games are
in general undecidable. We consider soft bounds on Petri net places in
order to achieve decidability and implement the algorithms in our pro-
totype tool. Finally, we compare the performance of our approach with
an algorithm proposed in the seminal work by Liu and Smolka for cal-
culating the minimum fixed points on dependency graphs. The results
show that using alternating simulation almost always improves the per-
formance in time and space and with exponential gain in some examples.
Moreover, we show that there are Petri net games where our algorithm
with alternating simulation terminates, whereas the algorithm without
the alternating simulation loops for any possible search order.

1 Introduction

An embedded controller often has to interact continuously with an external
environment and make decisions in order for the overall system to evolve in
a safe manner. Such systems may be seen as (alternating) games, where two
players—the controller and the environment—race against each other in order
to achieve their individual objectives. The environment and controller alternate
in making moves: the environment makes a move and gives the turn to the
controller who can correct the behaviour of the system and give the control back
to the environment and so on. We consider zero-sum turn-based games where
the objective of the controller is to reach a set of goal states, while the objective
of the environment is to avoid these states. Winning such a game requires to
synthesize a strategy for the moves of the controller, so that any run under this
strategy leads to a goal state no matter the moves of the environment. We talk
about synthesizing a winning controller strategy.

Consider the game in Fig. 1. The game has six configurations {s0, . . . , s5}
and the solid edges indicate controller moves, while the dashed edges are environ-
mental moves. The game starts at s0 and the players alternate in taking turns,
assuming that the controller has to make the first move. It has three choices, i.e.,

2 Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

s0

s1

s2

s3

s4

s5

a0

a1 a2

u5

u4u1

u2 u3

(s0, 1) (s2, 2) (s3, 1)

(s4, 1)

(s3, 2) (s5, 1) (s5, 2) (s4, 1)

distσG((s0, 1)) = 6

Fig. 1: A game graph and the distance of its winning strategy σ where σ(s0, 1)
= a0, σ(s1, 1) = σ(s2, 1) = σ(s3, 1) = σ(s4, 1) = σ(s5, 1) = ε1

move to s1 or s2 (shown by solid arrows) or stay in s0 without moving. Assume
that the controller chooses to move to s2 and gives the control to environment.
The environment now has the choice to go to s3 or s4 (which is a goal config-
uration that the environment tries to avoid). Observe that there can be states
like s5 from which both the environment and controller can make a move, based
on whose turn it is. Also the game may have states like s0 or s3 where one of
the players does not have any explicit move in which case they play an empty
move and give the control to the other. The controller can play the empty move
also in the situation where other controllable moves are enabled, whereas the
environment is allowed to make the empty move only if no other enviromental
moves are possible (in order to guarantee progress in the game). The goal of the
controller is to reach s4 and it has a winning strategy to achieve this goal as
shown below the game graph (here the second component in the pair denotes
the player who has the turn).

Petri nets [9] is a standard formalism that models the behaviour of a con-
current system. Petri net games represent the reactive interaction between a
controller and an environment by distinguishing controllable transitions from
uncontrollable ones. In order to account for both the adversarial behaviour of
the environment and concurrency, one can model reactive systems as alternat-
ing games (as mentioned before) played on these nets where each transition is
designated to either environment or controller and the goal of the controller is
to eventually reach a particular marking of the net.

Contribution: We define the notion of alternating simulation and prove that
if a configuration c′ simulates c then c′ is a winning configuration whenever c
is a winning configuration. We then provide an on-the-fly algorithm which uses
this alternating simulation relation and we prove that the algorithm is partially

On-the-Fly Synthesis for Strictly Alternating Games 3

correct. The termination of the algorithm is in general not guaranteed. However,
for finite game graphs we have total correctness. We apply this algorithm to
games played on Petri nets and prove that these games are in general undecidable
and therefore we consider a subclass of these games where the places in nets have
a bounded capacity, resulting in a game over a finite graph. As an important
contribution, we propose an efficiently computable (linear in the size of the
net) alternating simulation relation for Petri nets. We also show an example
where this specific simulation relation allows for a termination on an infinite
Petri net game, while the adaptation of Liu-Smolka algorithm from [2] does not
terminate for all possible search strategies that explore the game graph. Finally,
we demonstrate the practical usability of our approach on three case studies.

Related Work : The notion of dependency graphs and their use to compute
fixed points was originally proposed in [7]. In [2,3] an adaptation of these fixed
point computations has been extended to two player games with reachability ob-
jectives, however, without the requirement on the alternation of the player moves
as in our work. Two player coverability games on Petri nets with strictly alter-
nating semantics were presented in [10] and [1], but these games are restricted
in the sense that they assume that the moves in the game are monotonic with
respect to a partial order which makes the coverability problem decidable for the
particular subclass (B-Petri games). Our games are more general and hence the
coverability problem for our games played on Petri nets, unlike the games in [10],
are undecidable. Our work introduces an on-the-fly algorithm closely related to
the work in [3] which is an adaptation of the classical Liu Smolka algorithm [7],
where the set of losing configurations is stored, which along with the use of our
alternating simulation makes our algorithm more efficient with respect to both
space and time consumption. Our main novelty is the introduction of alternating
simulation as a part of our algorithm in order to speed up the computation of
the fixed point and we present its syntactic approximation for the class of Petri
net games with encouraging experimental results.

2 Alternating Games

We shall now introduce the notion of an alternating game where the players
strictly alternate in their moves such that the first player tries to enforce some
given reachability objective and the other player’s aim is to prevent this from
happening.

Definition 1. A Game graph is a tuple G = (S,Act1,Act2,−−→1,−−→2,Goal)
where:

– S is the set of states,
– Acti is a finite set of Player-i actions where i ∈ {1, 2} and Act1 ∩Act2 = ∅,
– −−→i⊆ S × Acti × S, i ∈ {1, 2} is the Player-i edge relation such that the

relations −−→i are deterministic i.e. if (s, α, s′) ∈−−→i and (s, α, s′′) ∈−−→i

then s′ = s′′, and
– Goal ⊆ S is a set of goal states.

4 Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

If (s, a, s′) ∈−−→i then we write s
a−−→i s

′ where i ∈ {1, 2}. Also, we write

s −−→i if there exists an s′ ∈ S and a ∈ Acti such that s
a−−→i s

′; otherwise we
write s 6−−→i. In the rest of this paper, we restrict ourselves to game graphs that
are finitely branching, meaning that for each action a (of either player) there are
only finitely many a-successors.

Alternating Semantics for Game Graphs Given a game graph G =
(S,Act1,Act2,−−→1,−−→2,Goal), the set C = (S × {1, 2}) is the set of con-
figurations of the game graph and C1 = (S × {1}), C2 = (S × {2}) rep-
resent the set of configurations of Player-1 and Player-2 respectively, ==⇒⊆
(C1 × (Act1 ∪ {ε1})×C2) ∪ (C2 × (Act2 ∪ {ε2})×C1) is the set of transitions of
the game such that

– if (s, α, s′) ∈−−→i then ((s, i), α, (s′, 3− i)) ∈==⇒
– for all configurations (s, 1) ∈ C1 we have ((s, 1), ε1, (s, 2)) ∈==⇒
– for all configurations (s, 2) ∈ C2 where s 6−−→2 we have ((s, 2), ε2, (s, 1)) ∈==⇒

Apart from the actions available in Act1 and Act2, the controller and the
environment have two empty actions ε1 and ε2, respectively. Given a state s ∈ S,
when it is its turn, the controller or the environment can choose to take any
action in Act1 or Act2 enabled at s respectively. While, the controller can always
play ε1 at a given state s, the environment can play ε2 only when there are no
actions in Act2 enabled at s so that the environment can not delay or deadlock
the game.

We write (s, i)
α

==⇒i (s′, 3 − i) to denote ((s, i), α, (s′, 3 − i)) ∈==⇒ and

(s, i)
α

==⇒i if there exists s′ ∈ S such that (s, i)
α

==⇒ (s′, 3 − i). A configuration
cg = (sg, i) is called goal configuration if sg ∈ Goal . By abuse of notation, for
configuracion c we use c ∈ Goal to denote that c is a goal configuration. A run in
the game G starting at a configuration c0 is an infinite sequence of configurations

and actions c0, α0, c1, α1, c2, α2 . . . where for every j ∈ N0, cj
αj

==⇒ cj+1. The set
Runs(c0,G) denotes the set of all runs in the game G starting from configuration
c0. A run c0, α0, c1, α1, c2, α2 . . . is winning if there exists j such that cj is a
goal configuration. The set of all winning runs starting from c0 is denoted by
WinRuns(c0,G). A strategy σ for Player-1 where σ : C1 → Act1 ∪{ε1} is a func-

tion such that if σ(c) = α then c
α

==⇒. For a given strategy σ, and a configuration
c0 = (s0, i0), we define OutcomeRunsσG(c0) = {c0, α0, c1, α1 . . . ∈ Runs(c0,G) |
for every k ∈ N0, α2k+i0−1 = σ(c2k+i0−1)}. A strategy σ is winning at a config-
uration c if OutcomeRunsσG(c) ⊆ WinRuns(c,G). A configuration c is a winning
configuration if there is a winning strategy at c. A winning strategy for our
running example is given in the caption of Figure 1.

Given a configuration c = (s, i) and one of its winning strategies σ, we define
the quantity distσG(c) := max({n | c0, α0 . . . cn . . . ∈ OutcomeRunsσG(c) with c =
c0 and cn ∈ Goal while ci 6∈ Goal for all i < n}). The quantity represents the
distance to the goal state, meaning that during any play by the given strategy
there is a guarantee that the goal state is reached within that many steps. Due

On-the-Fly Synthesis for Strictly Alternating Games 5

to our assumption on finite branching of our game graph, we get that distance
is well defined.

Lemma 1. Let σ be a winning strategy for a configuration c. The distance func-
tion distσG(c) is well defined.

Proof. Should distσG(c) not be well defined, meaning that the maximum does
not exist, then necessarilty the set T = {c0, α0 . . . cn | c0, α0 . . . cn . . . ∈
OutcomeRunsσG(c) where c = c0 and cn ∈ Goal with ci 6∈ Goal for all i < n}
induces an infinite tree. By definition the game graph G is a deterministic tran-
sition system with finite number of actions and hence the branching factor of
G and consequently of T is finite. By Köning’s Lemma the infinite tree T must
contain an infinite path without any goal configuration, contradicting the fact
that σ is a winning strategy. ut

Consider again the game graph shown in Figure 1 where solid arrows indicate
the transitions of Player-1 while the dotted arrows indicate those of Player-2.
A possible tree of all runs under a (winning) strategy σ is depicted in the figure
and its distance is 6. We can also notice that the distance strictly decreases once
Player-1 performs a move according to the winning strategy σ, as well as by any
possible move of Player-2. We can now observe a simple fact about alternating
games.

Lemma 2. If (s, 2) is a winning configuration in the game G, then (s, 1) is also
a winning configuration.

Proof. Since (s0, 1)
ε1==⇒ (s0, 2) and there is a winning strategy from (s0, 2), we

can conclude (s0, 1) is also a winning configuration. ut

We shall be interested in finding an efficient algorithm for deciding the fol-
lowing problem.

Definition 2 (Reachability Control Problem). For a given game G and a
configuration (s, i), the reachability control problem is to decide if (s, i) is a
winning configuration.

3 Alternating Simulation and On-the-Fly Algorithm

We shall now present the notion of alternating simulation that will be used as
the main component of our on-the-fly algorithm for determining the winner in
the alternating game. Let G = (S,Act1,Act2,−−→1,−−→2,Goal) be a game graph
and let us adopt the notation used in the previous section.

Definition 3. A reflexive binary relation �⊆ C1×C1∪C2×C2 is an alternating
simulation relation iff whenever (s1, i) � (s2, i) then

– if s1 ∈ Goal then s2 ∈ Goal,
– if (s1, 1)

a
==⇒1 (s′1, 2) then (s2, 1)

a
==⇒1 (s′2, 2) such that (s′1, 2) � (s′2, 2), and

6 Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

– if (s2, 2)
u

==⇒2 (s′2, 1) then (s1, 2)
u

==⇒2 (s′1, 1) such that (s′1, 1) � (s′2, 1).

An important property of alternating simulation is that it preserves winning
strategies as stated in the following theorem.

Theorem 1. Let (s, i) be a winning configuration and (s, i) � (s′, i) then (s′, i)
is also a winning configuration.

Proof. By induction on k we shall prove the following claim: if (s, i) � (s′, i)
and (s, i) is a winning configuration with distσG((s, i)) ≤ k then (s′, i) is also a
winning configuration.

Base case (k = 0): Necessarily (s, i) is a goal state and by the definition of
alternating simulation (s′, i) is also a goal configuration and hence the claim
trivially holds.

Induction step (k > 0): Case i = 1. Let σ be a winning strategy for (s, 1)

such that (s, 1)
σ((s,1))

=====⇒1 (s1, 2). We define a winning strategy σ′ for (s′, 1) by
σ′((s′, 1)) = σ((s, 1)). By the property of alternating simulation we get that

(s′, 1)
σ((s,1))

=====⇒1 (s′1, 2) such that (s1, 2) � (s′1, 2) and distσG((s1, 2)) < k. Hence
we can apply induction hypothesis and claim that (s′1, 2) has a winning strategy

which implies (s′, 1) is a winning configuration as well. Case i = 2. If (s′, 2)
u

==⇒2

(s′1, 1) for some u ∈ Act2 then by the property of alternating simulation also

(s, 2)
u

==⇒2 (s1, 1) such that (s1, 1) � (s′1, 1) and distσG((s1, 2)) < k. By the
induction hypothesis (s′1, 1) is a winning configuration and so is (s′, 2). ut

As a direct corollary of this result, we also know that if (s, i) � (s′, i) and
(s′, i) is not a winning configuration then (s, i) cannot be a winning configura-
tion either. Before we present our on-the-fly algorithm, we need to settle some
notation. Given a configuration c = (s, i) we define

– Succ(c) = {c′ | c ==⇒ c′},
– MaxSucc(c) ⊆ Succ(c) is a set of states such that for all c′ ∈ Succ(c) there

exists a c′′ ∈ MaxSucc(c) such that c′ � c′′, and

– MinSucc(c) ⊆ Succ(c) is a set of states such that for all c′ ∈ Succ(c) there
exists a c′′ ∈ MinSucc(c) such that c′′ � c′.

Remark 1. There can be many candidate sets of states that satisfy the definition
of MaxSucc(c) (and MinSucc(c)). In the rest of the paper, we assume that there
is a way to fix one among these candidates and the theory proposed here works
for any such candidate.

Given a game graph G, we define a subgraph of G denoted by G′, where for
all Player-1 sucessors we only keep the maximum ones and for every Player-2
succesors we preserve only the minimum ones. In the following lemma we show
that in order to solve the reachability analysis problem on G, it is sufficient to
solve it on G′.

On-the-Fly Synthesis for Strictly Alternating Games 7

Definition 4. Given a game graph G = (S,Act1,Act2,−−→1,−−→2,Goal), we
define a pruned game graph G′ = (S,Act1,Act2,−−→′1,−−→′2,Goal) such that
−−→′1= {(s1, 1, s2) | (s1, 1, s2) ∈−−→1 where (s2, 2) ∈ MaxSucc(s1, 1)} and
−−→′2= {(s2, 2, s1) | (s2, 2, s1) ∈−−→2 where (s1, 1) ∈ MinSucc(s2, 2)}.

Lemma 3. Given a game graph G, a configuration (s, i) is winning in G iff (s, i)
is winning in G′.

Proof. We prove the case for i = 1 (the argument for i = 2 is similar).
“ =⇒ ” : Let (s, 1) be winning in G under a winning strategy σ. We define

a new strategy σ′ in G′ such that for every (s1, 1) where σ((s1, 1)) = (s′1, 2) we
define σ′((s1, 1)) = (s′′1 , 2) for some (s′′1 , 2) ∈ MaxSucc(s1, 1) such that (s′1, 2) �
(s′′1 , 2). By induction on distσG((s, 1)) we prove that if (s, 1) is winning in G then
it is winning also in G′. Base case (distσG((s, 1)) = 0) clearly holds as (s, 1) is a
goal configuration. Let distσG((s, 1)) = k where k > 0 and let σ((s, 1)) = (s′, 2)
and σ′((s, 1)) = (s′′, 2). Clearly, distσG((s′, 2)) < k and by induction hypothesis
(s′, 2) is winning also in G′. Because (s′, 2) � (s′′, 2) we get by Theorem 1 that

(s′′, 2) is also winning and distσG((s′′, 2)) < k. Since s
σ′(s,1)−−−−→

′

1 s
′′ we get that σ′

is a winning strategy for (s, 1) in G′.
“ ⇐= ” : Let (s, 1) be winning in G′ by strategy σ′. We show that (s, 1) is

also winning in G under the same strategy σ′. We prove this fact by induction

on distσ
′

G′((s, 1)). If distσ
′

G′((s, 1)) = 0 then (s, 1) is a goal configuration and the

claim follows. Let distσ
′

G′((s, 1)) = k where k > 0 and let σ′(s, 1) = (s′′, 2). Clearly

distσ
′

G′((s′′, 2)) < k. So by induction hypothesis, (s′′, 2) is a winning configuration

in G. Since s
σ′(s,1)−−−−→1 s

′′ we get that σ′ is a winning strategy for (s, 1) in G. ut

We can now present an algorithm for the reachability problem in alternating
games which takes some alternating simulation relation as a parameter, along
with the game graph and the initial configuration. In particular, if we initialize �
to the identity relation, the algorithm results essentially (modulo the additional
Lose set construction) as an adaption of Liu-Smolka fixed point computation
as given in [3]. Our aim is though to employ some more interesting alternating
simulation that is fast to compute (preferably in syntax-driven manner as we
demonstrate in the next section for the case of Petri net games). Our algorithm
uses this alternating simulation at multiple instances which improves the effi-
ciency of deciding the winning and losing status of configurations without having
to explore unnecesary state space.

The algorithm uses the following data structures:

– W is the set of edges (in the alternating semantics of game graph) that are
waiting to be processed,

– Disc is the set of already discovered configurations,
– Win and Lose are the sets of currently known winning resp. losing configu-

rations, and
– D is a dependency function that to each configuration assigns the set of edges

to be reinserted to the waiting set W whenever the configuration is moved
to the set Win or Lose by the help functions AddToWin resp. AddToLose.

8 Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

Algorithm 1 Game graph algorithm

Input Game graph G = (S,Act1,Act2,−−→1,−−→2, G), alternating simulation � and
the initial configuration (s0, i0)
Output true if (s0, i0) is a winning configuration, false otherwise

1: W = ∅; Disc := {(s0, i0)}; Lose := ∅; Win := ∅; D((s0, i0)) = ∅;
2: If s0 ∈ G then AddToWin((s0, i0));
3: AddSuccessors(W, s0, i0);
4: while (
5: @(s′0, i0).(s′0, i0) � (s0, i0) ∧ (s′0, i0) ∈Win and
6: @(s′0, i0).(s0, i0) � (s′0, i0) ∧ (s′0, i0) ∈ Lose and
7: W 6= ∅
8:) do
9: Pick (s1, i, s2) ∈W ; W := W \ {(s1, i, s2)};

10: if (s1, i) ∈Win ∪ Lose then Continue at line 4;
11: if (
12: ∃s′1. (s1, i) � (s′1, i) ∧ (s′1, i) ∈ Lose or
13: i = 1 ∧ ∀s3.s1 ==⇒1 s3 implies ∃s′3.(s3, 2) � (s′3, 2) ∧ (s′3, 2) ∈ Lose or
14: i = 2 ∧ ∃s3, s′3.(s3, 1) � (s′3, 1) ∧ s1 ==⇒2 s3 ∧ (s′3, 1) ∈ Lose or
15: i = 2 ∧ ∃s′1. (s1, 1) � (s′1, 1) ∧ (s′1, 1) ∈ Lose or
16: s1 6−−→1 ∧s1 6−−→2

17:) then
18: AddToLose(W, s1, i); Continue at line 4;
19: end if
20: if (
21: ∃s′1. (s′1, i) � (s1, i) ∧ (s′1, i) ∈Win or
22: i = 1 ∧ ∃s3, s′3.(s1, 1) ==⇒1 (s3, 2) ∧ (s′3, 2) � (s3, 2) ∧ (s′3, 2) ∈Win or
23: i = 2 ∧ ∀s3.(s1, 2) ==⇒2 (s3, 1) implies ∃s′3.(s′3, 1) � (s3, 1) ∧ (s′3, 1) ∈Win
24:) then
25: AddToWin(W, s1, i); Continue at line 4;
26: end if
27: if (s2, 3− i) /∈Win ∪ Lose then
28: if (s2, 3− i) ∈ Disc then
29: D((s2, 3− i)) := D((s2, 3− i)) ∪ {(s1, i, s2)};
30: else
31: Disc := Disc ∪ {(s2, 3− i)};
32: D((s2, 3− i)) := {(s1, i, s2)};
33: if s2 ∈ G then
34: AddToWin(W, s2, 3− i);
35: else
36: AddSuccessors(W, s2, 3− i);
37: end if
38: end if
39: end if
40: end while
41: if ∃s′0. s′0 � s0 ∧ (s′0, i0) ∈Win then return true
42: else return false
43: end if

On-the-Fly Synthesis for Strictly Alternating Games 9

Algorithm 2 Helper procedures for Algorithm 1

1: procedure AddSuccessors(W, s, i)
2: if (i = 1) then
3: L := {(s, i, s′) | such that (s′, 3− i) ∈ MaxSucc(s,i)};
4: end if
5: if (i = 2) then
6: L := {(s, i, s′) | such that (s′, 3− i) ∈ MinSucc(s,i)};
7: end if
8: W := W ∪ L
9: end procedure

10: procedure AddToWin(W, s, i)
11: Win := Win ∪ {(s, i)};
12: W := W ∪D(s, i) \ {(s′′, 3− i, s) | (s′′, 3− i) ∈ (Win ∪ Lose)};
13: end procedure
14: procedure AddToLose(W, s, i)
15: Lose := Lose ∪ {(s, i)};
16: W := W ∪D(s, i) \ {(s′′, 3− i, s) | (s′′, 3− i) ∈ (Win ∪ Lose)};
17: end procedure

As long as the waiting set W is nonempty and no conclusion about the initial
configuration can be drawn, we remove an edge from the waiting set and check
whether the source configuration of the edge can be added to the losing or
winning set. After this, the target configuration of the edge is explored. If it is
already discovered, we only update the dependencies. Otherwise, we also check
if it is a goal configuration (and call AddToWin if this is the case), or we add
the outgoing edges from the configuration to the waiting set.

In order to argue about the correctness of the algorithm, we introduce a
number of loop invariants for the while loop in Algorithm 1 in order to argue that
if the algorithm terminates then (s0, turn) is winning if and only if (s0, turn) ∈
Win.

Lemma 4. Loop Invariant 1 for Algorithm 1: If (s, i) ∈Win and (s, i) � (s′, i)
then (s′, i) is a winning configuration.

Proof Sketch. Initially, Win = ∅ and the invariant holds trivially before the loop
is entered. Let us assume that the invariant holds before we execute the body of
the while loop and we want to argue that after the body is executed the invariant
still holds. During the current iteration, a new element can be added to the set
Win at lines 25 or 34. If line 25 is executed then at least one of the conditions at
lines 21, 22, 23 must hold. We argue in each of these cases, along with the cases
in which line 34 is executed, that the invariant continues to hold after executing
the call to the function AddToWin. ut

Lemma 5. Loop Invariant 2 for Algorithm 1: If (s, i) ∈ Lose and s′ � s then
(s′, i) is not a winning configuration.

Proof Sketch. Initially Lose = ∅ and loop invariant 2 holds trivially before the
while loop at line 4 is entered. Similarly to the previous lemma, we argue that

10 Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

in all the cases where the function AddToLose is called, the invariant continues
to hold after the call as well. ut

The next invariant is essential for the correctness proof.

Lemma 6. Loop Invariant 3 for Algorithm 1: During the execution of the algo-
rithm for any (s, j) ∈ Disc \ (Win ∪ Lose) invariantly holds

(a) if j = 1 then for every (s′, 2) ∈ MaxSucc(s, 1)
I. (s, 1, s′) ∈W or
II. (s, 1, s′) ∈ D(s′, 2) and (s′, 2) ∈ Disc \Win or
III. (s′, 2) ∈ Lose

(b) if j = 2 then for every (s′, 1) ∈ MinSucc(s, 2)
I. (s, 2, s′) ∈W or
II. (s, 2, s′) ∈ D(s′, 1) and (s′, 1) ∈ Disc \ Lose or
III. (s′, 1) ∈Win.

This third invariant claims that for any discovered but yet undetermined
configuration (s, j) and for any of its outgoing edges (maximum ones in case it is
Player-1 move and minimum ones for Player-2 moves), the edge is either on the
waiting list, or the target configuration is determined as winning or losing, or
otherwise the edge is in the dependecy set of the target configuration, so that in
case the target configuration is later on determined as winning or losing, the edge
gets reinserted to the waiting set and the information can possibly propagate
to the parent configuration of the edge. This invariant is crucial in the proof of
partial correctness of the algorithm which is given below.

Theorem 2. If the algorithm terminates and returns true then the configuration
(s0, i) is winning and if the algorithm upon termination returns false then the
configuration (s0, i) is losing.

Proof. Upon termination, if the algorithm returns true (this can happen only at
the Line 41), then it means there exists a s′0 ∈ S such that (s′0, i) ∈ Win and
(s′0, i) � (s0, i). From Lemma 4, we can deduce that (s0, i) is winning. On the
other hand if the algorithm returns false, then there are two cases.

Case 1: There exists a s′0 ∈ S such that (s0, i) � (s′0, i) and (s′0, i) ∈ Lose.
From Lemma 5, we can deduce that (s0, i) does not have a winning strategy.

Case 2: W = ∅ and there exists no s′0 ∈ S such that (s′0, i) ∈ Win and
(s′0, i) � (s0, i) and there exists no s′0 ∈ S such that (s′0, i) ∈ Lose and (s0, i) �
(s′0, i). We prove that (s0, i) is not winning for Player-1 by contradiction. Let
(s0, i) be a winning configuration. Let σ be a Player-1 winning strategy. Let
L = Disc \ (Win ∪ Lose). Now we make the following two observations.

From Lemma 6, we can deduce that for all (s, 1) ∈ L, if (s, 1) ==⇒1 (s1, 2) then
there exists an s′1 such that (s1, 2) � (s′1, 2) and (s′1, 2) ∈ L or (s′1, 2) ∈ Lose.
Also, we can deduce that the case that for all (s2, 1) ∈ Succ(s, 2) we have
(s2, 1) ∈ Win is not possible as follows. Among all (s2, 1) ∈ Succ(s, 2) consider
the last (s2, 1) entered the set Win. During this process in the call to function
AddToWin, the edge (s, 2, s2) is added to the waiting list. Since by the end

On-the-Fly Synthesis for Strictly Alternating Games 11

of the algorithm, this edge is processed and it would have resulted in adding
(s, 2) to Win because of the condition at line 23. But this is a contradiction as
(s, 2) ∈ L and L∩Win = ∅. Hence for all (s, 2) ∈ L, there exists an s2 such that
(s, 2) ==⇒2 (s2, 1) and (s2, 1) ∈ L .

Given these two observations, and the definition of �, one can show
that Player-2 can play the game such that for the resulting run ρ ∈
OutcomeRunsσG(s0) where ρ = 〈(s0, i), a0, (s1, 3 − i), a1 . . .〉, there exists a ρ′ =
〈(s′0, i), b0, (s′1, 3 − i), b1 . . .〉 ∈ Runs(s0,G) such that s′0 = s0, for all k ∈ N,
(sk, 2 − ((i + k)%2)) � (s′k, 2 − ((i + k)%2)) and (s′k, 2 − ((i + k)%2)) ∈ L. In
other words the configurations in the run ρ are all (one by one) simulated by the
corresponding configurations in the run ρ′ and the configurations from the run
ρ′ moreover all belong to the set L. Since σ is a winning strategy, there must
exist an index j ∈ {0, 1, 2, . . .} such that sj ∈ G. Since the set of goal states are
upward closed, it also means s′j ∈ G. But L ∩ {(s, 1), (s, 2) | s ∈ G} = ∅ because
the line 34 of the algorithm adds a configuration in {(s, 1), (s, 2) | s ∈ G} to Win
when it enters the set Disc for the first time. Hence our assumption that (s0, i)
has a winning strategy is contradicted. ut

The algorithm does not necessarily terminate on general game graphs, how-
ever, termination is guaranteed on finite game graphs.

Theorem 3. Algorithm 1 terminates on finite game graphs.

Proof. In the following, we shall prove that any edge e = (s1, i, s2) can be added
to W at most twice and since there are only finitely many edges and every
iteration of the while loop removes an edge from W (at line 9), W eventually
becomes empty and the algorithm terminates on finite game graphs.

During the execution of while loop, an edge can only be added W through
the call to functions AddSuccessors at line 36, AddToWin at lines 25, 34, or
AddToLose at line 18. We shall show that these three functions can add an edge
e atmost twice to waiting list W .

Let e = (s1, i, s2) be an edge added to W in iteration k through a call to
AddToWin at line 34. This implies that, during iteration k, the condition in line
27 is true. Hence (s2, 3− i) /∈Win∪Lose before iteration k is executed and after
line 34 is executed, (s2, 3− i) ∈Win∪Lose (hence the condition in line 27 is now
false). So the call to function AddToWin at line 34 can not add e to W after
iteration k.

Let e = (s1, i, s2) be an edge added to W in iteration k through a call to
AddToWin at line 25. This implies that, during iteration k, the condition in line
10 is not true. Hence (s2, 3− i) /∈Win ∪ Lose before iteration k is executed and
after line 25 is executed, (s2, 3− i) ∈Win∪Lose (hence the condition in line 10
is false). So the call to function AddToWin at line 25 can not add e to W after
iteration k.

Similar to previous cases, we can argue that the call to AddToLose at line
18 can add e to W atmost once. Also it is easy to observe that once (s2, 3 − i)
is added to set Win ∪ Lose by any of the lines 25, 34, 18, the other two can not
add e to W . So, all together, all these three lines can add e to W atmost once.

12 Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

t4

2

2

p2

t1

t2

t0

p1

p0

p3

t3

•

Fig. 2: A Petri net game

Now consider case when e = (s1, i, s2) is added to W in iteration k through a
call to AddSuccessors at line 36. This implies, during iteration k, the condition
in the line 28 is not true. Hence (s1, i) /∈ Disc before the iteration k is executed
and after the line 31 is executed (s1, i) ∈ Disc by the end of iteration k and the
condition in the line 28 is true . So the call to function AddSuccessors at line 36
can add e to W atmost once. In total, edge e can enter W atmost twice. ut

4 Application to Petri Games

We are now ready to instantiate our general framework to the case of Petri net
games where the transitions are partitioned between the controller and envi-
ronment transitions and we moreover consider a soft bound for the number of
tokens in places (truncating the number of tokens that exceed the bound).

Definition 5 (Petri Net Games). A Petri Net Game N = (P, T1, T2,W,B, ϕ)
is a tuple where

– P is a finite set of places,
– T1 and T2 are finite sets of transitions such that T1 ∩ T2 = ∅,
– W : (P × (T1 ∪ T2)) ∪ ((T1 ∪ T2)× P)→ N0 is the weight function,
– B : P → N0∪{∞} is a function which assigns a (possible infinite) soft bound

to every p ∈ P , and
– ϕ is a formula in coverability logic given by the grammar ϕ ::= ϕ1 ∧ ϕ2 |
p ≥ c where p ∈ P and c ∈ N0.

A marking is a function M : P → N0 such that M(p) ≤ B(p) for all p ∈ P . The
set M(N) is the set of all markings of N .

On-the-Fly Synthesis for Strictly Alternating Games 13

In Figure 2 we show an example of a Petri game where P = {p0, . . . , p3} are the
places, there are three controller transitions T1 = {t2, t3, t4} and two environ-
ment transitions (indicated with a circle inside) T2 = {t0, t1}. The function W
assigns each arc a weight of 1, except the arcs from p1 to t2 and t4 to p0 that
have weight 2. The bound function B assigns every place ∞ and ϕ ::= p3 ≥ 1
requires that in the goal marking the place p3 must have at least one token. The
initial marking of the net is 〈1, 0, 0, 0〉 where the place p0 has one token and the
places p1 to p3 (in this order) have no tokens.

For the rest of this section, let N = (P, T1, T2,W,B, ϕ) be a fixed Petri net
game. The satisfaction relation for a coverability formula ϕ in marking M is
defined as expected:

– M |= p ≥ n iff M(p) ≥ n where n ∈ N0, and
– M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2.

For a given formula ϕ, we now define the set of goal markings Mϕ = {M ∈
M(N) |M |= ϕ}.

Firing a transition t ∈ T1 ∪ T2 from a marking M results in marking M ′ if
for all p ∈ P we have M(p) ≥W ((p, t)) and

M ′(p) =

{
M(p)−W ((p, t)) +W ((t, p)) if M(p)−W ((p, t)) +W ((t, p)) ≤ B(p)

B(p) otherwise.

We denote this by M
t−→ M ′ and note that this is a standard Petri net firing

transition in case the soft bound for each place is infinity, otherwise if the number
of tokens in a place p of the resulting marking exceeds the integer bound B(p)
then it is truncated to B(p).

Petri net game N induces a game graph (M(N), T1, T2,−−→1,−−→2,Mϕ)

where −−→i = {
(
M, t,M ′

)
|M t−→M ′ and t ∈ Ti} for i ∈ {1, 2}.

For example, the (infinite) game graph induced by Petri game from Figure 2
is shown in Figure 3a. Next we show that reachability control problem for game
graphs induced by Petri games is in general undecidable.

Theorem 4. The reachability control problem for Petri games is undecidable.

Proof. In order to show that reachability control problem for Petri games is
undecidable, we reduce the undecidable problem of reachability for two counter
Minsky machine [6] to the reachability control problem.

A Minsky Counter Machine with two non-negative counters c1 and c2 is a
sequence of labelled instructions of the form:

1 : instr1, 2 : instr2, . . . n :HALT

where for all i ∈ {1, 2, . . . , n− 1} each instri is of the form

– instri : cr = cr + 1; goto j or
– instri : if cr = 0 then goto j else cr = cr − 1 goto k

14 Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

〈1, 0, 0, 0〉

〈0, 1, 1, 0〉 〈2, 0, 0, 0〉

〈1, 0, 1, 0〉

〈0, 1, 2, 0〉 〈2, 0, 1, 0〉

〈0, 0, 1, 0〉

〈0, 0, 2, 0〉

...

...

...

(a) Game graph for PN from Figure 2

(〈1, 0, 0, 0〉, 2)

(〈0, 1, 1, 0〉, 1)

(〈1, 0, 1, 0〉, 2)

(〈0, 1, 2, 0〉, 1)

(〈0, 0, 1, 0〉, 1)

(〈0, 0, 2, 0〉, 1)

w

...

(b) Alternating semantics for Figure 3a

Fig. 3: Game graph and its alternating semantics

for j, k ∈ {1, 2, . . . , n} and r ∈ {1, 2}.
A computation of a Minsky Counter Machine is a sequence of configura-

tions (i, c1, c2) where i ∈ {1, 2 . . . n} is the label of instruction to be performed
and c1, c2 are values of the counters. The starting configuration is (1, 0, 0). The
computation sequence is deterministic and determined by the instructions in
the obvious way. The halting problem of a Minsky Counter Machine as to decide
whether the computation of the machine ever halts (reaches the instruction with
label n).

Given a two counter machine, we construct a Petri game N =
〈P, T1, T2,W,B, ϕ〉 where P = {p1, . . . , pn, pc1 , pc2} ∪ {pi:cr=0, pi:cr 6=0 | i ∈
{1 . . . n}} is the set of places containing place for each of n instructions,
a place for each counter and some helper places. The set of transitions is
T1 = {ti:1, ti:2, ti:3, ti:4 | i is a decrement instruction} ∪ {ti | i is an increment
instruction } and T2 = {ti:cheat | i is a decrement transition }. Figures 4a, 4b
define the gadgets that are added for each increment and decrement instruc-
tion, respectively. The function B binds every place to 1, except for pc1 , pc2 each
of which have a bound ∞. The formula to be satisfied by the goal marking is
ϕ = pn ≥ 1, stating that a token is put to the place pn. The initial marking
contains just one token in the place p1 and all other places are empty. We now
show that the counter machine halts iff the controller has a winning strategy in
the constructed game.

On-the-Fly Synthesis for Strictly Alternating Games 15

“ =⇒ ” : Assume that the Minsky machine halts. The controller’s strategy is
to faithfully simulate the counter machine, meaning that if the controller is in
place pi for a decrement instruction labelled with i, then it selects the transition
ti:1 in case the counter cr is not empty and transition ti:2 in case the counter
is empty. For increment instructions there is only one choice for the controller.
As the controller is playing failtfully, the transition ti:cheat is never enabled and
hence the place pn is eventually reached and the controller has a winning strategy.

“ ⇐= ” : Assume that the Minsky machine loops. We want to argue that
there is no winning controller’s strategy. For the contradiction assume that the
controller can win the game also in this case. Clearly, playing faithfully as de-
scribed in the previous direction will never place a token into the place pn. Hence
at some point the controller must cheat when executing the decrement instruc-
tion (no cheating is possible in increment instruction). There are two cheating
scenarios. Either the plase pcr is empty and the controller fires ti:1 which leads
to a deadlock marking and clearly cannot reach the goal marking that marks
the place pn. The other cheating move is to play ti:2 in case the place pcr is not
empty. However, now in the next round the enviroment has the transition ti:cheat
enabled and can deadlock the net by firing it. In any case, it is impossible to
mark the place pn, which contradicts the existence of a winning strategy for the
controller. ut

This means that running Algorithm 1 specialized to the case of Petri nets
does not necessarity terminates on general unbounded Petri nets (nevertheless,
if it terminates even for unbounded nets then it still provides a correct answer).
In case a Petri net game is bounded, e.g. for each p ∈ P we have B(p) 6=∞, we
can guarantee also termination of the algorithm.

Theorem 5. The reachability control problem for bounded Petri net games is
decidable.

Proof. Theorem 2 guarantees the correctness of Algorithm 1 (where we assume
that the alternating simulation relation is the identity relation). As the presence
of soft bounds for each place makes the state space finite, we can apply Theorem 3
to conclude that Algorithm 1 terminates. Hence the total correctness of the
algorithm is established. ut

Clearly the empty alternating simulation that was used in the proof of the
above theorem guarantees correctness of the algorithm, however, it is not nec-
essarilty the most efficient one. Hence we shall now define a syntax-based and
linear time computable alternating simulation for Petri net games. For a tran-
sition t ∈ T1 ∪ T2, let •t = {p ∈ P | W (p, t) > 0}. We partition the places
P in equality places Pe and remaining places Pr such that Pe =

⋃
t∈T2

•t and
Pr = P \Pe. Recall that a Petri net game N induces a game graph with config-
urations Ci =M(N)× {i} for i ∈ {1, 2}.

Definition 6 (Alternating Simulation for Petri Net Games). We define
a relation v⊆ C1×C1 ∪C2×C2 on configurations such that (M, i) v (M ′, i) iff
for all p ∈ Pe we have M(p) = M ′(p) and for all p ∈ Pr we have M(p) ≤M ′(p).

16 Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

pi

pj

pcr

•

ti

(a) Increment instruction

pcrpi

pkpi:cr 6=0ti:1 ti:3

ti:cheat

ti:2 pi:cr=0 ti:4 pj

•

(b) Decrement instruction

Fig. 4: Petri game gadgets for wwo counter machine instructions

Theorem 6. The relation v is an alternating simulation and it is computable
in linear time.

Proof. In order to prove that v is alternating simulation, let us assume that
(M1, i) v (M ′1, i) and we need to prove the three conditions of the alternating
simulation relation from Definition 3.

– If (M1, i) is a goal configuration, then by definition since the set of goal
markings are upward closed, (M ′1, i) is also a goal configuration.

– If (M1, 1)
t

==⇒ (M2, 2) where t ∈ T1 then by definition of transition firing
for every p ∈ P holds that M1(p) ≥ W (p, t). Since (M1, 1) v (M ′1, 1) then
for every p ∈ P holds M ′1(p) ≥ M1(p) implying that M ′1(p) ≥ W (p, t).

Hence t can be fired at M ′1 and let M ′1
t
−−→ M ′2. It is easy to verify that

(M2, 2) v (M ′2, 2).

– The third condition claiming that if (M ′1, 2)
t

==⇒ (M ′2, 1) where t ∈ T2 then

(M1, 2)
t

==⇒ (M2, 1) such that (M2, 1) v (M ′2, 1) follows straingforwardly
as for all input places to the environment transition t we assume an equal
number of tokens in both M1 and M ′1.

We can conclude with the fact that v is an alternating simulation. The relation
can be clearly decided in linear time as it requires only comparision of number
of tokens for each place in the markings. ut

Remark 2. In Figure 3b, at the initial configuration c0 = (〈1, 0, 0, 0〉, 2) Player-2
has two transitions enabled. The two successor configurations to c0 are c1 =
(〈0, 1, 1, 0〉, 1) and c2 = (〈0, 0, 1, 0〉, 1) which are reached by firing the transitions
t0 and t1 respectively. Since c1 w c2, Algorithm 1 explores c2 and ignores the
successor configuration c1. Hence our algorithm terminates on this game and
correctly declares it as winning for Player-2.

We now point out the following facts about Algorithm 1 and how it is different
from the classical Liu and Smolka’s algorithm [7]. First of all, Liu and Smolka

On-the-Fly Synthesis for Strictly Alternating Games 17

Fire Alarm
Winning

Time (sec.) States Reduction in %

Sensors Channels LS ALT LS ALT Time States

2 2 true 1.5 0.2 116 19 87.5 83.6
3 2 true 30 0.7 434 56 97.6 87.1
4 2 false 351.7 1.1 934 60 99.7 93.6
5 2 false 2249.8 1.1 1663 63 99.9 96.2
6 2 false 8427.1 1.3 3121 64 99.9 98.0
7 2 false T.O. 1.4 - 66 - -
2 3 true 20.2 0.5 385 25 97.5 93.5
2 4 true 622.7 1.0 1233 31 99.8 97.5
2 5 true 10706.7 2.3 3564 37 99.9 98.9
2 6 true T.O. 3.4 - 43 - -

Table 1: Fire Alarm System

do not consider any alternating simulation and they do not use the set Lose in
order to ensure early termination of the algorithm. As a result, Liu and Smolka’s
algorithm does not terminate (for any search strategy) on the Petri net game
from Figure 2, whereas our algorithm always terminates (irrelevant of the search
strategy) and provides a conclusive answer. This fact demonstrates that not only
our approach is more efficient but it also terminates on a larger class of Petri
net games than the previously studied approaches.

5 Implementation and Experimental Evaluation

We implemented both Algorithm 1 (referred to as ALT and using the alternating
simulation on Petri nets given in Definition 6) and the classical Liu and Smolka
algorithm (referred to as LS) in the prototype tool sAsEt [8]. We present three
use cases where each of the experiments is run 20 times and the average of
the time/space requirements is presented in the summary tables. The columns
in the tables show the scaling, a Boolean value indicating whether the initial
configuration has a winning strategy or not, the time requirements, number of
explored states (the size of the set Disc) and a relative reduction of the running
time and state space in percentage. The experiments are executed on AMD
Opteron 6376 processor running at 2.3GHz with 10GB memory limit.

5.1 Fire Alarm Use Case

The German company SeCa GmbH produces among other products fire alarm
systems. In [4] the formal verification of a wireless communication protocol for a
fire alarm system is presented. The fire alarm system consists of a central unit and
a number of sensors that communicate using a wireless Time Division Multiple
Access protocol. We model a simplified version of the fire alarm system from [4]
as a Petri net game and use our tool to guarantee a reliable message passing even

18 Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

under interference. Table 1 shows that as the number of sensors and channels
increases, we achieve an exponential speed up using ALT algorithm compared
to LS. The reason is that the alternating simulation significantly prunes out the
state space that is necessary to explore.

Model Winning
Time (sec.) States Reduction in %

LS ALT LS ALT Time States

s1a6d2w2 false 14.4 12.0 278 213 16.7 23.4
s1a6d2w3 false 220.9 101.0 734 527 54.3 28.2
s1a6d2w4 false 2107.7 620.1 1546 1027 70.6 33.6
s1a6d2w5 false 9968.1 2322.3 2642 1672 76.7 36.7
s1a6d2w10 true 7159.3 2710.0 2214 1744 62.1 21.2
s1a6d2w11 true 8242.0 2662.7 2226 1756 67.7 21.1
s1a6d2w12 true 7687.7 2867.2 2238 1768 62.7 21.0
s1a6d2w13 true 7819.7 2831.4 2250 1780 63.8 20.9
s1a6d2w14 true 7674.1 2960.3 2262 1792 61.4 20.8
s1a6d2w15 true 8113.8 2903.7 2274 1804 64.2 20.7

s1a7d2w2 false 35.3 25.8 382 286 26.9 25.1
s1a7d2w3 false 744.7 284.0 1114 783 61.9 29.7
s1a7d2w4 false 9400.1 2637.2 2604 1674 71.9 35.7
s1a7d2w5 false T.O. 10477.3 T.O. 2961 - -

s4a6d1w2 true 40.6 28.9 290 250 28.8 13.8
s4a6d1w3 true 60.7 45.3 326 286 25.4 12.3
s4a6d1w4 true 90.4 62.0 362 322 31.4 11.0
s4a6d1w5 true 122.9 93.9 398 358 23.6 10.1
s4a6d1w6 true 172.1 122.6 434 394 28.8 9.2
s4a6d1w7 true 197.7 163.6 470 430 17.2 8.5
s4a6d1w8 true 263.3 190.6 506 466 27.6 7.9

s2a4d1w2 true 1.7 1.9 90 82 -11.8 8.9
s2a4d1w3 true 2.9 3.1 110 102 -6.9 7.3
s2a4d1w4 true 4.3 4.7 130 122 -9.3 6.2
s2a4d1w5 true 6.3 6.4 150 142 -1.6 5.3
s2a4d1w6 true 9.5 8.3 170 162 12.6 4.7
s2a4d1w7 true 11.9 11.7 190 182 1.7 4.2
s2a4d1w8 true 16.4 15.7 210 202 4.3 3.8

Table 2: Student Teacher Use Case

5.2 Student-Teacher Scheduling Use Case

In [5] the student semester scheduling problem is modelled as a workflow net. We
extend this Petri net into a game by introducing a teacher that can observe the
student behaviour (work on assignments) and there is a race between the two

On-the-Fly Synthesis for Strictly Alternating Games 19

Model Winning
Time (sec.) States Reduction in %

LS ALT LS ALT Time States

m211 false 159.2 109.7 525 405 31.1 22.9
m222 false 562.1 298.7 798 579 46.9 27.4
m322 false 5354.2 1914.4 1674 1096 64.2 34.5
m332 false 9491.7 4057.6 2228 1419 57.3 36.3
m333 false T.O. 8174.5 T.O. 1869 - -

m2000 false 127.7 50.2 474 341 60.7 28.1
m2100 false 404.6 157.5 762 490 61.1 35.7
m2200 false 776.4 148.3 921 490 80.9 46.8

Table 3: Cat and Mice Use Case

players. In Table 2 we see the experimental results. Model instances are of the
form siajdkwl where i is the number of students, j is the number of assignments,
k is the number of deliverables in each assignment and l is the number of weeks
in a semester. We can observe a general trend that with a higher number of
assignments (j = 6 and j = 7) and two deliverables per assignment (d = 2), the
alternating simulation reduces a significant amount of the state space leading to
considerable speed up. As the number of assignment and deliverables gets lower,
there is less and less to save when using the ALT algorithm, ending in a situation
where only a few percents of the state space can be reduced at the bottom of the
table. This leaves us only with computational overhead for the additional checks
related to alternating simulation in the ATL algorithm, however, the overhead
is quite acceptable (typically less than 20% of the overall running time).

5.3 Cat and Mouse Use Case

This Petri net game consists of an arena of grid shape with number of mice
starting at the first row. The mice try to reach the goal place at the other end of
the arena without being caught while doing so by the cats (that can move only
on one row of the arena). In Table 2 we consider arena of size 2 × 3 and 2 × 4
and the model instances show the initial mice distribution in the top row of the
grid. The table contains only instances where the mice do not have a winning
strategy and again shows an improvement both in the running time as well as
the number of explored states. On the positive instances there was no significant
difference between ALT and LS algorithms as the winning strategy for mice were
relatively fast discovered by both approaches.

6 Conclusion

We presented an on-the-fly algorithm for solving strictly alternating games and
introduced the notion of alternating simulation that allows us to significantly

20 Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

speed up the strategy synthesis process. We formally proved the soundness of
the method and instantiated it to the case of Petri net games where the prob-
lems are in general undecidable and hence the algorithm is not guaranteed to
terminate. However, when using alternating simulation there are examples where
it terminates for any search strategy, even though classical approaches like Liu
and Smolka dependency graphs do not terminate at all. Finally, we demonstrated
on examples of Petri net games with soft bounds on places (where the synthesis
problem is decidable) the practical applicability of our approach. In future work,
we can consider an extension of our framework to other types of formalism like
concurrent automata or time Petri nets.

Acknowledgments. The work was suppored by the ERC Advanced Grant LASSO
and DFF project QASNET.

References

1. Abdulla, P.A., Bouajjani, A., d’Orso, J.: Deciding monotonic games. In: Baaz, M.,
Makowsky, J.A. (eds.) Computer Science Logic. pp. 1–14. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2003)

2. Cassez, F., David, A., Fleury, E., Larsen, K., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) Proceed-
ings of CONCUR 2005 – Concurrency Theory. pp. 66–80. IEEE Computer Society
Press, United States (2005)

3. Dalsgaard, A.E., Enevoldsen, S., Fogh, P., Jensen, L.S., Jepsen, T.S., Kaufmann,
I., Larsen, K.G., Nielsen, S.M., Olesen, M.C., Pastva, S., Srba, J.: Extended depen-
dency graphs and efficient distributed fixed-point computation. In: van der Aalst,
W., Best, E. (eds.) Application and Theory of Petri Nets and Concurrency. pp.
139–158. Springer International Publishing, Cham (2017)

4. Feo-Arenis, S., Westphal, B., Dietsch, D., Muñiz, M., Andisha, S., Podelski, A.:
Ready for testing: ensuring conformance to industrial standards through formal
verification. Formal Aspects of Computing 28(3), 499–527 (May 2016), https:

//doi.org/10.1007/s00165-016-0365-3

5. Juhásova, A., Kazlov, I., Juhás, G., Molnár, L.: How to model curricula and learn-
flows by petri nets - a survey. In: 2016 International Conference on Emerging
eLearning Technologies and Applications (ICETA). pp. 147–152 (Nov 2016)

6. L. Minsky, M.: Computation: Finite and infinite machines. The American Mathe-
matical Monthly 75 (04 1968)

7. Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points. In:
Larsen, K.G., Skyum, S., Winskel, G. (eds.) Automata, Languages and Program-
ming. pp. 53–66. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)

8. Muñiz, M.: Model checking for time division multiple access systems. Ph.D. thesis,
Freiburg University (2015), https://doi.org/10.6094/UNIFR/10161

9. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Universität Hamburg
(1962)

10. Raskin, J., Samuelides, M., Begin, L.V.: Games for counting abstractions. Electr.
Notes Theor. Comput. Sci. 128(6), 69–85 (2005), https://doi.org/10.1016/j.

entcs.2005.04.005

https://doi.org/10.1007/s00165-016-0365-3
https://doi.org/10.1007/s00165-016-0365-3
https://doi.org/10.6094/UNIFR/10161
https://doi.org/10.1016/j.entcs.2005.04.005
https://doi.org/10.1016/j.entcs.2005.04.005

On-the-Fly Synthesis for Strictly Alternating Games 21

A Proofs

Proof. [Lemma 4] To start with, the set Win is empty. The Loop Invariant 1
holds trivially in the start. In any iteration, there are three instances in which
a state (s1, i) can be added to the set Win by calling the function AddToWin.
They are during the execution of lines 2, 25, 34. Lines 2 and 34 call AddToWin
to add goal configurations, which are trivially winning, to the set Win. We shall
prove that the call to AddToWin at line 25, also keeps the Loop Invariant 1 true.

In the case of line 25, the configuration (s1, i) is added to the set Win because
of the following three cases. We show that in each of those cases the invariant
remains true.

Consider any s, s′ ∈ S such that (s, i) � (s′, i) and (s, i) ∈Win. We consider
the following cases

– Case ∃s′1. (s′1, i) � (s1, i) and (s′1, i) ∈Win :
In this case (s1, i) is added to Win by the end of current iteration. Using
the Loop invariant since (s′1, i) ∈ Win it has a winning strategy and using
Theorem 1, we can conclude that (s1, i) is also winning . Now since (s, i) =
(s1, i) � (s′, i), by Theorem 1, we conclude (s′, i) has a winning strategy.
Hence Loop Invariant holds true after (s, i) added to Win in this case.

– Case i = 1 and ∃s3, s′3.(s′3, 2) � (s3, 2)and (s1, 1) ==⇒1 (s3, 2) and (s′3, 2) ∈
Win at line 22:
In this case (s1, 1) is added to Win by the end of current iteration. Using the
Loop invariant, since (s′3, 2) ∈Win, (s′3, 2) has a winning strategy and since
(s′3, 2) � (s3, 2) by using Theorem 1, (s3, 2) has a winning strategy. Since
(s1, 1) ==⇒1 (s3, 2), Player-1 can play the game to reach (s3, 2) and use
the winning strategy of (s3, 2) to win the game. Hence (s1, 1) has a winning
strategy. Now since (s, i) = (s1, 1) � (s′, i), by Theorem 1, we conclude (s′, i)
has a winning strategy. Hence Loop Invariant holds true after (s1, 1) added
to Win in this case.

– Case i = 2 and ∀s3.(s1, 2) ==⇒2 (s3, 1) implies ∃s′3.(s′3, 1) � (s3, 1) and
(s′3, 1) ∈Win at line 23:
In this case (s1, 2) is added to Win by the end of current iteration. Using the
Loop invariant, since (s′3, 1) ∈Win, (s′3, 1) has a winning strategy and since
(s′3, 1) � (s3, 1), by Theorem 1, (s3, 1), has a winning strategy. So for any
action the Player-2 choses to play at configuration (s, i) = (s1, 2), the game
reaches a configuration (s3, 1) from which Player-1 has a winning strategy.
Hence, we can deduce (s, 2) is a winning configuration. Now consider any
s′ that such that (s, i) � (s′, i). By using Theorem 1, we can conclude the
configuration (s′, i) also has a winning strategy Hence, the Loop Invariant 1
holds true after (s1, 2) added to Win in this case.

ut

Proof. [Lemma 5] To start with the set Lose is empty and hence the Loop
invariant 2 holds trivially. A tuple (s1, i) can enter the set Lose during the exe-
cution of while loop in the algorithm only by the call to the function AddToLose

22 Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

at the line 18. This call could have been made because of five cases. We shall
prove the Loop invariant 2 holds in all of the following five cases. We consider
the following cases:

– Case ∃s′1. (s1, i) � (s′1, i) and (s′1, i) ∈ Lose at Line 12: In this case (s1, i)
is added to Lose by the end of current iteration. Using the Loop invariant,
since (s′1, i) ∈ Lose, (s′1, i) does not have a winning strategy and by using
the contrapositive argument of Theorem 1 (which we refer to as a corollary
of Theorem 1 from now on) we can conclude (s1, i) also does not have a
winning strategy. Hence, the Loop Invariant 2 holds after (s, i) = (s1, i) is
added to Lose in this case and using corollary of Theorem 1, we can conclude
that for any (s′2, i), such that (s′2, i) � (s1, i), is also not winning.

– Case i = 2 and ∃s3, s′3.(s3, 1) � (s′3, 1) and s1 ==⇒2 s3 and (s′3, 1) ∈ Lose at
Line 14: In this case (s1, 2) is added to Lose by the end of current iteration.
Using the Loop invariant, since (s′3, 1) ∈ Lose, (s′3, 1) does not have a win-
ning strategy and by using Lemma corollary of Theorem 1, we can conclude
(s3, 1) also does not have a winning strategy. Also (s1, 2) is not a winning
configuration as Player-2 can take the transition (s1, 2) ==⇒2 (s3, 1). By us-
ing Lemma corollary of Theorem 1, we can conclude, for any s′ such that
(s, 2) = (s1, 2) � (s′, 2), (s′, 2) is not a winning configuration.

– Case i = 1 and ∀s3.s1 ==⇒1 s3 implies ∃s′3.(s3, 2) � (s′3, 2)and (s′3, 2) ∈
Lose at Line 13: In this case (s1, 1) is added to Lose by the end of current
iteration. Using the Loop invariant, since (s′3, 2) ∈ Lose, (s′3, 2) does not have
a winning strategy and by using corollary of Theorem 1, we can conclude
(s3, 2) also does not have a winning strategy. Also (s1, 1) is not a winning
configuration as Player-1, no matter which transition he chooses, it does not
result in a winning configuration. By using corollary of Theorem 1, we can
conclude, for any s′ such that (s′, 1) � (s, 1) = (s1, 1), (s′, 1) is not a winning
configuration.

– Case i = 2 and ∃s′1. (s1, 1) � (s′1, 1) and (s′1, 1) ∈ Lose : In this case
(s1, 2) is added to Lose by the end of current iteration. Using the Loop
invariant, since (s′1, 1) ∈ Lose, (s′1, 1) does not have a winning strategy. Now
we can show, by proof of contradiction, that (s1, 2) is also not a winning
configuration. Let (s1, 2) be a winning configuration. By Lemma 2, (s1, 1) is
winning and by Theorem 1, (s′1, 1) is a winning configuration. Hence it is a
contradiction and (s1, 2) is not winning. By using corollary of Theorem 1,
we can conclude for any s′ such that (s, 2) = (s1, 2) � (s′, 2), (s′, 2) is not a
winning configuration.

– Case (s1 6−−→1 ∧s1 6−−→2) at Line 16: In this case, since s /∈ G (If s ∈ G no
tuples of the form (s, i, s′), for any s′ ∈ S, are added to W) and it has no
transitions out of it. So the configuration (s, i) is not winning. Now consider
any s′ ∈ S such that s′ � s. By using corollary of Theorem 1, we can
conclude (s′, i) is also losing. Hence, the Loop Invariant 2 holds after (s, i)
is added to Lose in this case.

ut

On-the-Fly Synthesis for Strictly Alternating Games 23

Proof. [Lemma 6] Let j = 1. Before the while loop at the line 4 is entered, Loop
invariant a holds because for every (s, 1) ==⇒1 (s′, 2), (s, 1, s′) ∈ W and Loop
invariant b holds because (s, 2) /∈ Disc for any s ∈ S. Similarly we can show
when j = 2, loop invariant 3 holds true before entering the while loop.

Now consider the case when the loop executed for a finite number of itera-
tions. Let loop invariant 3 hold true until the previous iteration. Now we prove
each part of Loop Invariant holds after executing current iteration. Let the tuple
popped from W in the current iteration be e = (s1, i, s2). Consider a configura-
tion (s, j) ∈ Disc\(Win∪Lose). If j = 1 then Loop Invariant a holds true by the
end of previous iteration because for every (s′, 2) ∈ MaxSucc(s, 1) atleast one of
the following three conditions a-I,a-II,a-III hold true. Similarly, if j = 2 then
Loop Invariant b holds true by the end of previous iteration because for every
(s′, 1) ∈ MinSucc(s, 1) atleast one of the following three conditions b-I, b-II,
b-III hold true.

We shall prove in all the possible executions of the algorithm i.e when an
iteration of the loop executes exactly, apart from the the previous lines, line 9
or lines 9, 10, or lines 9, 18, or lines 9, 25, or lines 9, 29, or lines 9, 31, 32, 34, or
lines 9, 31, 32, 36, both Loop Invariants a and b continue to hold by the end of
current iteration.

Line 9 is executed
Let the loop invariants a, b hold by the end of previous iteration. Now in the

current iteration, if only the line 9 is executed, this means none of the conditions
in the lines 10, 12 to 16, 21 to 23, 27 are true. In particular,

– if i = 1 then (s2, 2) ∈ Lose (since conditions in lines 27, 22 are not true
(s2, 2) ∈Win ∪ Lose and (s2, 2) /∈Win respectively)

– if i = 2 then (s2, 1) ∈ Win (since conditions in lines 27, 15 are not true
(s2, 1) ∈Win ∪ Lose and (s2, 1) /∈ Lose respectively)

Now, during the current iteration, if (s1, 1, s2) is removed in the line 9 the in-
variant continues to hold because (s2, 2) ∈ Lose i.e a-III holds true. Similarly
if (s1, 2, s2) is removed in the line 9 the invariant continues to hold because
(s2, 1) ∈Win i.e b-III holds true.

Lines {9, 10} are executed
Loop Invariant a:
Let Loop invariant a be true by the end of previous iteration and s = s1, i = 1

(the loop invariant holds trivially in the other cases). Although after executing
the line 9, (s1, i, s2) is removed from W during the current iteration, since the
condition in the line 10 is true, (s, i) = (s1, i) ∈ Win ∪ Lose and hence Loop
invariant a holds by the end of current iteration.

Loop Invariant b:
By following an argument similar to the case of Loop Invariant a, we can

show Loop invariant b continues to hold true by the end of the current iteration.
Lines {9, 18} are executed
Loop Invariant a:
s1 = s and i = 1:

24 Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

In all the three cases a-III, a-III, a-III, since line 18 is executed, by the end
of the current iteration (s1, 1) ∈ Lose and hence Loop Invariant a continues to
hold.

s1 6= s or i 6= 1:
In the case a-I, (s, 1, s′) ∈ W by the end of current iteration (because the

edge removed from W during the current iteration is not (s1, 1, s2) as either
s1 6= s or i 6= 1). Hence Loop Invariant a continues to hold. We can argue
similarly in the cases a-II, a-III.

Loop Invariant b:
In the case where b-II is true by the end of previous iteration, if s1 = s′

then the since (s, 2, s′) ∈ D(s′, 1) (given by the b-II case of Loop Invariant
b), (s, 2, s′) is added to W during the execution of function AddToLose() in
Line 18. If s1 6= s′ then it continues to hold that (s′, 1) ∈ Disc \ Lose and
(s, 2, s′) ∈ D(s′, 1). Hence the Loop Invariant b holds by the end of current
iteration. In all the other cases the Loop Invariant b trivially continues to hold
by the end of current iteration.

Lines {9, 25} are executed
Loop Invariant a:
s1 = s and i = 1:
In all the three cases a-III, a-III, a-III, since line 25 is executed, by the

end of the current iteration (s, 1) ∈ Win and hence Loop Invariant a continues
to hold.

s1 6= s and i = 1:
In all the three cases a-I, a-II, a-III, Loop Invariant a holds trivially.
s1 = s or s1 6= s and i = 2:
In the case where a-II is true by the end of previous iteration, if s1 = s′

then the since (s, 1, s′) ∈ D(s′, 2) (given by the a-II case of Loop Invariant a),
(s, 1, s′) is added to W during the execution of function AddToWin() in Line
25. Hence the Loop Invariant a holds. In all the other cases the Loop Invariant
a trivially continues to hold by the end of current iteration.

Loop Invariant b:
s1 = s and i = 2:
Since line 25 is executed, by the end of the current iteration (s, 2) ∈Win, so

Loop Invariant b holds trivially.
s1 6= s and i = 2
In all the three cases b-I, b-II, b-III, Loop Invariant a holds trivially.
s1 6= s or s1 = s and i = 1:
In the case where b-I is true by the end of previous iteration, (s, 2, s′) ∈ W

by the end of current iteration. Hence Loop Invariant b continues to hold.
In the two cases b-II, b-III, Loop Invariant a holds trivially.
Lines {9, 29} are executed
Loop Invariant a:
s1 = s and i = 1:
Consider the case a-I. If s2 6= s′ then Loop invariant a continues to hold as

(s, 1, s′) ∈ W at the end of current iteration. If s2 = s′ then since the Line 29

On-the-Fly Synthesis for Strictly Alternating Games 25

is executed, the conditions in the Lines 27, 28 are true which implies (s′, 2) ∈
Disc \Win. And after the Line 29 is executed, (s, 1, s′) ∈ D(s′, 2). Hence Loop
invariant a holds by the end of current iteration in this case.

In the cases a-II, a-III, Loop Invariant a holds trivially.

s1 6= s or i 6= 1:

In the case a-I, the Loop Invariant a holds as the tuple that is popped of the
form (s1, 2, s2). In the cases a-II, a-III, Loop Invariant a holds trivially.

Loop Invariant b:

s1 = s and i = 2:

Consider the case b-I. If s2 6= s′ then Loop invariant b continues to hold as
(s, 2, s′) ∈W at the end of current iteration. If s2 = s′, then since 29 is executed,
the conditions in the Lines 27, 28 are true which implies (s′, 1) ∈ Disc \ Lose.
And after the Line 29 is executed, (s, 1, s′) ∈ D(s′, 2). Hence Loop invariant b
holds by the end of current iteration in this case.

In the case b-II, Loop invariant b continues to hold trivially (after executing
the line 29, (s′, 1) ∈ Disc \Win by the end of the current iteration).

s1 6= s or i 6= 2:

In the case b-I, Loop invariant b continues to hold because the tuple (s, 2, s′)
is not popped in the current iteration. In the case b-II, Loop invariant b con-
tinues to hold trivially.

Lines {9, 34} are executed

Loop Invariant a:

s1 = s and i = 1:

Consider the case a-I. If s2 6= s′ then Loop invariant a continues to hold as
(s, 1, s′) ∈ W at the end of current iteration. If s2 = s′ then since the line 34
is executed, (which means 31, 32 are also executed), (s, 1, s′) ∈ D(s′, 2). Hence
during the call to the function AddToWin, (s, 1, s′) is added to W . Hence Loop
invariant a holds by the end of current iteration in this case.

In the case a-II, if s2 = s′, then the argument is same as the corresponding
case in a-I. If s2 6= s′ then Loop Invariant a continues to hold as (s, 1, s′) ∈
D(s′, 2) and (s′, 2) ∈ Disc \Win by the end of current iteration.

In the case a-III, Loop Invariant a holds trivially by the end of the current
iteration.

s1 6= s or i 6= 1:

In the case a-I, the Loop invariant a continues to hold as (s, 1, s′) ∈ W at
the end of current iteration. We can trivially show that the Loop Invariant a
holds in the rest of the cases.

Loop Invariant b:

s1 = s and i = 2:

In the case b-I, if s2 6= s′ then the Loop Invariant b holds as (s, 2, s′) ∈ W
by the end of the current iteration. If s2 = s′, then since a call is made to the
function AddToWin() in the current iteration, (s, 2, s′) is added to W and the
Loop Invariant b holds.

In the case b-II, if s2 6= s′ then Loop Invariant continues to hold as
((s, 2, s′) ∈ D(s′, 1) and (s′, 1) ∈ Disc \ Lose by the end of current iteration.

26 Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

s1 6= s or i 6= 2:
In the case b-I, the Loop Invariant b continues to hold by the end of current

iteration because (s, 2, s′) ∈W by the end of the current iteration.
In the case b-II, the argument is similar to the case when s1 = s and i = 2.
Lines {9, 36} are executed
Loop Invariant a:
s1 = s and i = 1:
Consider the case a-I. If s2 6= s′ then Loop invariant a continues to hold as

(s, 1, s′) ∈ W at the end of current iteration. If s2 = s′, then since condition
in line 27 is true and also lines 31, 32 are executed in the current iteration,
(s′, 1) ∈ Disc \Win and (s, 1, s′) ∈ D(s′, 2). Hence Loop invariant a continues
to hold.

In the cases a-II, a-III, the Loop Invariant a holds trivially as the Line 36
does not update Win or Lose sets.

s1 6= s or i 6= 1:
In the case a-I, the Loop invariant a continues to hold as (s, 1, s′) ∈ W at

the end of current iteration. We can trivially show that the Loop Invariant a
holds in the rest of the cases.

Loop Invariant b:
s1 = s and i = 2:
Consider the case b-I. If s2 6= s′ then Loop invariant b continues to hold as

(s, 2, s′) ∈ W at the end of current iteration. If s2 = s′, then since condition
in line 27 is true and also lines 31, 32 are executed in the current iteration,
(s′, 1) ∈ Disc \ Lose and (s, 1, s′) ∈ D(s′, 2). Hence Loop invariant b holds by
the end of current iteration in this case.

In the case b-II, the Loop Invariant b holds true trivially.
s1 6= s or i 6= 2:
In the case b-I, the Loop Invariant b continues to hold by the end of current

iteration because (s, 2, s′) ∈W by the end of the current iteration.
In the case b-I, the Loop Invariant b trivially holds by the end of current

iteration.
ut

B Petri Net Use Cases

B.1 Student Teacher Net

Arena: The net shown in Fig 5 has two components. One for the Student and
another for the Teacher. The component for the Student has weekStart, weekEnd,
weeks places indicating start of a week,end end of a week and the number of
weeks remaining for the completion of semester respectively. The places The
transitions with dots belong to the cats.

All of the students complete the week at once before beginning the next week.
Hence, the startNextWeek takes as many as number of students tokens(3) from
weekEnd place and keeps them in weekStart place by decrementing number of
tokens in weeks place by 1.

On-the-Fly Synthesis for Strictly Alternating Games 27

decide

assign0 assign1

fun

absent

passed

weekStart weeks

absent

assign0

3

3

2

22 2

• •• • •
•
•

assign1

win

startNextWeekfunToWork

assign2

(a) Student

•

takeAnotherWork

absent

beginAttendance endAttendance

doAnotherWork

catchStudent

noAttendance

workToAttendance

Fig. 5: Teacher

The soft bounds on the places are as follows

– On the week begin, week end , fun place the bound is the number of students
– On the number of weeks place the bound is the number of weeks
– On each assignment place the bound is the denomination of the assignments

Winnning Conditions: The goal of the Student is to place a token the
place Passed.

B.2 Cat Mice Net

Arena: The net shown in Fig 6 has two components. One for the cat and another
for the mouse. The cats are fixed in number and are indicated by the tokens in

28 Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

the places in the last row (c0 . . . c3) and the mice to begin with are the places in
the first row (m0 . . .m3) and they can reproduce.

Winnning Conditions: The goal of the mice is to place a token at the place
goal.

B.3 Fire Alarm System

Arena Figure 7 gives a Petri game model for a simplified fire alarm system.
Figure 7a shows a model for sensor 1. At the corresponding TDMA time window,
sensor 1 will send a message to the central unit. Sensor 1 can choose to transmit
its message among channels one, two, or both. After the message has been sent,
it passes the token to the sensor number 2 in Figure 7b which operates similarly.
Figure 7d shows the channel blocker which can block messages from the sensors.
The place delay ensures that blocking a channel takes at least one turn. The
messages are received by the central unit Figure 7c, if all messages are received,
the central unit can take a transition leading to the place “goal”.

Winning Conditions: The place “goal” has a token.

On-the-Fly Synthesis for Strictly Alternating Games 29

m0 m1 m2 m3

m4 m5 m6 m7

m4 m5 m6 m7

• • • •

• • • •

goal

t0 t1 t2

t3
t4 t5 t6

t7 t8

t11 t12 t13 t14

t18 t19

t7 t10

t20 t21 t22

c0 c1 c2 c3

t26 t27 t28 t29t30 t31 t32

t23 t24 t25

Fig. 6: Instance of Cat and Mice with 2,1,1,0 mice in the first row places and
1,1,1,1 cats in the last row places respectively. The dotted places are shared
between cats and mice

30 Shyam Lal Karra, Kim G. Larsen, Marco Muñiz, and Jǐŕı Srba

starts1

sends1c1 sends1c2

starts2

T0

T1

T2

(a) Sensor 1

starts2

sends2c1 sends2c2

starts3

T0

T1

T2a

(b) Sensor 2

goal

sends1c1 sends2c1 sends3c1 c1free

sends1c2 sends2c2 sends3c2 c2free

T0

T1

(c) Central Unit

delay1 delay2

c2free

c1free

T0

blockc1

blockc2

(d) Channel Blocker

Fig. 7: Fire Alarm System with 2 sensors. Places with dashed circles are shared
places, we use shared places for readability. Solid transitions are controllable
transitions, transitions with circles inside are uncontrollable transitions

	On-the-Fly Synthesis for Strictly Alternating Games

