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Abstract—Dataflow formalisms play a significant role in the
areas of design and analysis of embedded streaming applications.
These formalisms can roughly be split into static and dynamic
ones. Static dataflow formalisms are highly analyzable, but due
to their static nature are not able to capture the dynamism
inherent to modern embedded streaming applications. Dynamic
dataflow formalisms on the other hand provide a sufficient
level of expressiveness to capture the application dynamism
at the cost of reduced analyzability. The recently introduced
finite state machine-based scenario aware dataflow (FSM-SADF)
formalism provides a good trade-off between expressiveness and
analyzability. This paper reports on the translation of the FSM-
SADF formalism to timed automata (TA). In short, we propose
a compositional translation from FSM-SADF to TA that enables
computation of some quantitative and qualitative properties of
the model not supported by the existing tools, in the UPPAAL
model checker. We demonstrate our approach on an MPEG-4
case study which is a typical example of a streaming application
from the multi-media domain.

I. INTRODUCTION

Dataflow formalisms are widely used to design and analyze
embedded streaming applications running on distributed plat-
forms such as MPSoCs (Multi-Processor System on Chips).
In general, dataflow formalisms take the form of a directed
graph which consists of actors as vertices and channels as
edges. Actors are computational entities that usually represent
application sub-tasks, while channels are communicational
entities used to communicate application, control and syn-
chronisation data between actors. In dataflow, an actor firing
is an indivisible quantum of computation during which an
actor consumes a certain number of data values from its input
channels and produces a certain number of data values on its
output channels. These data values are abstracted into tokens
and the consumption and production numbers are called rates.
In timed dataflow formalisms, it takes some time for the actor
firing to complete and this time duration is called the actor
firing duration.

Modern embedded streaming applications exhibit a high
level of dynamism. The consequence is that the workload of
such applications changes over time. How difficult it is to
model such a dynamic application will depend on the particular
dataflow formalism used. Not all dataflow formalisms provide
us with a sufficient level of expressiveness needed to capture
the dynamism of the application. On the other hand, those that
do, pay the price in terms of significantly reduced analyzability.
A good comparison between expressiveness and analyzability
for various dataflow formalisms can be found in [6].
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The scenario aware dataflow (SADF) formalism [8] models
an application as a collection of different behaviours called
scenarios in which consumption and production rates and the
actor firing durations change within one scenario and from
one scenario to the other. A stochastic approach is used to
model variance in firing durations and scenario ordering. The
SADF formalism can therefore model dynamic applications
and comes equipped with algorithms able to decide on the its
qualitative and quantitative properties. These algorithms are
implemented in the SDF3 tool [5].

Finite state machine-based SADF (FSM-SADF) [7], [3] is
a subset of SADF that abstracts from the stochastic aspects of
firing durations and scenario ordering. In FSM-SADF every
scenario is represented by a synchronous dataflow (SDF)
graph [4], while scenario occurrence patterns are given by a
finite state machine. These restrictions render the FSM-SADF
more analyzable and implementation efficient than the general
SADF model and very well positioned on the expressiveness
vs. analyzability trade-off chart [6]. All FSM-SADF analysis
and implementation algorithms can be found in the SDF3 tool.

However, tools such as SDF3 can be too specialized in
the sense that they can only handle predefined properties, thus
lacking support for user-defined properties. Although work has
been done to check general properties by translating to model
checkers [10], [9], this has only been done for the probabilistic
SADF formalism. To circumvent this limitation, in this paper
we propose a translation of the FSM-SADF formalism to
timed automata (TA) as the first step to enable more general
verification. Using TA has a number of advantages, in that very
efficient abstractions exist. For example, temporal logics can
express many of the properties common in reasoning about
timed systems with concurrency. Furthermore, TA models of
dataflow specifications can be easily extended to add costs such
as energy and include the underlying implementation fabric
models. This would in the future give us the possibility of using
FSM-SADF for reachability analysis of embedded dynamic
streaming applications through an optimal control formula-
tion using model-checking techniques. We demonstrate our
approach using an MPEG-4 case study modeled as an FSM-
SADF graph for which we compute important quantitative and
qualitative properties, some of which are not supported by the
SDF3 tool. We use the UPPAAL [2] state-of-the-art tool. The
closest related work is the work of Ahmad et al. [1], although
this only tackles the SDF formalism and is more concerned
with modelling lower-level details of the scheduling on a given
execution platform.



II. DEFINITION OF FSM-SADF

Here we give a more concise definition of FSM-SADF than
the one given in [7]. Specifically, since the sets of ports and
detectors have a simpler structure than in the general SADF,
it is not necessary to represent them explicitly.

Definition 1 (FSM-SADF graph). An FSM-SADF graph is a
tuple G = (S,K,B, E,Rp, Rc,S,T, ι,Φ, t, φι, ψι), where

1) S is the nonempty finite set of scenarios,
2) K is the nonempty finite set of kernels,

• P = K∪{d}, where d /∈ K denotes the unique
detector, is the set of processes,

3) B ⊆ K × P is the set of buffers,
4) E : P × S → N0 is the execution time for each

process in each scenario,
5) Rp, Rc : B×S → N0 is the production (consumption)

rate of the kernel producing to (process consuming
from) each buffer in each scenario,

6) (S,T, ι,Φ) is the FSM of the detector, where S is the
nonempty set of states, T : S → 2S is the transition
function, ι ∈ S is the initial state, and Φ : S → S
associates each state with a scenario,

7) t : K×S → S+ is the string of scenarios sent to the
FIFO of each kernel in each scenario of the detector,

8) φι : B → N0 is the initial buffer status,
9) ψι : K → S∗ is the initial control status.

The detector is connected to every kernel by an explicitly
ordered (FIFO) control channel. We further define In(p) =
{b ∈ B | πr(b) = p}, where πr is the right projection function,
to be the set of buffers that process p consumes from (that input
into p). Similarly, Out(k) = {b ∈ B | πl(b) = k}.

In anticipation of the next section we define ∅ to be the
empty multiset, P to be the set of all submultisets of its input
set, ] to be the multiset sum, and \ to be the zero-truncated
asymmetric multiset difference. For example let A = {1, 1}
and B = {1, 2}. Then A ∪ B = {1, 1, 2} (maxima of
multiplicities), A ] B = {1, 1, 1, 2} (sums of multiplicities),
A \ B = {1}, and B \ A = {2}. For strings σ, τ, ν ∈ S∗
we define σi to be the ith element of σ, σ + τ to be the
concatenation of σ and τ , and, if ν = σ + τ , then ν − σ = τ .

A. Operational Semantics

The behavior of an FSM-SADF graph is defined as a
transition system where states are configurations.

Definition 2 (Configuration). A configuration of an FSM-
SADF graph G = (S,K,B, E,Rp, Rc,S,T, ι,Φ, t, φι, ψι) is
a tuple (φ, ψ, κ, δ), where φ is a buffer status, ψ a control
status, κ a kernel status, and δ a detector status:

• A buffer status is a function φ : B → N0 from each
buffer to the number of tokens it stores,

• A control status is a function ψ : K → S∗ from each
kernel to the string of scenarios (control tokens) its
FIFO stores,

• A kernel status is a function κ : K → P(S × N0) that
to each kernel assigns a multiset of ongoing firings
and their remaining execution times,

• A detector status is a pair δ ∈ S × (N0 ∪ {−}) that
represents the state of the FSM and the remaining
execution time of the ongoing firing, or, if there is no
ongoing firing, the value −.

The initial configuration of G is (φι, ψι, κι, δι), where φι and
ψι are defined in G, κι = K × {∅} and δι = (ι,−).

Five types of configuration transitions are distinguished.

Definition 3 (Kernel Start Action). A kernel start action
transition (φ, ψ, κ, δ)

start(k)−−−−−→ (φ′, ψ′, κ′, δ) represents the
start of a firing of kernel k. Let s = ψ(k)1 denote the scenario
of the firing (if it is defined). The transition is enabled if
|ψ(k)| ≥ 1 and ∀b ∈ In(k) : φ(b) ≥ Rc(b, s). The resulting
statuses are defined as

φ′ = φ[b 7→ φ(b)−Rc(b, s)] for all b ∈ In(k)

ψ′ = ψ[k 7→ ψ(k)− s]
κ′ = κ[k 7→ κ(k) ] {(s, E(k, s))}]

Definition 4 (Kernel End Action). A kernel end action tran-
sition (φ, ψ, κ, δ)

end(k)−−−−→ (φ′, ψ, κ′, δ) is the end of a firing of
kernel k. It is enabled if ∃s ∈ S : (s, 0) ∈ κ(k). The resulting
buffer and kernel statuses are

φ′ = φ[b 7→ φ(b) +Rp(b, s)] for all b ∈ Out(k)

κ′ = κ[k 7→ κ(k) \ {(s, 0)}]

Definition 5 (Detector Start Action). A detector start action
transition (φ, ψ, κ, δ)

start(d)−−−−−→ (φ′, ψ, κ, δ′) represents the start
of a firing of the detector, d. It is enabled if there is no ongoing
firing ∃s ∈ S : δ = (s,−) and all inputs are available ∀b ∈
In(d) : φ(b) ≥ Rc(b,Φ(s)). The resulting statuses are

φ′ = φ[b 7→ φ(b)−Rc(b,Φ(s))] for all b ∈ In(d)

δ′ = (s, E(d,Φ(s)))

Definition 6 (Detector End Action). A detector end action
transition (φ, ψ, κ, δ)

end(d)−−−−→ (φ, ψ′, κ, δ′) is enabled if ∃s ∈
S : δ = (s, 0), and the resulting statuses are

ψ′ = ψ[k 7→ ψ(k) + t(k,Φ(s))] for all k ∈ K
δ′ = (s′,−) for some s′ ∈ T(s)

In [7] time transitions are defined very generally, such that
to account for given scheduling/resource constraints one needs
to instantiate the time transitions needed. In the following we
will assume a unconstrained execution, namely that all ongoing
firings advance at the same pace.

Definition 7 (Time Transition). A time transition (φ, ψ, κ, δ)
time(t)−−−−→ (φ, ψ, κ′, δ′) represents time progressing t time units.

It is enabled if no kernel end or detector end transition is
enabled, and t is the smallest remaining execution time of any
ongoing firing. The resulting kernel status is

κ′ = κ[k 7→ {(s, n− t)|(s, n) ∈ κ(k)}] for all k ∈ K

using multiset comprehension. The detector status δ = (s, n)
is updated as δ′ = (s, n − t), unless n = − in which case it
is unchanged, δ′ = δ.



B. Overtaking Problem

A closer look at the definition of the kernel status and the
kernel start action in Section II-A reveals that the operational
semantics of FSM-SADF allows the possibility of multiple
simultaneous firings of a kernel, i.e. auto-concurrency. If these
simultaneous firings of a kernel occur in different scenarios,
due to the potential difference in kernel execution times in
different scenarios, tokens may “overtake” each other. The
result of that is that some kernel might consume tokens in
a different scenario than the one these were produced in. This
phenomenon makes it hard to ensure determinacy. One way
of ensuring determinacy under auto-concurrency is considered
in [3] by the introduction of the (max,+) algebraic semantics
of FSM-SADF. In this paper, we assure determinacy by
prohibiting auto-concurrency in the TA translation introduced
in the following section.

III. TRANSLATION OF FSM-SADF TO TA

To be able to model check an FSM-SADF specification,
we encode the operational semantics of Section II-A in the
UPPAAL model checker. We refer to [2] for the full formalism
and introduce it only briefly here due to space constraints.
The correctness of the translation (with auto-concurrency being
prohibited) follows from the construction itself as explained in
the remainder of this section. In UPPAAL, a system is modeled
as a network of TA that is extended with bounded discrete
variables that are part of the state. We recall the definition of
TA where we use B(C) to denote the set of constraints defined
over a finite set of real-valued variables C called clocks and
where Σ = {a!, a?, . . .} is a finite alphabet of synchronization
actions.

Definition 8 (Timed automaton (TA)). A timed automaton A
is a tuple (L, l0, E, I), where L is a finite set of locations
(nodes), l0 is the initial location, E ⊆ L×B(C)×Σ× 2C ×L
is the set of edges and I : L → B(C) assigns invariants to
locations. We shall write l

g,a,r−−−→ l′ when (l, g, a, r, l′) ∈ E.

The configuration is modelled such that the kernel and
detector statuses are encoded in the states of the TA, while
the buffer and control statuses are modelled explicitly using
discrete variables. These do not add to the expressive power of
the formalism, and for presentation purposes, we do not encode
their use in the following, but we show the token consumptions
and productions in the UPPAAL models in Fig. 1.

Given an FSM-SADF graph G, we generate a parallel
composition of TA System = Ak1 ‖ . . . ‖ Akn ‖ Ad, where
ki ∈ K and n = |K|. As there is only one instance of each
kernel, no auto-concurrency exists, and determinacy is ensured.
Fig. 1a shows the UPPAAL model of any kernel and Fig. 1b
shows the detector of an FSM-SADF graph with S = {A,B}
and the FSM defined to generate the language (AB)∗.

Every kernel ki ∈ K is translated to the TA Aki =
(Li, l

0
i , Ei, Ii) where Li = {Initial,Configure,Fire},

l0i = Initial, and Ei and Ii are given as follows. The path

Initial
|ψ(ki)|≥1,asap!,∅−−−−−−−−−−−→Configure

∀b∈In(ki):φ(b)≥Rc(b,s),∅,{xi}−−−−−−−−−−−−−−−−−−−−→ Fire

corresponds to the kernel start action. It is split into two
TA edges because the kernel must first receive its configu-
ration from the detector to know, depending on the current
scenario s, how many tokens must be available in its input
buffers. The edge (Initial, . . . ,Configure) synchronizes
by sending on the urgent broadcast channel asap (which has
no receivers), thus ensuring that the transition is taken as soon
as a scenario is available. The kernel end action is encoded by

Fire
xi=E(ki,s),∅,∅−−−−−−−−−→ Initial

and the invariant I(Fire) = xi ≤ E(ki, s) which together
assure that the system stays in the location Fire for exactly
the execution time E(ki, s) of the kernel ki in scenario s. Thus,
time transitions are encoded implicitly in the operation of the
network of TA, for which time progresses in unison.

The detector TA uses the structure of its FSM, but embeds
in each transition a firing location wherein time can pass be-
tween the events of consuming the input tokens and producing
the output tokens. We encode it as Ad = (Ld, l

0
d, Ed, Id),

where Ld = S ∪ {(s, s′) | s, s′ ∈ S ∧ s′ ∈ T(s)} and l0d = ι.
The edge set Ed is defined such that each transition si → sj
described by T is translated into a detector start edge followed
by a detector end edge:

si
∀b∈In(d):φ(b)≥Rc(b,Φ(s)),∅,{xd}−−−−−−−−−−−−−−−−−−−−−→ (si, sj)

xd=E(d,Φ(s)),∅,∅−−−−−−−−−−−→ sj

The invariant function Id is defined such that each firing
location (si, sj) maps to the invariant xd ≤ E(d,Φ(si)).

IV. MODEL CHECKING OF TA MODEL

In this section we demonstrate examples of qualitative and
quantitative analysis of the MPEG-4 FSM-SADF specification
from [6] using the UPPAAL model checker. The types of
analysis, the associated time and memory usage and whether
or not the respective type of analysis can be found in the SDF3

tool are shown in Table I. The experiments were performed on
an Intel Core i7-3520M CPU running UPPAAL 4.1.18 64-bit
on Linux. The default settings were used and UPPAAL was
restarted between each query.

SDF3 can analyze deadlock freedom, buffer occupancy,
inter-firing latency, response delay and throughput of an FSM-
SADF specification. Table I reveals that using UPPAAL we
can analyze all these properties, except throughput which is
a subject of future work. Using UPPAAL we obtained the
same results as SDF3 on the analysis types supported by
both frameworks. Analyzing for deadlock freedom is achieved
by the UPPAAL query (A[] not deadlock). Maximum
buffer occupancy analysis is performed using the UPPAAL
supremum operator, e.g. (sup: bi). Maximum inter-firing
latencies can be obtained as clock suprema. For example,
maximum latency of the detector process can be computed
using the query (sup: xd). We can check the relationship
between the maximum response delay of a process p and a con-
straint r using the query (E<> !p.bFirstFirCompleted
and yp >= r), where yp is a clock that is never reset, and
bFirstFirCompleted is a variable set to true when p
completes its first firing within a scenario. In this experiment,
p = MC, and r = 3510. We can also check interleaving
patterns of process firings, e.g. “between two consecutive
firings of the process p, process q fires at least n times”, etc.



(a) Kernel in UPPAAL (b) Example detector in UPPAAL

Fig. 1: FSM-SADF UPPAAL model

TABLE I: MPEG-4 verification time and virtual memory usage

Analysis SDF3 Time [s] Mem [MB]
Deadlock freedom Yes 5.87 452

Maximum buffer occupancy, all buffers Yes 2.44 452

Maximum inter-firing latency, detector Yes 3.71 455

Maximum response delay, MC Yes 1.44 252

Interleaving patterns of process firings No 4.89 460

Maximum delay between process firings No 4.18 455

For this we use a leads to query (whenever a eventually b)
and a counter variable: (p.Fire --> q.FireCount >=
n). In the experiment, p = MC, q = RC, and n = 1. We
can also check whether the maximum delay between the end
times of firings of two processes within a scenario is greater
than, less than or equal to a predefined value by constructing
a query monitor TA that synchronizes with the events of
firing completions of the processes it monitors. In the case
of kernels, this synchronization takes place when the edges
(Fire,...,Initial) are taken. In the experiment we
verify that the MC-RC delay is always smaller than 5000.

UPPAAL allows us to check the model against various
properties, many of which are not supported by the SDF3

tool-set, therefore justifying the use of a general verification
tool such as UPPAAL as a complement to specialized tools.
The flexibility of the UPPAAL’s TCTL based query language
and the possibility of construction of various query monitor
automata allows the user to easily and in almost no time
compute various qualitative and quantitative properties of the
model. In contrast to UPPAAL, doing the same in a specialized
tool like SDF3 would involve the user into a process of
software development.

V. CONCLUSION AND FUTURE WORK

FSM-SADF is a powerful dataflow formalism that is able
to capture the dynamic behaviour of modern streaming appli-
cations while offering a good trade-off between expressive-
ness, analyzability and implementation efficiency. However,
the formalism is currently only supported by the SDF3 tool-
set which implements a predefined set of properties that can
be analysed/verified. In this paper we propose a translation
of FSM-SADF to TA, thereby enabling the use of the UP-
PAAL model checker for analysing and verifying user-defined
properties in a straightforward manner. As future work we
plan to develop methods for worst-case throughput analysis,

investigate the scalability of our translation and also to give
performance comparison with SDF3. Furthermore, we wish
to further investigate auto-concurrency and the overtaking
problem and explore policies that would assure determinacy,
such as the (max,+) one [3]. As our translation also sets the
first milestone towards enabling the use of FSM-SADF in
a wider context, e.g. cost-optimal analysis, we also plan to
investigate reachability analysis of applications modeled by
FSM-SADF through an optimal control formulation using the
UPPAAL family of model-checkers.
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