
Formalisation and Analysis of Dalvik BytecodeI

Erik Ramsgaard Wognsen, Henrik Søndberg Karlsen, Mads Chr. Olesen,
René Rydhof Hansen

Department of Computer Science, Aalborg University, Denmark

Abstract

With the large, and rapidly increasing, number of smartphones based on the
Android platform, combined with the open nature of the platform that allows
“apps” to be downloaded and executed on the smartphone, misbehaving and
malicious (malware) apps are set to become a serious problem. To counter
this problem, automated tools for analysing and verifying apps are essential.
Furthermore, to ensure high-fidelity of such tools, it is essential to formally
specify both semantics and analyses.

In this paper we present, to the best of our knowledge, the first formalisation
of the complete Dalvik bytecode language including reflection features and the
first formally specified control flow analysis for the language, including advanced
control flow features such as dynamic dispatch, exceptions, and reflection. To
determine which features to include in the formalisation and analysis, 1,700
Android apps from the Google Play app market (formerly known as Android
Market) were downloaded and examined.

Keywords: Dalvik, bytecode, Android, static analysis, flow logic, reflection

1. Introduction

Since Android was first introduced, more than 100 million Android devices
have been activated, and more than 400,000 new devices are activated every day.
This makes Android one of the most widespread and fastest growing computing
platforms for smartphones and tablet computers. The combination of the wide
distribution and the open nature of the Android platform, where apps can be
downloaded and installed not only from the official Google Play app market1 but
also from unknown, untrusted, and potentially malicious third parties makes it
obvious that tools are needed to ensure, and possibly certify, that apps are well-
behaved and do not access information or functionality not explicitly allowed
and intended by the user. The problem is further exacerbated by the often
sensitive and private nature of information stored on a smartphone as well as

IThis work is based on the paper “Study, Formalisation, and Analysis of Dalvik Byte-
code” presented at the Seventh Workshop on Bytecode Semantics, Verification, Analysis and
Transformation (BYTECODE 2012) [14] and the master’s thesis of the first two authors [13].

Email addresses: erw@cs.aau.dk (Erik Ramsgaard Wognsen),
henrik.karlsen@gmail.com (Henrik Søndberg Karlsen), mchro@cs.aau.dk (Mads
Chr. Olesen), rrh@cs.aau.dk (René Rydhof Hansen)

1See https://play.google.com. Last accessed 11 December 2012.

Preprint submitted to Elsevier December 6, 2013

the potential for apps to (ab-)use services that cost the user money, e.g., by
secretly sending text messages to expensive premium numbers [3].

In order to develop trustworthy tools for analysis and especially for certifi-
cation, we believe it is necessary to have a formal underpinning of the target
platform allowing sound analyses to be developed with confidence. In this paper
we first present a study of 1,700 Android apps, carried out in order to determine
what Dalvik instructions and language features are most often used in typical
apps. Based on the results of this study, we develop a formal operational se-
mantics for the Dalvik bytecode language [1]. Dalvik bytecode is similar to
Java bytecode. The two most notable differences are: Dalvik is register based
rather than stack based and the local registers are untyped. These differences
are reflected in their two instruction sets. In addition, there are a number of
differences in their respective runtime systems, which we will not discuss any
further here. Based on the operational semantics, we develop and formally
specify a control flow analysis for the Dalvik bytecode language. The analysis
is intended both as the basis for further and more specialised analyses, but also
by itself for detecting potentially malicious actions, e.g., leaking private infor-
mation or surreptitiously calling expensive phone numbers. To the best of our
knowledge, this is the first such formalisation of the Dalvik bytecode language
and an accompanying control flow analysis. Since our study revealed that more
than half of the apps examined use reflection, we also formalise the semantics
of the reflection API and also extend the control flow analysis to cover many
uses of reflection as determined by the study.

Finally, we have developed a prototype implementation of the control flow
analysis in order to investigate properties and behaviour of the analysis (Sec-
tion 6). The prototype is strictly meant as a proof-of-concept and not a finished
production tool. Consequently the implementation has some notable limitations
regarding the analysis of real apps: there is no support for libraries and APIs,
limited support for reflection, and the exception analysis, although formalised,
is not implemented either. Even with these limitations the prototype has been
used to perform a number of useful analyses described in sections 7 and 8.

While Android apps are generally developed in Java, compiled to Java byte-
code, and only then converted to Dalvik bytecode, we focus here on Dalvik
bytecode because it is the common executable format for all Android apps and,
therefore, offers the best opportunity for performing analyses as close to the
code actually executed as possible and allows us to sidestep issues relating to
decompiling and reverse engineering apps, cf. [7].

1.1. Related Work

In [4] the tool ComDroid is described as a tool that performs “flow sen-
sitive, intraprocedural static analysis with limited interprocedural analysis” of
Dalvik bytecode programs. It is designed to analyse the communication between
Android applications through the so-called Intents, the Android equivalent of
events, and to find potential security vulnerabilities in the communication pat-
terns of applications. The same ComDroid tool is used as a component in
another analysis tool called Stowaway, that analyses API calls in applications
to determine if they are over-privileged [8]. In order to improve the precision and
efficacy of the analysis, Stowaway incorporates some analysis of the reflection
features found in Dalvik bytecode (through the java.lang.reflect library).
Both ComDroid and Stowaway are sophisticated analysis tools covering not only

2

the Dalvik bytecode language but also important parts of the API and the An-
droid platform itself. However, since the analyses are not actually specified in
detail, neither formally nor informally, it is impossible to evaluate their exact
strengths and weaknesses. Indeed, it is stated in [8] that Stowaway makes a
“primarily linear traversal” and that it “experiences problems with non-linear
control flow”. This emphasises the need for a formalisation of both the Dalvik
bytecode language as well as the control flow analysis.

Another approach to analysing Android applications for potential security
violations is discussed in [7]. Here Android applications are analysed by first
recovering the Java source through decompilation and then using the Fortify
SCA static analysis tool to detect potential security vulnerabilities. While the
paper reports impressive results using this approach, it is also noted that it
was not possible to recover the source code for all the targeted applications and
thus making analysis of those applications impossible. Analysing directly at the
bytecode level sidesteps this issue.

The approach described in [24] takes advantage of the fact that most, if not
all, Android applications are developed in Java and adapts the Julia framework
(see [28]) for Java bytecode analysis to the specificities of the Java bytecode that
results from developing Android applications (before being converted to Dalvik
bytecode). As an example, the Julia-based analysis can handle the specific use of
reflection for XML2 specified graphical views prevalent on the Android platform.
It does not handle the general case of reflection nor the special instances handled
by our approach. The Julia framework is theoretically sound, comprehensive,
and well-documented, but the described solution requires access to the Java
bytecode version of an application in order to analyse it.

In [12] the authors formalise a simple language, µ-Dalvik, and translate
Dalvik bytecode into µ-Dalvik, with the goal of performing symbolic execution
of Dalvik programs. µ-Dalvik corresponds roughly to the core of the language
that we have formalised, but with some important differences: Dalvik bytecode
might be mapped to several µ-Dalvik instructions, whereas our mapping is al-
ways one to one. In addition we have formalised exceptions, the array-length

instruction, and some common cases of reflection, neither of which are formalised
in µ-Dalvik. As our study shows, reflection is used by a majority of apps making
it a crucial feature to model.

Much of the work on Dalvik bytecode has been inspired by similar work on
Java bytecode, including the current paper which borrows the main method-
ology from [11]. One of the first, possibly the first, formal semantics for Java
bytecode language was defined by Bertelsen in [2]. Other early work on for-
malisation and analysis of Java bytecode includes [10, 9] where a core bytecode
language is given a formal semantics and a type system for analysis is proven
correct. Spoto provided one of the first formal semantics used as the basis
for abstract interpretation of Java bytecode [29]. This work inspired the Julia
framework for analysis [28] which is based on traditional abstract interpretation
parameterised with different abstract domains. As mentioned above the Julia
framework has recently been adapted to cover Dalvik bytecode [24] translated
from Java bytecode. One of the earliest and most comprehensive tools for Java

2Extensible Markup Language, a common standard language for document encoding, data
interchange, etc.

3

Table 1: Percentages of apps in our data set that use various features.

Feature Used by apps Hereof in libraries
Obfuscated source 64.82% -
Has native libraries 20.35% -
java/lang/Thread 90.18% 24.07%
java/lang/reflect 73.00% 55.92%
java/lang/ClassLoader 39.71% 81.19%
java/lang/Runtime;->exec 19.53% 80.44%

bytecode analysis is the Soot framework [30]. The work on Soot has focused
more on effectiveness and efficiency than on formalisation and thus lacks formal
specification and proof.

2. Study of Apps

To identify which Dalvik bytecode instructions and which Java language
features are used in typical Android apps, we collected and examined the 50 most
popular free apps of each category of Android Market (now part of Google
Play), 1,700 apps in total. Notable features include code obfuscation, threading,
reflection, native libraries, and dynamic class loading. The apps were collected
in November 2011 using Android 2.3.3 on a Samsung Nexus S smartphone.

For efficiency reasons the Dalvik bytecode language contains several spe-
cialised variants of many common instructions, e.g., there are numerous vari-
ants of the move instruction. For our study we have grouped instruction variants
that are semantically similar, e.g., most variants of the move instruction belong
to the same group. In the semantics (see Section 3) we use the same notion of
grouping to abstract and generalise the original 218 Dalvik bytecode instructions
into a set of 39 instructions. The mapping between the original and generalised
instructions is given in Appendix A.

In our study we found that, with the exception of the filled-new-array

instruction, all types of Dalvik bytecode instructions are used in more than
half of the studied apps. In particular, the instructions invoke-direct and
return-void are used in every app and even the two most rare instructions,
sparse-switch and filled-new-array, are used in 69.7% and 22.3% of the
studied apps, respectively. The instructions that occur most frequently are
invoke-virtual and move-result, which are used more than 12 million times
each in total in the 1,700 apps. In comparison, filled-new-array is used 1,930
times. For full details, see Appendix B.

The observations made from studying the use of Java features are sum-
marised in Table 1 and are explained in detail below. For the study we have
separated code into developer code and library code. Developer code is code
that lies within the natural packages for the application. For an applica-
tion company.app this means all classes located directly in the packages /,
/company/, /company/app/, and any subpackages in /company/app/. Library
code is everything else.

4

Code obfuscation, especially using ProGuard3, is used to a large extent. We
searched for classes named “a” within apps in the data set, and used this
as an approximation to determine if an app contains any obfuscated code.
The same approach was used in [7] which found 36% of apps to include
obfuscated code. We found the class in 64.82% of the apps. Obfuscation
is recommended by Google4, but makes it harder to manually inspect the
code.

Native libraries, i.e., ARM shared object (.so) files, were included in 20.35%
of the apps we studied5. A previous study [7] found that, of their 1,100
studied apps from September 2010, only 6.45% included shared objects.
We presume the increased usage is because the Android NDK6, released
June 25, 2009, has gained more widespread use in 2011.

Threading, as indicated by the use of monitors, i.e., the Java synchronized

keyword, was found in 88% of the apps. Furthermore, 90.18% of the apps
include a reference to java/lang/Thread. These observations are not
conclusive, but indicate that multi-threaded programming is wide-spread.
However, further studies are needed to substantiate the results.

The Java method Runtime.exec() is used to execute programs in a sepa-
rate native process and is present in 19.53% of the apps. We manually
inspected some of these uses. Most of them do not use a hardcoded string
as the argument to exec(), but of those that do, we found execution of
both the su and logcat programs which, if successful, gives the app ac-
cess to run programs as the super user on the platform or read logs (with
private data [7]) from all applications, respectively. Some apps also use
the pm install command to install other apps at runtime.

Class loading Of the studied apps 39.71% contain a reference to the Java
class loader library, java/lang/ClassLoader, or a subclass such as the
dalvik/system/DexClassLoader. However, only 13.1% of apps use the
loadClass() or defineClass() methods to actually load or define classes
at runtime. Class loading allows the loading of Dalvik executable (DEX)
files and JAR files while class definition allows for programmatic definition
of Java classes, e.g., from scripting languages such as Javascript. If the
classes being loaded are not present, e.g., if they are downloaded from
the Internet, the app cannot be analysed statically before installation.
Furthermore, if the classes being loaded are created dynamically from
other languages, analysing the use before installation would require the
analysis tool to parse/analyse these languages. A simpler solution for
handling the apps that use these features would be to analyse the class
just before it is being loaded, on the device. However, we consider this as
out of scope for this paper.

3See http://proguard.sourceforge.net. Last accessed 13 December 2011.
4See http://developer.android.com/guide/developing/tools/proguard.html. Last ac-

cessed 13 December 2011.
5In addition, 15 apps included the ARM executable gdbserver.
6Previously “Native Development Kit”, a toolset that facilitates interfacing Java/Dalvik

with C/C++ and native (ARM) code.

5

Class Transformation allows developers to change behaviour of classes at
runtime, before they are loaded by the VM [22]. It is a Java feature,
and is therefore also available in Android. The transformations allowed
include adding new instructions and changing control flow. We found no
apps in our data set that use this feature, and will therefore not return to
this subject.

Reflection has been reported to be used extensively in Android apps for ac-
cessing private and hidden classes, methods, and fields, for JSON7 and
XML parsing, and for backward compatibility [8]. We confirmed these
observations by manual inspection. Of the 940 apps studied in [8], 61%
were found to use reflection, and using automated static analysis they were
able to resolve the targets for 59% of the reflective calls.

73% of the apps in our data set use reflection8. This indicates that a
formalisation of reflection in Dalvik is necessary to precisely analyse most
apps. Reflection resolves classes, methods, and fields from strings. When
these are statically known, static analysis becomes possible. We treat this
in Section 5.

Javascript Interfaces allow Javascript in a webpage embedded in an app to
control that app. Android supports in-app loading of webpages, through
the WebKit API9 that provides a custom embedded web browser. This
API includes the addJavascriptInterface() method whose purpose is
to make the methods on a Java object available to Javascript code. The
method is used in 39% of the apps in our data set. The interface allows
webpages loaded by the app to call methods on the Java object. Previous
studies have shown that advertisement and analytics libraries use this to
give the third-party advertisement companies access to sensor information,
such as location updates [18]. We confirmed this use through manual in-
spection, and furthermore discovered apps that were practically webpages,
and where the Dalvik code merely loads the page and extends the browser
functionality, e.g. by allowing the webpage to send text messages from
the phone.

3. Operational Semantics

In this section we describe the formalisation of the Dalvik bytecode language
using structural operational semantics [25]. With the exception of instructions
related to concurrency, we have formalised the full generalised instruction set of
39 instructions, reduced from the full Dalvik instruction set comprising 218 in-
structions, see Appendix A. Below we present the semantic rules for a few
representative instructions and refer to [13] for an exhaustive list. The ap-
proach is inspired by a similar effort to formalising the Java Card bytecode
language [27, 11].

7JavaScript Object Notation, a standard data interchange format similar to XML.
8This number counts direct uses of reflection in the app, not indirect uses through Android

APIs that themselves employ reflection such as Activity.setContentView().
9See http://developer.android.com/reference/android/webkit/package-summary.

html. Last accessed 8 May 2012.

6

To simplify our work, we have made three convenient, but minor, gener-
alisations: simplification of the type hierarchy to avoid dealing with bit-level
operations except when absolutely necessary; “inlining” of the constant pools
for easier and more direct reference of strings, types, methods, and fields; and
finally idealising the program counter by abstracting away the length of instruc-
tions. While none of these modifications change the expressive power of a Dalvik
application, they greatly simplify presentation and formalisation.

The study described in Section 2 impacted the formalisation in two major
ways: it was clear that all of the core bytecode language had to be formalised
and also that the reflection API had to be formalised. In order to ensure that the
formalisation correctly represents the Dalvik (informal) semantics, we based the
formalisation on the documentation for Dalvik [1], inspection of the source code
for the Dalvik VM in Android10, tests of handwritten bytecode, and experiments
with disassembly of compiled Java code.

3.1. Program Structure

To facilitate the development of the formal semantics for Dalvik bytecode, it
is important to have a good formalisation of the formal structure of an app. We
follow the general approach of [27, 11] and use domains equipped with accessor-
functions: the domain D = D1× . . .×Dn with functions f i : D→ Di is expressed
in a record-like format: D = (f 1 : D1)× . . .× (f n : Dn). The access functions
are used in an object-oriented style where, for d ∈ D, f i(d) is written d.f i and
f i(d, a1, . . . , am) is written d.f i(a1, . . . , am). The notation d[f 7→ x] expresses
the domain d where the value of access function f is updated to x. Similarly
the notation g[x 7→ y] expresses the function g where value x now maps to y.
In the following we use the domains for classes, interfaces, fields, and methods
to illustrate our approach. The remaining domains are found in Appendix C.

A class is specified with a class name, the app in which the class is defined,
the Java package it belongs to, a superclass, as well as sets of implemented
interfaces, fields, access flags, implemented methods, and method declarations
(for abstract classes):

Class = (name : ClassName)× (app : App)× (package : Package)×
(super : Class⊥)× (implements : P(Interface))× (fields : P(Field))×
(accessFlags : P(AccessFlag))× (methods : P(Method))×
(methodDeclarations : P(MethodDeclaration))

We define the superclass of java/lang/Object to be⊥, hence the domain Class⊥
for superclasses. For name domains like ClassName we assume an unlimited
supply of unique names.

An interface is similar to a class but with three important differences: in
place of a superclass it has a set of super-interfaces (super : P(Interface)), in-
stead of implemented interfaces it symmetrically has its implementing classes
(implementedBy : P(Class)), and, finally, instead of implemented methods it
possibly has one method, a class constructor (clinit : Method⊥). Class con-
structors are needed to initialise static fields on classes and interfaces and are
consequently the only methods that can be implemented directly in interfaces.

10See http://source.android.com/source/downloading.html. Last accessed 14 December
2011.

7

A field of a class or an interface has a name, the class or interface where it
is defined, a type, an indication of whether it is a static field or not, and then
its access flags:

Field = (name : FieldName)× (class : Class ∪ Interface)×
(type : Type)× (initialValue : Prim ∪ {null})×
(isStatic : Bool)× (accessFlags : P(AccessFlag))

A method signature specifies how a method can be called: the name of
the method, the class or interface where it is declared (though not necessarily
implemented), as well as the argument and return types:

MethodSignature = (name : MethodName)× (class : Class ∪ Interface)×
(argTypes : Type∗)× (returnType : Type ∪ {void})

Method declarations specify everything about a method except its implemen-
tation. They appear in interfaces and abstract classes and besides the method
signature specify a kind, a set of access flags, and the checked exceptions the
method can throw. The kind of a method can be direct, which is used for non-
overridable methods, i.e., constructors and private or final methods, static

for static methods (that are not direct), and virtual for normal, overridable
methods including methods specified in interfaces. Access flags indicate accessi-
bility and various properties and include public, private, protected, final,
and abstract.

MethodDeclaration = (methodSignature : MethodSignature)×
(kind : {virtual, static, direct})×
(accessFlags : P(AccessFlag))×
(exceptionTypes : P(Class))

An actual method is a method declaration plus implementation details: a map-
ping from locations in the method (program counter values) to instructions11,
the number of registers used for local variables12, a set of exception handlers,
and a mapping from locations of data tables in the bytecode to the contents of
these tables13:

Method = (methodDeclaration : MethodDeclaration)×
(instructionAt : PC→ Instruction)×
(numLocals : N0)× (handlers : N0 → ExcHandler)×
(tableAt : PC→ DataTable)

For methods, i.e., elements from Method, the class found in the method signature
of the method declaration specifies the class (or interface, in the case of clinit)
where the method is implemented. For convenience we introduce unambiguous
shorthands such as m.kind for m.methodDeclaration.kind where m ∈ Method.

11Instruction is simply the set of generalised instructions as given in Appendix A.
12Dalvik uses registers instead of an operand stack.
13Data tables consist of hardcoded array data and switch tables.

8

3.2. Semantic Domains

Having defined the domains for the overall structure of an app, what remains
is to define the semantic domains. The most fundamental semantic domain is
that for values. In Dalvik values can be either primitive values or references:

Val = Prim + Ref

For our purpose, it is sufficient to let primitive values consist only of numbers:
Prim = Z. References are either the null reference or an abstract heap location
that does not need to be defined in further detail14: Ref = Location ∪ {null}.

Local registers are formalised as a map from register names to values, with ⊥
denoting undefined register contents: LocalReg = (N0∪{retval})→ Val⊥. Note
that a special register, the retval register, is used to transfer return values from
invoked methods to the invoking methods15.

For convenience we use two distinct domains to formalise the heap by split-
ting it into one for static fields and one for dynamic objects and arrays:

StaticHeap = Field→ Val and Heap = Ref → (Object + Array)

Objects are formalised as a domain with a class and a mapping from (object)
fields to values. Furthermore, in anticipation we add an annotation component,
called origin, that records the program point at which the object was created.
It is important to note that this has no effect on the semantics, i.e., the actual
execution of a program, but is only needed to facilitate the formalisation and
proof of correctness for the analysis developed in Section 4:

Object = (class : Class)× (field : Field→ Val)× (origin : Method× PC)

For arrays we do not track the creation point, merely the type, length, and
valuation:

Array = (type : ArrayType)× (length : N0)× (value : N0 → Val)

We can then define stack frames to consist of a method and a program counter
value, i.e., a uniquely determined program point, and the local registers:

Frame = Method× PC× LocalReg

Special frames, exception frames containing the location of its corresponding
exception object on the heap and the address16 of the instruction that threw the
exception, are introduced for tracking exceptions that are not handled locally:

ExcFrame = Location×Method× PC

14Dalvik does not support pointer arithmetic so it will suffice to know that we can model
an arbitrary number of unique locations.

15Besides the retval register, Dalvik supports 216 numbered regular registers that we gen-
eralise to N0.

16In general we refer to a pair consisting of a method and a program counter value (PC = N0)
as an address. In contexts where the method is given, we sometimes use address about the
program counter value alone.

9

This leads to the following definition of call stacks as a sequence of frames
except that the top frame may be an exception frame representing an as of yet
unhandled exception:

CallStack = (Frame + ExcFrame)× Frame∗

Together the heaps and the callstack comprise a semantic configuration:

Configuration = StaticHeap× Heap× CallStack

3.3. Semantic Rules

We specify the semantics as a straightforward structural operational seman-
tics where each configuration comprises a static heap, a heap, and a call stack
as defined above. To illustrate the semantics, we present the semantic rules for
a few central instructions, first the basic move instruction:

m.instructionAt(pc) = move v1 v2
A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ R(v2)]〉 :: SF 〉

The function instructionAt is an access function on the Method domain that
identifies the instruction at a given location in a specified method. In the new
configuration, the static heap, S, and dynamic heap, H, of the top frame are
unchanged. Only the top frame of the call stack is affected: the program counter
is incremented, and the register valuation is updated such that the destination
register now maps to the value of the source register.

The invoke-virtual instruction is more involved:

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth
R(v1) = loc loc 6= null o = H(loc)

n = arity(meth) m′ = resolveMethod(meth, o.class) 6= ⊥
R′ = [0 7→ ⊥, . . . ,m′.numLocals − 1 7→ ⊥,

m′.numLocals 7→ R(v1), . . . ,m′.numLocals + n− 1 7→ R(vn)]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉
It receives n arguments and the signature of the method to invoke. The first
argument, v1, is a reference to the object on which the method should be invoked
(the “this” pointer). The location of the method is resolved using the auxiliary
function resolveMethod as explained below and the resulting method is put into
a new frame on top of the call stack, with the program counter set to 0. A new
set of local registers, R′, is created where the first m′.numLocals registers are
mapped to ⊥Val such that they are initially undefined. The arguments are then
mapped into the next registers. To handle dynamic dispatch, we define the
following function to search for a method matching the given method signature
in the ancestry of the given class:

resolveMethod(meth, cl) = ⊥ if cl = ⊥
m if m ∈ cl .methods ∧meth / m
resolveMethod(meth, cl .super) otherwise

where meth / m is a predicate formalising when a method signature meth is
compatible with a given method m ∈ Method, i.e. when the names, argument
types and return types match.

The return instruction pops off the top frame, advances the program counter,
and passes on the return value by updating the retval register:

10

m.instructionAt(pc) = return v

A ` 〈S,H, 〈m, pc,R〉 :: 〈m′, pc′, R′〉 :: SF 〉 =⇒
〈S,H, 〈m′, pc′ + 1, R′[retval 7→ R(v)]〉 :: SF 〉

The Dalvik instruction set also contains some specialised instructions, for
example const-class which is a shortcut to create a java/lang/Class instance
representing a specified class. This instruction is typically used in conjunction
with reflection which we treat in Section 5. A java/lang/Class object has a
field called name which refers to a java/lang/String object with the name of
the class. The instruction therefore creates a Class and a String and sets the
String field value to the (character array) name of the given class and maps
the field name on the Class to the newly created string:

m.instructionAt(pc) = const-class v cl
findClassObject(H, cl) = ⊥

(H ′, locc) = newObject(H, java/lang/Class,m, pc) oc = H ′(locc)
(H ′′, locs) = newObject(H ′, java/lang/String,m, pc) os = H ′′(locs)

H ′′′ = H ′′[locc 7→ oc[field 7→ oc.field[name 7→ locs]],
locs 7→ os[field 7→ os.field[value 7→ cl .name]]]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′′′, 〈m, pc+ 1, R[v 7→ locc]〉 :: SF 〉

The auxiliary function findClassObject searches the heap for a class object rep-
resenting the given class. It returns the object location if the object exists, and
returns ⊥ otherwise.

The new objects are created using the auxiliary function newObject, also
used in the semantics of the new-instance instruction, which returns the mod-
ified heap along with a fresh reference to the newly created object:

newObject : Heap× Class×Method× PC→ Heap× Ref
newObject(H, cl ,m, pc) = (H ′, loc)

The produced heap and location have the following properties: loc /∈ dom(H),
H ′ = H[loc 7→ o], o ∈ Object, o.class = cl , and o.origin = (m, pc). Note in
particular, that the current program point is recorded in the origin field of the
newly created object.

Class objects are unique17, so if a class object with the desired class was
already present on the heap, that one is returned instead of creating a new one:

m.instructionAt(pc) = const-class v cl
findClassObject(H, cl) = locc 6= ⊥

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ locc]〉 :: SF 〉

3.4. Exceptions

Exceptions can be thrown either explicitly using the throw instruction, or
by the system in case of a runtime error, such as a null pointer dereference.
Both situations can be seen directly in the throw instruction whose semantics
depends on its argument:

17This only holds for classes loaded by the same class loader. Since our analysis is defined
only for the standard class loader, this is not a problem here.

11

m.instructionAt(pc) = throw v
R(v) = loce 6= null H(loce).class � Throwable

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈loce,m, pc〉 :: 〈m, pc,R〉 :: SF 〉

m.instructionAt(pc) = throw v
R(v) = null (H ′, loce) = newObject(H, NullPointerException)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈loce,m, pc〉 :: 〈m, pc,R〉 :: SF 〉

In both situations an exception frame is pushed on the stack and the next step
depends on whether an appropriate exception handler is available in the method.
If one is available, the exception frame is discarded and its exception is put in
the retval register of the current method which also jumps to the program
counter of the handler:

cl = H(loce).class findHandler(m, pc, cl) = pc′ 6= ⊥
A ` 〈S,H, 〈loce,me, pce〉 :: 〈m, pc,R〉 :: SF 〉 =⇒

〈S,H, 〈m, pc′, R[retval 7→ loce]〉 :: SF 〉

If no exception handler is found, the frame of the currently executing method
is discarded but the exception frame retained such that the search continues
recursively among the handlers of the next method:

cl = H(loce).class findHandler(m, pc, cl) = ⊥
A ` 〈S,H, 〈loce,me, pce〉 :: 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈loce,m, pc〉 :: SF 〉

An exception handler has a type for the exceptions it may catch, a program
counter value pointing to the handler code, and program counter values defining
the boundaries of the region covered by the exception handler:

ExcHandler = (catchType : Class⊥)× (handlerAddr : PC)×
(startAddr : PC)× (endAddr : PC)

The auxiliary function findHandler finds the exception handler matching the
location in the method and the given exception class, or ⊥ if no appropriate
handler is available. It is itself defined using two auxiliary predicates.

The first, canHandle, determines whether an exception handler (h) can han-
dle the given exception (cle) for the specific location (pc) in the method:

canHandle(h, pc, cle) ≡ h.startAddr ≤ pc ≤ h.endAddr ∧ cle � h.catchType

The catch type of a catch-all handler, corresponding to a Java finally clause,
is >. The canHandle predicate is used in another predicate, isFirstHandler,
which formalises whether or not the given handler (specified by a list of han-
dlers, η, and an index, i) is the correct handler according to indices supplied by
the compiler:

isFirstHandler(η, i, pc, cle) ≡ canHandle(η(i), pc, cle) ∧
(∀j : canHandle(η(j), pc, cle) ⇒ j ≤ i)

The indices represent an ordering of the handlers that is used to determine which
of two (or more) competing handlers should be used when an exception is thrown
in their common region of responsibility. The highest index corresponds to the
most specific handler.

12

The function findHandler uses isFirstHandler to find the address (in this
case only the program counter value because the method is given) of the first
handler or return ⊥ if no handler is available:

findHandler(m, pc, cle) = η(i).handlerAddr if η = m.handlers ∧ dom(η) 6= ∅ ∧
∃i : isFirstHandler(η, i, pc, cle)

⊥ otherwise

4. Control Flow Analysis

In the following we give an overview of the control flow analysis we have de-
signed for Dalvik. Control flow analysis is an essential component for building
more advanced and specialised analyses, e.g., access control and information-
flow analyses. But control flow analysis is also useful on its own, e.g., to find
methods that are never called. The control flow analysis also has to take ad-
vanced control flow concepts such as dynamic dispatch, exceptions and reflection
into account since these are integral to Dalvik. The former two are briefly de-
scribed below while the latter is dealt with in detail in Section 5.

Our control flow analysis is specified as a flow logic [20]. In this approach an
analysis is defined through a number of flow logic judgements that specify what
is required of an analysis result in order to be sound. Many other frameworks for
program analysis exist, but the combination of structural operational semantics
and flow logic has proven to be flexible and easy to use for both theoretical
developments as well as for implementation. In particular, a similar approach
has been used to specify, reason about, and implement numerous analyses for
the Java bytecode language [11] which is similar in nature to Dalvik. A more
detailed comparison with other approaches is outside the scope of this paper.

4.1. Abstract Domains

Before we can define the flow logic judgements for the analysis itself, we first
need to define the abstract domains over which the analysis works. The abstract
domains are used in the analysis to represent abstractions of runtime values and
they closely follow the structure of the underlying semantic domains.

We start by defining the most basic abstract domain, namely that for values.
An abstract value, similar to a concrete (semantic) value, can be either an
abstract primitive value or an abstract reference:

Val = Prim + Ref and V̂al = P(Val)

For our analysis, it is sufficient to model abstract primitive values simply as
integers, Prim = Prim = Z. Note that we use overlined domain names to indicate
an abstract domain based on a concrete domain with the same name while
domains with a “hat” (like V̂al) indicate domains that are complete lattices.
The latter property is important for ensuring that the flow logic specification is
well-defined.

Dalvik has native support for string constants that we model simply as

Ŝtring = P(String) where we assume the existence of a primitive string do-
main String. The native strings are different from the character arrays that
live in java/lang/String objects in the Java standard library and therefore a

13

Dalvik native string cannot, as such, be used in place of a “proper” Java string.
However, for the analysis we may consider the (abstract) native strings to be
contained in the (abstract) Java string objects. An example of this is shown in
the analysis of the const-class instruction in Section 4.2.

Abstract references are either object references, array references, or a null

reference:
Ref = ObjRef + ArrRef + {null}

For object references we take an approach similar to the textual object graphs
in [31]: we model all runtime object references as the class of the runtime object
combined with the syntactic creation point of the object. Array references
are formalised simply as the type of the array, i.e., the analysis merges all
information about arrays of the same type:

ObjRef = Class×Method× PC and ArrRef = ArrayType

Note that here we directly use the concrete program structure defined in Sec-
tion 3 to model the abstract program structure. To enhance readability, spe-
cific instances of object and array references are written ‘(ObjRef cl,m, pc)’ and
‘(ArrRef t)’ respectively. In anticipation of later developments, we introduce the
following notation for extracting all (abstract) references to a particular class:

X|cl = {(ObjRef (cl ′,m, pc)) ∈ X| cl = cl ′}

In order to achieve sufficient precision, the analysis tracks the value of indi-
vidual registers at every program point, including any return values produced
by a method. This leads to the following abstract domains for program points
and registers:

PC = Method× (PC + END) and Register = Register ∪ {retval,END}

The token ‘END’ is introduced in the analysis as both a special program counter
value and as a special register such that the set of values returned by a method
m can be easily referenced.

The domain for tracking register values can then be formalised as a mapping
for every (abstract) program point from registers to abstract values:

̂LocalReg = PC→ Register→ V̂al

For R̂ ∈ ̂LocalReg we shall write R̂(m,END) as shorthand for R̂(m,END)(END),
i.e., the (abstract) return value produced by method m.

Note that tracking the values of local registers at each program point leads to
a control flow analysis that is intra-procedurally flow sensitive, i.e., flow sensitive
within methods. As already mentioned, this is necessary to achieve sufficient
precision for the analysis to be useful. However, it also enables analyses that are
intra-procedurally state based such as tracking (within a method) which classes
have been initialised.

The subset ordering on V̂al can be extended point-wise to an ordering on
̂LocalReg. Let R̂1, R̂2 ∈ ̂LocalReg, a1, a2 ∈ PC, and define

R̂1 v R̂2 iff ∀a ∈ dom(R̂1) : R̂1(a) v R̂2(a)

R̂1(a1) v R̂2(a2) iff ∀r ∈ dom(R̂1(a1)) : R̂1(a1)(r) v R̂2(a2)(r)

14

In anticipation of the flow logic specification, we define the following notation:

R̂1(a1) vX R̂2(a2) iff ∀r ∈ dom(R̂1(a1)) \X : R̂1(a1)(r) v R̂2(a2)(r)

The semantic heap is modelled using two abstract domains: one that tracks the
static fields of objects, called the static heap, and one that tracks references to
objects and arrays:

̂StaticHeap = Field→ V̂al and Ĥeap = Ref → (Ôbject + Ârray)

The abstract domains for objects and arrays can now be defined:

Ôbject = Field→ V̂al and Ârray = V̂al

We could model the structure of arrays but due to imprecise indexes it is of
little benefit to the overall precision of the analysis.

The last abstract domain needed for our analysis is needed to track excep-
tions that are not handled locally within a method:

̂ExcCache = Method→ P(ObjRef)

Finally, we are now able to define the abstract domain for the overall analysis:

ĈFA = ̂StaticHeap× Ĥeap× ̂LocalReg × ̂ExcCache

In the following we specify what it means for an element of the above domain
to be a sound analysis of a given program.

4.2. Flow Logic Specification

With all the relevant abstract domains defined, we can now specify the
flow logic judgements that define our control flow analysis. Flow logic is a
specification-oriented approach to program analysis. Analyses are specified by
defining, for every instruction, a judgement that formalises when an analysis
result is a sound approximation of (the effects of) that instruction [20].

In the remainder of this section, we illustrate the analysis by discussing
the judgements for a few interesting instructions and refer to [13] for the full
specification. We start with the judgement for the move instruction which is one
of the simplest. Recall that after a move instruction is executed, the destination
register (v1 below) contains the value from the source register (v2 below) while
all others are unchanged. This results in the following judgement:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc) : move v1 v2
iff R̂(m, pc)(v2) v R̂(m, pc+ 1)(v1)

R̂(m, pc) v{v1} R̂(m, pc+ 1)

To improve readability we adopt the convention that conditions in judgements
are implicitly joined by conjunction, i.e., they must all hold in order for the
judgement to hold. As a further convenience, we use indentation to indicate the
scope of logical variables bound by a quantifier (used in later judgements).

In words, the above judgement states that (Ŝ, Ĥ, R̂, Ê) ∈ ĈFA is a sound
analysis result for the effects of the move instruction located in method m at

15

address pc if and only if the following two conditions are fulfilled. The first
condition (R̂(m, pc)(v2) v R̂(m, pc+ 1)(v1)) formalises that the set of abstract
values in the source register v2, at the current address (m, pc), must also be
present in the set of abstract values for the destination register v1 at the following
address (m, pc+1). The latter condition (R̂(m, pc) v{v1} R̂(m, pc+1)) requires
that all registers, except the destination register v1 which was updated explicitly,
contains at least the same abstract values at the next address as at the current
address.

The judgement for the invoke-virtual instruction is somewhat more in-
volved: for each possible object the method can be called on (these can be found
in register v1 containing the “this” pointer), the method is resolved (by dynamic
dispatch using the resolveMethod function from the semantics), the arguments
are transferred, and the retval register is updated with the return value (unless
the return type of the method is void). In addition, the judgement must also
deal with exceptions: both the null pointer exception that the instruction may
throw itself as well as those that are thrown in but not handled by the invoked
method. The latter are tracked using the exception component of the analysis
Ê. Exceptions and exception handling is discussed in more detail below:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc) : invoke-virtual v1 . . . vn meth

iff ∀(ObjRef (cl ,mt, pct)) ∈ R̂(m, pc)(v1) :
m′ = resolveMethod(meth, cl)

∀1 ≤ i ≤ n : R̂(m, pc)(vi) v R̂(m′, 0)(m′.numLocals − 1 + i)

m′.returnType 6= void ⇒ R̂(m′,END) v R̂(m, pc+ 1)(retval)

∀oref e ∈ Ê(m′) : HANDLE(R̂,Ê)(oref e, (m, pc))

R̂(m, pc) v{retval} R̂(m, pc+ 1)

HANDLE(R̂,Ê)((ObjRef (NullPointerException,m, pc)), (m, pc))

Two things can happen when an exception is thrown: if a local handler exists,
control is transferred to that handler with a reference to the exception object
in the retval register. If no local handler exists, the method aborts and the
exception is put on the call stack in an exception frame. The following auxiliary
predicate, also used in the above judgement, formalises the exception handling
semantics:

HANDLE(R̂,Ê)((ObjRef (cle,me, pce)), (m, pc)) ≡
findHandler(m, pc, cle) = pc′ 6= ⊥ ⇒
{ObjRef (cle,me, pce)} ⊆ R̂(m, pc′)(retval)

R̂(m, pc) v{retval} R̂(m, pc′)

findHandler(m, pc, cle) = ⊥ ⇒
{ObjRef (cle,me, pce)} ⊆ Ê(m)

With the above predicate, it is trivial to define the analysis for the throw in-
struction:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc) : throw v

iff ∀oref e ∈ R̂(m, pc)(v) : HANDLE(R̂,Ê)(oref e, (m, pc))

HANDLE(R̂,Ê)((ObjRef (NullPointerException,m, pc)), (m, pc))

As the final example we specify the judgement for the const-class instruction,
illustrating both how to handle specialised Dalvik instructions as well as how

16

fields in runtime objects are accessed. Also note how shorthands are introduced
for the long names of the Java API:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc) : const-class v cl
iff oref Str = ObjRef (java/lang/String,m, pc)

oref Cl = ObjRef (java/lang/Class,m, pc)

{cl .name} ⊆ Ĥ(oref Str)(value)

{oref Str} ⊆ Ĥ(oref Cl)(name)

{oref Cl} ⊆ R̂(m, pc+ 1)(v)

dom(Ĥ)|java/lang/Class ⊆ R̂(m, pc+ 1)(v)

R̂(m, pc) v{v} R̂(m, pc+ 1)

Following the semantics of the instruction (discussed in Section 3) the class
name given as argument cl is stored in the value field of a newly created String

object, the reference to which is stored in the name field of a Class object, which
is stored in the destination register v. Finally, to take possible object sharing
into account, we copy all abstract references to java/lang/Class found in the
(domain of) the abstract heap to the result register v.

4.3. Correctness of the Analysis

We define and prove the semantic soundness of the analysis by means of
a subject reduction result. To this end the relationship between the concrete
and abstract domains is formalised. We use representation functions to map
semantic domains to their abstract domains while keeping the best possible
representation. For semantic domains that do not have corresponding abstract
counterparts, correctness relations are introduced. We treat the analysis with-
out exceptions. While this simplifies the presentation, the proof extends in a
straightforward way to the full semantics.

4.3.1. Representation Functions and Correctness Relations

As values can be either primitive values or references (see Section 4.1) rep-
resentation of a concrete value is delegated depending on type:

βHVal(v) =

 βPrim(v) if v ∈ Prim
βHRef(v) if v ∈ Ref
⊥

V̂al
if v = ⊥Val

Since the representation of a reference value depends on the heap as well as the
value, as we shall soon see, the representation function for values in general is
parameterised by it as well.

Primitive values are represented as integers in both the concrete and abstract

domains (P̂rim = P(Prim) = P(Prim) = P(Z)) so the best representation is to
inject a value into its singleton set: βPrim(p) = {p}.

Since concrete references by themselves are not distinguished by whether
they reference an object or an array, the concrete heap is necessary as a param-
eter to their representation function:

βHRef(loc) =

{ObjRef (cl,m, pc)} if H(loc) ∈ Object∧

H(loc).class = cl ∧H(loc).origin = (m, pc)
{ArrRef t} if H(loc) ∈ Array ∧H(loc).type = t
{null} if loc = null

17

Register contents are modelled as a mapping from registers to values (see Sec-
tion 3.2), so a register valuationR ∈ LocalReg can be represented by representing
the values that the registers map to. Similarly for a static heap S ∈ StaticHeap:

βHLocalReg(R) = βHVal ◦R and βHStaticHeap(S) = βHVal ◦ S

The dynamic heap is more intricate. Since the analysis abstracts object refer-
ences into classes, an abstract object reference may correspond to more than
one concrete location. To handle this the representation function for heaps
is also parameterised on an abstract reference, and the representations of the
corresponding concrete objects are joined:

βHeap(H)(ObjRef (cl,m, pc)) =
⊔

loc ∈ dom(H)

βH
Ref(loc) = (ObjRef (cl,m, pc))

βHObject(H(loc))

where the representation function for objects is defined as follows:

βHObject(o) = βHVal ◦ (o.field)

The representation function for array references is defined in a similar way.

Correctness Relations. A stack frame (of domain Frame) is correctly represented
if the abstract representation of its register valuation is contained in the corre-
sponding abstract register valuation at the right address:

〈m, pc,R〉 RHFrame R̂ iff βHLocalReg(R) v R̂(m, pc)

A call stack is a sequence of stack frames, SF = F1 :: · · · :: Fn, that is correctly
represented if every stack frame of the call stack is correctly represented:

SF RHCallStack R̂ iff ∀1 ≤ i ≤ n : Fi RHFrame R̂

We can now state that a complete configuration is correct if the abstract repre-
sentations of the heaps are contained in their respective corresponding abstract
domains:

〈S,H, SF 〉 RConf (Ŝ, Ĥ, R̂) iff βHStaticHeap(S) v Ŝ ∧
βHeap(H) v Ĥ ∧
SF RHCallStack R̂

4.3.2. Subject Reduction Theorem

The theorem states that an analysis result that is correct with respect to a
semantic configuration remains correct under semantic reduction.

Theorem 1 (Subject Reduction). Let A ∈ App and C ∈ Configuration such

that (Ŝ, Ĥ, R̂) ∈ ĈFA, (Ŝ, Ĥ, R̂) |= A, and A ` C =⇒ C ′. Then

C RConf (Ŝ, Ĥ, R̂) ⇒ C ′ RConf (Ŝ, Ĥ, R̂)

The proof is a tedious but straightforward case analysis on the semantic reduc-
tions. We have proved the theorem for a core of the language, see Appendix D.
We expect that the proof can be extended easily to the full language. To handle
exceptions and the return instruction a condition will have to be added such
that the callstack can be trusted to be the result of an actual program execu-
tion. A well-formed configuration can be defined as a configuration with such a
well-formed callstack, and it would also have to be shown that well-formedness
is preserved under semantic reduction.

18

4.4. Concurrency

There are two Dalvik instructions related to concurrency: monitor-enter

and monitor-exit. They are generated by the compiler when the Java keyword
synchronized is used and they are used in most apps.

In the concurrent execution model, the execution order of instructions is
defined by the Java Memory Model, JSR-133 [23], which formalises how shared
variables should be read and written, and how instructions can be re-ordered
to execute as-if-serially when they are concurrent [19]. According to unofficial
statements by one of the Dalvik developers, Alexey Kryshen, on the Stackover-
flow website18, Dalvik tries to comply with the JSR-133 memory model, though
there should be cases where it does not on versions prior to Android 3.0.

In the present work we have formalised neither the semantics nor the anal-
ysis of concurrency and the related instructions. However, we conjecture that
our control flow analysis can be extended to a sound analysis even for multi-
threaded apps since the analysis is flow insensitive with respect to heap access.
Therefore the analysis already represents an over-approximation of all possible
interleavings of all heap accesses, including those that would otherwise be added
by allowing multi-threaded apps.

5. Reflection

Reflection allows a program to access class information at runtime, and use
this information to create new objects, invoke methods or otherwise change
the control flow of the program. When reflection is used, the types involved
are usually not known statically. Instead, they are retrieved dynamically from
strings. The strings can come from sources such as user input, files included
with the app, the Internet, or, in some cases, constant strings in the program.
We found that several of the apps in our data set specify constant strings in the
program.

The most used method from the Java reflection API is Method.invoke(). It
is an instance method on the java/lang/reflect/Method class used to invoke
dynamically resolved methods. An example can be seen in Listing 1 where the
method bar(int) on the class pkg.examples.Foo is invoked on an instance of
the class with the argument ‘3’.

1 Class<?> clazz = Class.forName("pkg.examples.Foo");

2 Method method = clazz.getMethod("bar", int.class);

3 Integer result = (Integer) method.invoke(clazz.newInstance(), 3);

Listing 1: A method invoked through reflection in Java.

A Method object can be retrieved using the instance method getMethod() on
the Java standard class java/lang/Class. The instance of Class does not
have to represent a class that implements the method in question since it will
be resolved with dynamic dispatch like normal method calls. In Listing 1, the
Class object is retrieved using the static method Class.forName() that, given
a fully qualified class name, returns a reference to a Class instance for the
specified class.

18See http://stackoverflow.com/questions/6973667/dalvik-vm-java-memory-model-

concurrent-programming-on-android. Last accessed 29 May 2012.

19

Another way to obtain a Class object is through the Dalvik instruction
const-class (see Section 3 for the semantics of this instruction). It is generated
when the static field class, which is found in all Java classes, is accessed.
An alternative to Class.forName("pkg.examples.Foo") at line 1 in Listing 1
would therefore be Foo.class, given that the example code is located in the
same package as the Foo class and that the class can be found at compile time.

The Method objects are mainly retrieved using the methods getMethod()

and getMethods(). The latter returns an array of all public method declara-
tions on a class while the former returns a single object that is found by spec-
ifying the name and parameter types of the desired method declaration. The
methods getMethod() and getMethods() only find public method declarations.
They both find the method declaration objects by traversing the class hierarchy,
starting at the class represented by the Class object and searching upwards
through superclasses and interfaces. We uncovered and reported an undocu-
mented change in the semantics of this traversal which we discuss in Section 5.5.
Developers can also use the getDeclaredMethod() and getDeclaredMethods()

methods which only look in the given class but may also return private methods.
Once a Method object has been obtained, it can be used to retrieve informa-

tion about the method declaration, for example access modifiers, name, and the
(checked) exceptions it can throw. Accessing these requires no additional infor-
mation besides that which is known statically from the method declaration. To
invoke the method, an instance of the class or a subclass is required (except for
static methods). The receiver object can be any Java object created using the
regular Java new statement or through the newInstance() method on a Class

object. In addition to creating a new instance, the newInstance() method
calls the parameterless constructor for the class. To use another constructor,
an instance of the Constructor class from the reflection API must be used.

5.1. Reflection in the Wild
We have run an automated informal search for constant strings supplied

to the two java/lang/Class methods forName() and getMethod(). Of the
150 apps in three randomly selected market categories (News and Magazines,
Photography, and Productivity),

• 18.7% of the apps use neither forName() nor getMethod()

• 17.3% use at least one of the methods and use only constant strings

• 25.3% use exactly one variable string in total for both methods

• 38.7% use more than one variable string in total for both methods.

Here we searched for instances of the two Class methods with a const-string

instruction in the preceding vicinity, writing to the same register read by the
method. This approach gives a number of false positives, most prominently
those that simple constant propagation would find. But also in subtler cases,
as seen in the 37.3% of the apps containing a class named InstallReceiver.
This class uses forName() with a variable string, but only if it equals the con-
stant "com.google.android.apps.analytics.AnalyticsReceiver". So with
the techniques we formalise in the following sections, it is possible to analyse
more than a third of real-world apps. Handling of (the effects of) simple pat-
terns of reflection usage may increase this number further (as indicated by the
large number of apps that only sparingly use variable strings for reflection).

20

5.2. Usage Patterns

The use-cases for reflection vary from app to app, and Android developers
use it for many different things. However, we have observed some patterns in
usage, most of which we have found through manual inspection of the bytecode.

Hidden API methods are invoked. Certain features in Android are deliber-
ately hidden such that they are not present in the JAR file for the Android
API that app developers use when compiling their Android apps. This is
typically done when an API is not yet considered stable or if the under-
lying functionality is not implemented on all devices intended to support
it. A prominent example is the Bluetooth API, most of which was hidden
in the early releases of Android. Developers tend to use these features
anyway, and use reflection to do so19 [8] instead of precompiling their own
fully featured JAR file for the Android API.

Private API methods and fields are accessed by bypassing access modi-
fiers. Several features of the Android platform are placed in private meth-
ods and fields, such as the ability to create a list of text messages from
raw SMS data.

Backward compatibility As new versions of Android are often released with
new features, developers tend to use reflection to check if certain meth-
ods/features exist and call these only when they do. This pattern is even
encouraged by Google20.

JSON and XML is generated and parsed with the use of reflection. Some
apps use JSON and XML that contain information about their Java ob-
jects, and through reflection generation and parsing can be automated.

Libraries for Android apps are widely available on the Internet, and some of
them use reflection. In many apps that use reflection, it is only used by
the included libraries.

In [17] a reflection analysis for standard Java is defined and discussed as well
as the use of reflection in a number of large open source projects. This study
revealed some of the same patterns as those reported here, such as object se-
rialisation and portability/backward-compatibility. However, it was found that
reflection was mostly used to create new objects without invoking new methods
on them. In contrast, we found that in Android, invoking methods is among
the most common uses of reflection. Our findings are however consistent with
those reported for Android in [8].

19See http://developer.sonymobile.com/2011/10/28/code-examples-using-hidden-

android-apis/. Last accessed 5 May 2013.
20When our original work was done, the description of reflection for backward compat-

ibility was part of the official Android developer’s website at http://developer.android.

com/resources/articles/backward-compatibility.html but the page has since been re-
moved. The same content is now available at the Android Developers Blog, controlled by the
Open Handset Alliance, at http://android-developers.blogspot.com/2009/04/backward-

compatibility-for-android.html.

21

5.3. Assumptions

Static analysis of the reflection API is not possible in all cases. We therefore
make the following assumptions:

• All classes used through reflection are known statically, such that its com-
ponents can be analysed. In other words, we assume that dynamic class
loading is not used.

• The program does not use a non-default class loader, as this could change
the behaviour of Class.forName() and related methods. As mentioned
in Section 2, class loaders are used in 13.1% of the apps to either load
or define new classes. This raised other problems with regards to static
analysis, and they were considered out of scope for this project.

• The strings used to obtain Method and Class objects used for reflection
can be determined statically. This presumption only holds for some of the
studied apps. A preliminary rough analysis of our data set shows that
57% and 44% of all calls to Class.forName() and Class.getMethod()

respectively use locally defined constant strings. Of the studied apps, a
total of 19% exclusively use locally defined constant strings for all calls to
the methods Class.forName() and Class.getMethod().

These last results are based on a sampling of const-string instructions syn-
tactically appearing shortly before the invocation of the reflection methods.
They are not based on the limited but inter-procedural data flow capabilities
of our control flow analysis. Even with an inter-procedural analysis, improving
the numbers requires the ability to track strings across collection APIs such
as java/util/ArrayList and follow string manipulation such as that of the
java/lang/StringBuilder class. An example of the former is discussed briefly
in Section 8. For the latter, existing string analyses such as [5, 15, 26] may
prove useful.

The operational semantics specified so far all represent single Dalvik instruc-
tions. We now change focus and specify operational semantics and flow logic
judgements to represent Java API method calls. This has two reasons: (1) Using
our analysis to analyse the Dalvik instructions that the API method consists
of is not possible for APIs implemented natively in C or C++. (2) Analysing
reflection at the level of API calls makes it simpler and more precise to recognise
the special patterns employed when using reflection. Therefore, we have chosen
to specify the operational semantics for the API methods as if they each were
single, although advanced, Dalvik instructions. Most of the reflection API calls
can throw exceptions, but for presentation purposes we only describe these in
some cases.

5.4. Class Objects

When the Java method Class.forName(string) is used, it generates the
Dalvik instruction invoke-static with the signature

Ljava/lang/Class;->forName(Ljava/lang/String;)Ljava/lang/Class;

For readability in the semantics and judgements, we identify such specialised
calls using meth = java/lang/Class->forName, with the method signature

22

shortened. For this method the invoke-static instruction takes one register
argument: a reference to a string that identifies the class or interface one wants
to refer to as a Class object. As is the case with the const-class instruction
(see Section 3.3), the corresponding class object may already exist. For this rule
we additionally use the auxiliary function lookupClass to find the class in the
semantic Class domain from the supplied fully qualified class name. If no class
object exists a new one is allocated on the heap and the name field is updated
to point to the string reference of the class name:

m.instructionAt(pc) = invoke-static v1 meth
meth = java/lang/Class->forName loc = R(v1) o = H(loc)

cl = lookupClass(o.field(value)) ∈ Class findClassObject(H, cl) = ⊥
(H ′, loccl) = newObject(H, java/lang/Class,m, pc) ocl = H ′(loccl)

o′cl = ocl [field 7→ ocl .field[name 7→ loc]] R′ = [retval 7→ loccl]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′[loccl 7→ o′cl], 〈m, pc+ 1, R′〉 :: SF 〉

Since no new frame is pushed on the stack, the program counter is incremented
directly. If the class object already exists, a reference to it is returned:

m.instructionAt(pc) = invoke-static v1 meth
meth = java/lang/Class->forName loc = R(v1) o = H(loc)

cl = lookupClass(o.field(value)) ∈ Class findClassObject(H, cl) = loccl 6= ⊥
A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[retval 7→ loccl]〉 :: SF 〉

For the analysis, register v1 may contain several values but we can safely ig-
nore anything other than strings, as the API method will only accept a string as
an argument. Every string reference in v1 is transferred to a new location on the
heap, into the field name on the object identified by the type java/lang/Class,
the current method and program counter. To take object sharing into account
we copy all references to java/lang/Class (including the newly created one)
to the retval register:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc) : invoke-static v1 meth
iff meth = java/lang/Class->forName

oref = ObjRef (java/lang/Class,m, pc)

∀oref ′ ∈ R̂(v1)|java/lang/String : {oref ′} ⊆ Ĥ(oref)(name)

dom(Ĥ)|java/lang/Class ⊆ R̂(m, pc+ 1)(retval)

R̂(m, pc) v{retval} R̂(m, pc+ 1)

5.5. Method Objects

A Method object represents a method declaration, i.e., an element in the
MethodDeclaration domain. This means that Class.getMethod() finds a method
declaration resolved from the class or interface represented by the Class ob-
ject. Two auxiliary functions are used in the semantics to handle method res-
olution and object creation respectively: resolvePublicMethodDeclaration and
newMethodObject.

The resolvePublicMethodDeclaration function takes as arguments a class
name, a method name, and a type signature (in total, a method signature),
and searches through the class and interface hierarchy for a matching method
declaration. The function only finds methods that are defined as public and
which are not constructors.

23

The function newMethodObject is given the method declaration and the
existing heap and returns the updated heap and the location of the Method

object where the relevant fields have been initialised. In fact it creates three new
objects: a Method, a Class, and a String, because the field declaringClass on
the Method object references a Class where the field name references a String

with the actual class or interface name:

m.instructionAt(pc) = invoke-virtual v1 v2 v3 meth
meth = java/lang/Class->getMethod

clnameo = H(R(v1)).field(name) clname = H(clnameo).field(value)
mname = H(R(v2)).field(value) types = H(R(v3)).field(value)

m = resolvePublicMethodDeclaration(clname,mname, types)
m 6= ⊥ (H ′, locm) = newMethodObject(H,m)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc+ 1, R[retval 7→ locm]〉 :: SF 〉

We have defined the search order of the resolvePublicMethodDeclaration func-
tion as follows: The current class, the superclasses of the current class and
finally the interface hierarchy of the current class. The interface hierarchies
of the superclasses are not searched despite the fact that methods declared in
these would be found if standard method resolution was used instead of reflec-
tion. This unexpected behaviour is consistent with the Java documentation [22]
and the behaviour in Android 2.3. However, the search order has changed in
Android 4.0 to be consistent with the “natural” behaviour where interfaces of
superclasses are searched as well. This change in behaviour is undocumented
and we have reported this as a bug21. Regardless of search order, the function is
able to find more than one applicable method declaration due to covariant return
types. In such cases, the one with the most specific return type is returned, and
if a single return type is not more specific than the others, an arbitrary method
declaration is returned.

In the analysis, we define mref for readability to be the reference to the new
Method object. For all references to Class objects in v1, there are one or more
class names referenced by a String on the heap in the field name. The set of
class names is bound to clnames. For each of the String references from v2
the string values (method names) are bound to mnames. The set of method
names is also put in the field name on the heap at mref . Furthermore, we use
resolvePublicMethodDeclarationsFromNames to do a search through the class
and interface hierarchy for valid method declarations, similar to the semantic
resolvePublicMethodDeclaration, but for sets of class and method names. How-
ever, it does not take argument types into account since we do not model arrays
precisely enough to do a reasonable comparison of the argument types. For each
of the resulting method declarations (m ′): the class name of the method decla-
ration is created as a String, the string reference is put into a (newly created)
Class object. Taking potential object sharing into account, all references to
the Class object are copied to the field declaringClass for mref on the heap.
Finally, a reference to the method object is present in the retval register:

21See the Android Issue Tracker (issue 31485) at http://code.google.com/p/android/

issues/detail?id=31485.

24

(Ŝ, Ĥ, R̂, Ê) |= (m, pc) : invoke-virtual v1 v2 v3 meth
iff meth = java/lang/Class->getMethod

mref = (ObjRef (java/lang/reflect/Method,m, pc))

∀oref C ∈ R̂(m, pc)(v1)|java/lang/Class :

∀oref S ∈ Ĥ(oref C)(name)|java/lang/String :

clnames = Ĥ(oref S)(value)

∀oref ′S ∈ R̂(m, pc)(v2)|java/lang/String :

mnames = Ĥ(oref ′S)(value)

{oref ′S} ⊆ Ĥ(mref)(name)
∀m ′ ∈ resolvePublicMethodDeclarationsFromNames(mnames, clnames) :

β(m′.class.name) v Ĥ(ObjRef java/lang/String,m, pc)(value)
{ObjRef (java/lang/String,m, pc)} ⊆

Ĥ(ObjRef (java/lang/Class,m, pc))(name)

dom(Ĥ)|java/lang/Class ⊆ Ĥ(mref)(declaringClass)

{mref } ⊆ R̂(m, pc+ 1)(retval)

R̂(m, pc) v{retval} R̂(m, pc+ 1)

5.6. Instantiation

The API method Class.newInstance() is used to instantiate new objects
through reflection. It requires a Class object representing the class to be in-
stantiated. The class must be a regular class, not an interface, abstract class,
primitive type or array class. In such cases, an exception is thrown (this is
left out of the semantics and analysis to simplify presentation but could eas-
ily be added). The Class object contains a fully qualified class name and we
use the auxiliary function lookupClass to find the corresponding class in the
semantic Class domain. Next, the new instance is created on the heap us-
ing the same function newObject as in the regular new-instance instruction.
Unlike the new-instance instruction, Class.newInstance() also calls the de-
fault constructor for the class being instantiated. We use an auxiliary function
lookupDefaultConstructor to find this constructor, and if none exists the func-
tion will return ⊥ and an exception should be thrown. The constructor is given
registers where the argument register has been initialised to a reference to the
newly allocated object. Control is transferred to the constructor by adding a
new stack frame, just like regular method invocation, but a reference to the
newly allocated object is also put into the retval register on the stack frame
for the current method. A constructor cannot return a value, and therefore this
reference cannot be replaced before control is returned to the current method:

m.instructionAt(pc) = invoke-virtual v1 meth
meth = java/lang/Class->newInstance

loccl = R(v1) 6= null ocl = H(loccl)
on = H(ocl .field(name)) cl = lookupClass(on.field(value))

(H ′, loc) = newObject(H, cl ,m, pc) m′ = lookupDefaultConstructor(cl) 6= ⊥
R′ = [0 7→ ⊥, . . . ,m′.numLocals − 1 7→ ⊥,m′.numLocals 7→ H ′(loc)]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒
〈S,H ′, 〈m′, 0, R′〉 :: 〈m, pc,R[retval 7→ loc]〉 :: SF 〉

25

The flow logic judgement specifies that for all the Class references given to
the method, String references exist on the heap to specify the class name, and
for each of these class names (clname) the semantic class must be found using
the function lookupClass. A reference for each of these classes is put into the
retval register for the current method, a default constructor is found and the
new object reference is placed as an argument to the constructor:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc) : invoke-virtual v1 meth
iff meth = java/lang/Class->newInstance

∀oref ∈ R̂(m, pc)(v1)|java/lang/Class :

∀oref ′ ∈ Ĥ(oref)(name)|java/lang/String :

∀clname ∈ Ĥ(oref ′)(value) :
cl = lookupClass(clname)

{ObjRef (cl ,m, pc)} ⊆ R̂(m, pc+ 1)(retval)
m′ = lookupDefaultConstructor(cl)

{ObjRef (cl ,m, pc)} ⊆ R̂(m′, 0)(m′.numLocals)

R̂(m, pc) v{retval} R̂(m, pc+ 1)

5.7. Method Invocation

Once a Method object is created it can be used to invoke the method it
represents. The API method Method.invoke() takes two arguments besides
the Method object (v1) itself: an object reference (v2) for the receiver object
on which the method should be invoked, and an array of arguments (v3). The
receiver object should be null if the method is static, and the method imple-
mentation will then be resolved from the declaring class in the Method object.
We do not formalise the invocation on static methods as this is a straightfor-
ward simplification of the case with a receiver object. We use the auxiliary
function methodSignature to extract information from a Method object to cre-
ate a corresponding signature in the semantic MethodSignature domain. The
actual method to invoke is resolved using resolveMethod, just like in the regu-
lar invoke-virtual instruction:

m.instructionAt(pc) = invoke-virtual v1 v2 v3 meth
meth = java/lang/reflect/Method->invoke R(v1) = loc1 6= null

o1 = H(loc1) o1.class � java/lang/reflect/Method

meth ′ = methodSignature(H, o1) R(v2) = loc2 6= null o2 = H(loc2)
R(v3) = loc3 a = H(loc3) ∈ Array m′ = resolveMethod(meth ′, o2.class)
a′ = unboxArgs(a,m′.argTypes, H) bf = boxingFrame(m′.returnType)
R′ = [0 7→ ⊥, . . . ,m′.numLocals − 1 7→ ⊥,m′.numLocals 7→ a′.value(0), . . . ,

m′.numLocals + a′.length− 1 7→ a′.value(a′.length− 1)]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: bf :: 〈m, pc,R〉 :: SF 〉

Before the arguments are transferred to the resolved method registers they may
have to be unboxed: the API method (Method.invoke()) receives the argu-
ments in an array with elements of type Object (Java varargs). This means
that if the invoked method has any formal arguments of primitive types, the API
method unboxes the primitive values that were boxed before the call occurred.
The primitive values are extracted from the box object based on the argument
types of the resolved method. We use an auxiliary function, unboxArgs, to
unbox all the relevant arguments and return an array with the correctly typed

26

values. These values are then transferred into the relevant registers that are put
into a new stack frame along with the method to invoke. The unboxed array,
a′, is longer than a if any of the unboxed values are of wide data types, i.e.,
long or double.

The API method always returns a value of type Object, and if the invoked
method returns a primitive value it must therefore be boxed by the API method.
The return value is not available until the invoked method returns, and therefore
we cannot yet box the value. Instead, we add an additional stack frame with
a special method to be run after the invoked method. We use an auxiliary
function boxingFrame to generate this frame. The function takes the return
type of the invoked method as an argument, such that the boxing method is
able to determine if the return value should be boxed, and what class it should
be boxed in. If boxing is to occur, it boxes the return value from the retval

register and replaces it with a reference to the boxed value. The boxing method
then returns as a regular method by incrementing the program counter of the
frame below and updating its retval register.

In the analysis, for all the Method object references in v1, we use the auxiliary
function methodSignatures to extract and create all possible method signatures
that correspond with the information on the heap for the given Method object.
All these method signatures must be resolved on all the object references for
receiver objects in v2. We do not store the order of the arguments in the array
referenced in v3, and therefore we cannot determine which of the arguments
that must be unboxed. Instead, we transfer all values as they were, as well
as unboxing all arguments that are object references, if the class (clo) is a
class that can be unboxed. The latter is determined by the auxiliary function
isBoxClass. Depending on the return type of the invoked method, the return
value of Method.invoke() is either null (if void), passed unchanged (if it is
already of a reference type) or boxed (if it is of a primitive type). The function
primToBoxClass translates a return type to the corresponding boxing class, e.g.
int to Integer, and the return value of the method is then boxed by putting
the value in the field value on the heap for the found class and the current
method and program counter. In addition, the same object reference is put in
the retval register for the next program counter in the current method. Finally,
we handle any exceptions that are referenced in the exception cache since the
invoked method might have thrown an exception:

27

(Ŝ, Ĥ, R̂, Ê) |= (m, pc) : invoke-virtual v1 v2 v3 meth
iff meth = java/lang/reflect/Method->invoke

∀oref M ∈ R̂(m, pc)(v1)|java/lang/reflect/Method :

∀meth ′ ∈ methodSignatures(Ĥ, oref M) :

∀(ObjRef (clr,mr, pcr)) ∈ R̂(m, pc)(v2) :
m′ = resolveMethod(meth ′, clr)

{ObjRef (clr,mr, pcr)} ⊆ R̂(m′, 0)(m′.numLocals)
∀1 ≤ i ≤ arity(meth ′) :

∀aref ∈ R̂(m, pc)(v3) ∩ ArrRef :

Ĥ(aref) v R̂(m′, 0)(m′.numLocals + i)

∀(ObjRef (clo,mo, pco)) ∈ Ĥ(aref) : isBoxClass(clo) ⇒
Ĥ(ObjRef (clo,mo, pco))(value) v R̂(m′, 0)(m′.numLocals + i)

m′.returnType = void ⇒ β(null) v R̂(m, pc+ 1)(retval)

m′.returnType ∈ RefType ⇒ R̂(m′,END) v R̂(m, pc+ 1)(retval)
m′.returnType ∈ PrimType ⇒
clb = primToBoxClass(m′.returnType)

R̂(m′,END) v Ĥ(ObjRef (clb,m, pc))(value)

{ObjRef (clb,m, pc)} ⊆ R̂(m, pc+ 1)(retval)

∀oref e ∈ Ê(m′) : HANDLE(R̂,Ê)(oref e, (m, pc))

R̂(m, pc) v{retval} R̂(m, pc+ 1)

6. Prototype Implementation

The control flow analysis, specified as flow logic judgements, is not in itself
immediately useful for analysing actual Dalvik bytecode apps. In this section
we describe a prototype implementation of a tool that converts the flow logic
judgements into a Prolog program that can then be executed in order to compute
an analysis result.

Our prototype combines several existing tools with our Python-based parser
and constraint generator as shown in Figure 1. First, apktool extracts the byte-
code content of an app and, leveraging another tool, baksmali, translates the
bytecode to smali, a human readable format akin to assembly languages with
instruction mnemonics, inlined constants and various annotations. We feed this
output to our parser which builds lists of classes, methods, instructions, etc.,
and a tree representing the type hierarchy in the app. Our constraint genera-
tor traverses the lists and emits Prolog rules for method resolution, exception
handlers, entry points, etc., as well as rules for each instance of each Dalvik
instruction in the program. The Prolog program can then be queried for any
information that the analysis specifies. This can for example happen interac-
tively or as part of a more specific, programmed analysis. As an example of
the latter, we generate call graphs with a special query and further process the
output to visualise the call graph of an app.

The source code for the prototype is available at: https://bitbucket.org/
erw/dalvik-bytecode-analysis-tool.

6.1. Examples

Here we demonstrate the conversion of flow logic judgements to Prolog source
code. For example, the judgement for the const instruction is:

28

APK file

apktool/unzip

DEX file

apktool/baksmali

smali source

Constraint
generator

Prolog source QueryCallgraph query

XSB Prolog engine

OutputCallgraph output

Preprocessing

DOT source

Graphviz dot

Image file

ResourcesAndroid Manifest

Callgraph
generation

Interactive
querying

smali parser

Data structures

Figure 1: Diagram of the prototype of the analysis tool. Rectangles represent data processors
and ellipses represent data.

29

(Ŝ, Ĥ, R̂, Ê) |= (m, pc) : const v c

iff β(c) v R̂(m, pc+ 1)(v)

R̂(m, pc) v{v} R̂(m, pc+ 1)

For a const instruction located at PC 48 in method m1 in some app, these two
Prolog clauses will be generated:

1 % 48: const v5, 0x1

2 hatR(m1, 49, 5, 0x1).

3 hatR(m1, 49, V, Y) :-

4 hatR(m1, 48, V, Y),

5 V \= 5.

As can be seen, this conversion and instantiation is fairly straightforward.
An example of a slightly more advanced instruction is iput which sets an

instance field to a given value on a given object, provided the object’s class
matches the one that is part of the (fully qualified) field name. Its flow logic
judgement is:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc) : iput v1 v2 fld

iff ∀(ObjRef (cl ,m′, pc′)) ∈ R̂(m, pc)(v2) :
cl � fld .class ⇒
R̂(m, pc)(v1) v Ĥ(ObjRef (cl ,m′, pc′))(fld)

R̂(m, pc) v R̂(m, pc+ 1)

As an instantiation of the Prolog code for iput, we show one from the method
Lru/watabou/moon3d/MoonView;-><init>(Landroid/content/Context;)V

which we here abbrivate to m2:

1 % 3: iput v1, p0, Lru/watabou/moon3d/MoonView;->targetSunAngle:F

2 hatH((CL, CLAddrMID, CLAddrPC), ’targetSunAngle’, Y) :-

3 hatR(m2, 3, 2, (CL, CLAddrMID, CLAddrPC)),

4 subclass(CL, ’Lru/watabou/moon3d/MoonView;’),

5 hatR(m2, 3, 1, Y).

6 hatR(m2, 4, V, Y) :-

7 hatR(m2, 3, V, Y).

The references from register p022 at the current program counter are ex-
tracted. The subclass condition check is implicit: if the subclass/2 goal fails,
the hatH/3 relation does not hold for those particular arguments and another
reference from register p0 can be tried. If it succeeds, the variable Y is bound
to each value from the source register in turn. Also, all registers are transferred
to the next program point.

6.2. Modelling Java and Android

This section discusses features and program components that are not imple-
mented in the apps and must therefore be modelled separately.

22Registers numbered by parameter, such as p0, are aliases for other registers. In this
method p0 corresponds to v2 (because numLocals is 2). We perform this translation prior to
generating the Prolog code.

30

6.2.1. API Methods

Methods that are called but not implemented in an app may be from Java
standard classes, Android APIs, and from other apps signed by the same devel-
oper key. They can also come from classes loaded at runtime but apps that do
this are not amenable to static analysis before installation in the first place as
discussed in Section 2.

Without handling external methods in some way, it is not possible to resolve
the implemented methods. The potential effects of a single method are far-
reaching. Using reflection, any method, including private ones, can be called,
and anything reachable on the heap from the references given to the unknown
method can be changed, again including private and final fields. It is even
possible that debugging or diagnostics APIs allow programmatic access to the
full heap.

In a specialised analysis it would be useful to be able to trust Java and
Android API methods not to do anything malicious, for example by just setting
their return values to top, but due to the possibilities of affecting the heap,
every API method would require some inspection to determine its effects on the
heap. APIs can also be handled as we have done with parts of the reflection
API by modelling the methods with individual flow judgements. Alternatively
they could be compiled to Dalvik bytecode and analysed along with the app.
This last approach might impact the running time of the analysis by increasing
the effective size of the app considerably and would only work for the parts of
the Java standard classes that are implemented in Java.

6.2.2. Java Features

One Java feature we needed to represent is the java/lang/Class instances
that represent primitive types. They are stored as static fields named TYPE

on the corresponding box classes, so an sget instruction is produced by the
Dalvik compiler instead of const-class. For example, the java/lang/Class

instance representing the int type is stored as Integer.TYPE. We model this
with two Prolog facts like the following for each of the eight primitive Java types
plus void:

1 hatS(’Ljava/lang/Integer;’, ’TYPE:Ljava/lang/Class;’, (’Ljava/lang/Class;’, java, 1)).

2 hatH((’Ljava/lang/Class;’, java, 1), ’name’, ’int’).

Here, (java, 1) is introduced as the creation point of the java/lang/Class

instance. The program counter values from 1 to 9 are used for the 9 objects.

6.2.3. Reflection

In order to make analysis of apps with reflection tractable, we rely on the
assumptions about the use of reflection made in Section 5.3. Briefly, they are:
all classes used through reflection are known statically, the program only uses
the standard class loader, and strings used to obtain object representations of
methods or classes can be determined statically.

Essentially these assumptions ensure that all uses of reflection can be re-
solved statically. Apps that break the first and the last assumption can not
easily be analysed, if at all. Apps that use a non-standard class loader may still
be analysed, depending on the specifics of the class loader used. Intuitively, if
the used class loader implements a restricted subset of the standard class loader

31

it can be handled by the current implementation. For other class loaders, that
do not work like the standard class loader, a formalisation and/or representation
of that class loader is needed to enable analysis with our prototype.

6.2.4. Entry Points

Android apps are simply collections of classes with methods that can be
called by the Android system. As an immediate consequence, apps do not have a
single uniquely determined entry point. Furthermore, parameters can be passed
to the entry points, both from the libraries and the Android system but also
from within the app itself. In order for an analysis to soundly capture all of this
information, not only the app but the entire system would have to be formalised
and analysed. Although an interesting challenge, such comprehensive modelling
is out of scope for our analysis and prototype. Instead we opt for an approximate
solution in which we simulate calls to potential event handler methods.

We have identified 1,695 event handler methods in the Android API such
as onCreate() for activities, onLocationChanged() for location services, or
onPictureTaken(). Some are declared on interfaces, others on classes. We
generate Prolog facts to simulate calls to the methods on all classes in the app
that implement one of the relevant API interfaces and on all subclasses of the
relevant API classes. We also call the constructors on subclasses of the four
main app components that are instantiated by Android: activities, services,
broadcast receivers, and content providers. The remaining many minor app
components are listeners that are instantiated by the app itself before they are
registered such that Android can call them.

All of these entry point methods are instance methods and as a simple over-
approximation, we invoke the methods on all object references of the class, the
method is implemented in, using the Prolog anonymous variable to ignore the
creation point. The arguments passed to the entry point methods are >

P̂rim
for

primitive arguments. For arguments of reference type, objects with the artificial
creation point (android, 0) are passed to show that the exact creation point of
the argument is unknown and could be in the Android system itself.

Class constructors (see Section 3.1) also form entry points but they do not
need to be called explicitly as they do not depend on arguments. All instructions
generate constraints whether the method they reside in is called or not.

7. Evaluating the Prototype

Here we perform an experiment to examine the practical aspects of our
formal analysis as implemented in the prototype. Therefore we only take the
formalised features into account, hence APIs and libraries are not accounted
for. Reflection is handled in the limited ways described in Section 5. While the
exception analysis has been formalised it is excluded here as well. Yet, while
unsound, our prototype has a stronger theoretical foundation than any tool we
have studied so far.

We have tested the prototype with many forms of interactive querying and
with call graph extraction on several apps from our data set, and in practice
memory usage is a bigger issue than running time. As an evaluation of the
performance of the prototype we show in Figure 2 memory usage during call
graph extraction, i.e., the computation of the domain MethodCall = Method→

32

P(Method). Here, the formalised analysis (ĈFA as defined in Section 4.1, sans
the exception component) is used to find the object references that govern dy-
namic dispatch as well as values that affect reflective calls.

The app size used in Figure 2 is measured in the number of methods, and
the evaluation is based on apps with up to 2000 methods in the three market
categories News and Magazines, Photography, and Productivity.

A memory ceiling of 5 GiB was set and experiments that hit the ceiling and
were aborted are indicated. The data shows the expansion by doubling of the
evaluation stacks in the XSB Prolog engine with groupings of values around
1, 2, and 4 GiB. The values lying between these groups result from the two
main stacks being expanded independently. Analysis of approximately half of
the apps with more than 1000 methods exceeds the memory limit.

The CPU time of the experiments that completed within the memory limit
ranged from 0.05 to 1227 s with 89% of the runs being below 200 s on an
Intel Core i7 processor. The time used for extraction and disassembly of the
bytecode from the APK file is negligible and not included. The conversion from
smali source to Prolog is included and typically takes less than 10 s for the
largest apps in this experiment. Most of the running time is spent compiling
the generated Prolog source and evaluating the call graph query, with time
distributed almost equally between these two tasks. Consequently, subsequent
queries will be answered much faster than the first one for an app.

Turning the above experiment into an estimate of the percentage of real-
world apps the prototype can handle, Figure 3 shows the distribution of app sizes
in our data set. Apps with 1000 methods or less comprise 42% of the data set,
indicating that the prototype in its current state can analyse this part of the apps
with 5 GiB of memory at its disposal. Figure 2 reveals an exponential tendency,
suggesting both that almost the same number of apps can be handled with
only 2.5 GiB memory, for example, but also that exceptionally large apps with
20000–50000 methods will use disproportionate amounts of memory. Indeed
our tests reveal that some apps require too much memory to analyse, even on a
server with 68 GB memory available to us.

Since we have implemented and improved the analysis simultaneously, read-
ability and debuggability of the Prolog code has been important to us. The
prototype is strictly proof-of-concept but we expect that it would be possible to
improve the efficiency of the analysis considerably.

The large majority of clauses are concerned with copying register values for
every step of a method. An optimisation would concern copying values directly
to the program points where they are read, thus bringing down the number of
clauses significantly. Many Dalvik instructions produce runtime exceptions and
their clauses often make up one third of the generated Prolog program. This
is another opportunity for more efficient handling. In the above experiments
runtime exceptions were not considered.

Currently the solver runs only a single thread so with respect to running time
there are big gains to be had by parallelising the computation appropriately, as
has been done for the analysis of timed automata in [6, 16]. In [21] it is shown
how the framework can be extended to general program analysis, such as the
analysis specified in this paper. The parallel implementation of the framework
is shown to scale almost linearly, up to a factor of 40 on a 48-core machine [6].

Another implementation approach, similar in spirit to our current approach,

33

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

● ●● ●

● ● ●● ●

●

●

●

●●

● ●

●●

●

●

●●●●●●

●

●

●

●

● ●

0 500 1000 1500 2000

0
1

2
3

4
5

Number of methods

M
em

or
y

us
ed

 (
G

iB
)

Figure 2: Memory usage evaluation. Crosses represent experiments running out of memory.

Number of methods

D
en

si
ty

0 2000 4000 6000 8000 10000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04

Figure 3: Histogram of number of methods per app. The last bin contains all apps with more
than 10000 methods.

34

would be to use a Datalog solver. Prolog allowed us to rapidly design and
implement a proof-of-concept prototype to validate the analysis as well as the
implementation strategy of generating constraints. Using Datalog is a suitable
avenue for future work.

8. Looking for Malware

As an example of an approach to malware detection, we have examined
apps that send text messages to see which phone numbers are used as des-
tinations. In many cases, it was not possible to learn the numbers because
they come from API methods that we do not yet support. The typical pattern
for legitimate apps that send text messages is to retrieve numbers from the
database with the user’s contact list. This requires a large number of API calls,
some to connect to the database, some to read the content, and some to store
and retrieve the results from Java collections. However, to test tracking values
across collection APIs, we created special cases of the invoke-virtual instruc-
tion for calls to methods on the java/util/ArrayList standard class (includ-
ing add(), get(), and toArray()), as well as special cases of invoke-direct
for two of its constructors. Similar to regular Java arrays, we treated Ar-
rayLists as unordered collections. Combined with tracking of the return value of
the android/database/Cursor;->getString() method which is used, among
other things, to retrieve phone numbers of contacts, we were able to verify for
an app that only contact phone numbers were used as the destination argument
of the android/telephony/SmsManager;->sendTextMessage() method.

A typical pattern for malware is to send messages to hardcoded numbers. We
found an app in our data set for which the analysis determined that the string
“1277” is the only possible value given as the destination for text messages. The
number is a Danish premium number but the description of the app on Google
Play did state that the app sends a premium message for each look-up, so the
app cannot be classified as malicious even though it seems to make money on
inattentive users.

Some apps that use hardcoded numbers (whether malicious or not) are spe-
cialised and store different numbers for different countries in XML files. These
require a considerable number of API calls to parse and extract, so in general
finding this type of malware requires implementing more API methods. We
also note that the above result in which only phone numbers of contacts are
used is not enough, on its own, to classify an app as benign. A malicious app
could for example covertly create new contact entries with expensive numbers
beforehand. However, some malware authors are looking for financial gain from
a minimal coding effort. In the next section we present such a case.

8.1. The FakePlayer Trojan

We also analysed a known malicious app posing as a movie player [3], named
Android/FakePlayer.A and AndroidOS.FakePlayer by anti-virus vendors. It
is a very small app with 15 methods in nine classes. Five of the classes are
standard Android “R” resource classes with a constructor each. Running the
analysis takes 0.3 s and less than 10 MB of memory. It identifies 45 method
calls comprising 27 unresolved API calls, six calls to the java/lang/Object

constructor API method, six calls within the app, hereof four unique, and,

35

API

Ljava
/lang

/Object;->
<init>()V

Landroid
/telephony

/SmsManager;->
sendTextMessage(Ljava

/lang
/String;Ljava

/lang
/String;Ljava

/lang
/String;Landroid

/app
/PendingIntent;Landroid

/app
/PendingIntent;)V

Lorg
/me

/androidapplication1
/DataHelper;->
<init>(Landroid

/content
/Context;)V

Lorg
/me

/androidapplication1
/DataHelper$OpenHelper;->

<init>(Landroid
/content

/Context;)V

Lorg
/me

/androidapplication1
/HelloWorld;->

onCreate(Landroid
/os

/Bundle;)V

Lorg
/me

/androidapplication1
/MoviePlayer;->

onCreate(Landroid
/os

/Bundle;)V

Lorg
/me

/androidapplication1
/DataHelper;->

canwe()Z

Lorg
/me

/androidapplication1
/DataHelper;->

was()V

Figure 4: A small part of the FakePlayer callgraph.

finally, six calls to the sendTextMessage() API method, hereof two unique.
Figure 4 shows a portion of the call graph. The unresolved part includes calls
to the Android android/widget/TextView API to display a message prompting
the user to wait for access to the video library. There is also a number of calls
to the android/database API that by manual inspection appear pointless. No
API to actually play videos to the user are accessed.

Independently of the unresolved calls our analysis shows the hardcoded
phone numbers by querying the destination argument of sendTextMessage():

invoke(’Landroid/telephony/SmsManager;->sendTextMessage(Ljava/lang/String;

Ljava/lang/String;Ljava/lang/String;Landroid/app/PendingIntent;

Landroid/app/PendingIntent;)V’, 1, (’Ljava/lang/String;’, M, PC)),

hatH((’Ljava/lang/String;’, M, PC), ’value’, Y).

This query yields the Russian phone numbers 3353 and 3354 for which each text
message may cost around e4–823.

9. Conclusion

In this paper we have discussed the results from studying 1,700 popular An-
droid apps available from the Google Play app market. The apps were studied
to determine which instructions and language features are most commonly used
in “real-life” Android apps. In addition to guiding the design of the semantics
and the control flow analysis, we believe that our study is of independent inter-
est. The insights gained into the design and implementation of Android apps

23See http://sms-price.ru/number/3353/ and http://sms-price.ru/number/3354/. Last
accessed 5 June 2012.

36

are very useful, necessary even, for developing new analyses, designing heuristics
to cover advanced language system features, and for prioritising which among
the many language features, libraries, and components in an Android system to
focus on in future work.

The main insights revealed by our study was: (1) that almost all instructions
in the Dalvik instruction set are used in most apps; (2) use of advanced lan-
guage/system features, e.g., reflection, dynamic class loading etc. is widespread.

Based on the app study, we have developed a formal operational semantics
for the core Dalvik bytecode language, incorporating all major core language
features, including dynamic dispatch, exceptions, and reflection. Concurrency
is the most notable omission and is the topic of future work. Of the non-core
language features that have not been included in the formalisation, libraries are
the most important. Without a good model of libraries and their APIs, it is
almost impossible to perform analysis of real-life apps. The formal semantics
is, of course, a prerequisite for formally developing a sound program analysis
and the basis for a proof of correctness. However, a formal semantics is also
useful as succinct yet detailed and unambiguous documentation of a language
and, in particular, of advanced and subtle language features. In our semantics,
this is especially evident in the rules dealing with reflection. We believe that
our semantics can serve as a useful tread stone for the Dalvik community, both
for developing and discussing (new) language features, but also for better tool
support able to handle also corner cases.

In this paper, the formal semantics was used for designing and formally
specifying, in a very direct way, a sound control flow analysis. As was the case
for the semantics, we believe that the formal specification of a fundamental
analysis, such as the control flow analysis, is useful for a wider community for
understanding the issues involved in analysing Dalvik bytecode. In addition,
many advanced analyses, e.g., secure information flow analysis, use control flow
analysis as a building block. Providing this building block, backed by a formal
semantics, significantly simplifies the development of new, advanced analyses.
During the development of the flow logic specification, the main difficulties
turned out to be, again, the reflection features as well as subtle interactions
between apps and the Android system.

Finally, a prototype implementation of the analysis was developed by sys-
tematically, and almost mechanically, turning the flow logic specification for a
program under analysis into a corresponding Prolog program. By executing
and querying the Prolog program the analysis result can be established. The
prototype was mainly developed as a testbed for variations of and extensions
to the control flow analysis. Furthermore, even though high performance was
not a goal of the prototype, working with the prototype helped identify partic-
ularly costly parts of the analysis, e.g., that taking all the built-in exceptions
into account in the exception analysis is prohibitively expensive.

Future work. The work described in this paper leaves many avenues open for
future work. However, we have identified the following four areas as most
promising: (1) extending the semantics and analysis to handle concurrency;
(2) extending the analysis of reflection, e.g., by adding string analysis; (3) for-
mal modelling/specification of the Android system and libraries, e.g., by making
formal (abstract) models/specifications for the APIs and use these for analysis;
and (4) development of a more comprehensive and efficient implementation, e.g.,

37

using Datalog.

Acknowledgements. We would like to thank the anonymous reviewers for catch-
ing subtle (and not so subtle) errors and for providing detailed and constructive
feedback.

References

[1] Bytecode for the Dalvik VM. Available from the Android Project
website: http://source.android.com/tech/dalvik/dalvik-bytecode.

html, last accessed 14 December 2011

[2] Bertelsen, P.: Semantics of Java byte code. Student project report, Tech-
nical University of Denmark (1997)

[3] Blasco, J.: Analysis of Trojan-SMS.AndroidOS.FakePlayer.a. Alien-
vault Labs website: http://labs.alienvault.com/labs/index.php/

2010/analysis-of-trojan-sms-androidos-fakeplayer-a/ (Aug 2010),
last accessed 20 November 2011

[4] Chin, E., Felt, A., Greenwood, K., Wagner, D.: Analyzing inter-application
communication in Android. In: Proceedings of the Annual International
Conference on Mobile Systems, Applications, and Services (2011)

[5] Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string
expressions. In: Proceedings 10th International Static Analysis Symposium
(SAS). LNCS, vol. 2694, pp. 1–18. Springer-Verlag (June 2003), available
from http://www.brics.dk/JSA/

[6] Dalsgaard, A.E., Laarman, A., Larsen, K.G., Olesen, M.C., Pol, J.v.d.:
Multi-core reachability for timed automata. In: Proceedings of Formal
Modeling and Analysis of Timed Systems (FORMATS 2012). Lecture Notes
in Computer Science, vol. 7595, pp. 91–106. Springer (2012)

[7] Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of Android
application security. In: Proceedings of the 20th USENIX Security Sym-
posium (SEC’11). pp. 315–330. USENIX Association, San Francisco, CA,
USA (Aug 2011)

[8] Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions
demystified. In: Proceedings of the 18th ACM conference on Computer and
Communications Security (CCS 2011). pp. 627–638 (2011)

[9] Freund, S.N., Mitchell, J.C.: A type system for object initialization in
the Java bytecode language. In: Proceedings of the ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’98). pp. 310–328. ACM Press, Vancouver, British Columbia,
Canada (1998)

[10] Freund, S.N., Mitchell, J.C.: A formal framework for the Java bytecode
language and verifier. In: Proceedings of the ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’99). pp. 147–166. ACM Press, Denver, CO, USA (Nov 1999)

38

[11] Hansen, R.R.: Flow Logic for Language-Based Safety and Security. Ph.D.
thesis, Technical University of Denmark (2005)

[12] Jeon, J., Micinski, K.K., Foster, J.S.: SymDroid: Symbolic execution for
Dalvik bytecode (Jul 2012), http://www.cs.umd.edu/~jfoster/papers/
symdroid.pdf

[13] Karlsen, H.S., Wognsen, E.R.: Static Analysis of Dalvik Bytecode and Re-
flection in Android. Master’s thesis, Aalborg University (Jun 2012), avail-
able from http://projekter.aau.dk/projekter/en/studentthesis/

static-analysis-of-dalvik-bytecode-and-reflection-in-

android%284dd9e717-c5d2-4603-a2d7-0f043fe9ea1f%29.html

[14] Karlsen, H.S., Wognsen, E.R., Olesen, M.C., Hansen, R.R.: Study, for-
malisation, and analysis of Dalvik bytecode. In: Informal proceedings of
The Seventh Workshop on Bytecode Semantics, Verification, Analysis and
Transformation (BYTECODE 2012) (2012), informal proceedings

[15] Kieżun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI:
A solver for string constraints. In: Proceedings of the 2009 International
Symposium on Software Testing and Analysis (ISSTA 2009). Chicago, IL,
USA (Jul 2009)

[16] Laarman, A., Olesen, M.C., Dalsgaard, A., Larsen, K.G., van de Pol, J.:
Multi-core emptiness checking of timed Buchi automata using inclusion
abstraction. In: Proceedings of the 25th International Conference on Com-
puter Aided Verification (CAV 2013). pp. 968–983. Lecture Notes in Com-
puter Science, Springer, Saint Petersburg, Russia (2013)

[17] Livshits, B., Whaley, J., Lam, M.S.: Reflection analysis for Java. Tech.
rep., Stanford University (Oct 2005)

[18] Luo, T., Hao, H., Du, W., Wang, Y., Yin, H.: Attacks on WebView in the
Android system. In: Proceedings of the 27th Annual Computer Security
Applications Conference (ACSAC 2011). pp. 343–352 (2011)

[19] Manson, J., Goetz, B.: JSR 133 (Java memory model) FAQ. Web-
page available at http://www.cs.umd.edu/~pugh/java/memoryModel/

jsr-133-faq.html (Feb 2004)

[20] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis.
Springer Verlag (1999)

[21] Olesen, M.C.: Program Analysis as Model Checking. Ph.D. thesis, Aalborg
University (2013), to appear

[22] Oracle Corporation: Java Platform, Standard Edition 6: API Speci-
fication, available from http://docs.oracle.com/javase/6/docs/api/

overview-summary.html. Last accessed 23 May 2012

[23] Oracle Corporation: JSR 133: Java Memory Model and Thread Specifi-
cation Revision, available from http://jcp.org/en/jsr/detail?id=133,
last accessed 29 May 2012

39

[24] Payet, É., Spoto, F.: Static analysis of Android programs. Information and
Software Technology 54(11), 1192–1201 (2012)

[25] Plotkin, G.D.: A structural approach to operational semantics. DAIMI
FN-19, Computer Science Department (DAIMI), Aarhus University (Sep
1981)

[26] Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A
symbolic execution framework for JavaScript. In: Proceedings of the 31st
IEEE Symposium on Security and Privacy (S&P 2010). pp. 513–528 (May
2010)

[27] Siveroni, I.: Operational semantics of the Java Card virtual machine. Jour-
nal of Logic and Algebraic Programming 58(1–2), 3–25 (Jan/Mar 2004)

[28] Spoto, F.: Julia: A generic static analyser for the Java bytecode. In: Pro-
ceedings of the 7th Workshop on Formal Techniques for Java-like Programs
(FTfJP’2005) (2005)

[29] Spoto, F., Jensen, T.P.: Class analyses as abstract interpretations of trace
semantics. ACM Trans. Program. Lang. Syst. 25(5), 578–630 (2003)

[30] Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.:
Soot — a Java optimization framework. In: Proceedings of the Conference
of the Centre for Advanced Studies on Collaborative Research (CASCON
1999). pp. 125–135 (1999)

[31] Vitek, J., Horspool, R.N., Uhl, J.S.: Compile-time analysis of object-
oriented programs. In: Proceedings International Conference on Com-
piler Construction (CC’92). Lecture Notes in Computer Science, vol. 641.
Springer Verlag (1992)

Appendix A. Generalised Instruction Set

New instruction Opcode Corresponding original instructions
nop 00 nop

move 01..09 move, move/from16, move/16, move-wide, ...

move-result 0a..0c move-result, move-result-wide, move-result-object

move-exception 0d move-exception

return-void 0e return-void

return 0f..11 return, return-wide, return-object

const 12..19 const/4, const/16, const, const/high16, ...

const-string 1a..1b const-string, const-string/jumbo

const-class 1c const-class

monitor-enter 1d monitor-enter

monitor-exit 1e monitor-exit

check-cast 1f check-cast

instance-of 20 instance-of

array-length 21 array-length

new-instance 22 new-instance

new-array 23 new-array

filled-new-array 24..25 filled-new-array, filled-new-array/range

fill-array-data 26 fill-array-data

throw 27 throw

40

New instruction Opcode Corresponding original instructions
goto 28..2a goto, goto/16, goto/32

packed-switch 2b packed-switch

sparse-switch 2c sparse-switch

cmp 2d..31 cmpl-float, cmpg-float, cmpl-double, ...

if 32..37 if-eq, if-ne, if-lt, if-ge, if-gt, if-le

ifz 38..3d if-eqz, if-nez, if-ltz, if-gez, if-gtz, if-lez

aget 44..4a aget, aget-wide, aget-object, aget-boolean, ...

aput 4b..51 aput, aput-wide, aput-object, aput-boolean, ...

iget 52..58 iget, iget-wide, iget-object, iget-boolean, ...

iput 59..5f iput, iput-wide, iput-object, iput-boolean, ...

sget 60..66 sget, sget-wide, sget-object, sget-boolean, ...

sput 67..6d sput, sput-wide, sput-object, sput-boolean, ...

invoke-virtual 6e, 74 invoke-virtual, invoke-virtual/range

invoke-super 6f, 75 invoke-super, invoke-super/range

invoke-direct 70, 76 invoke-direct, invoke-direct/range

invoke-static 71, 77 invoke-static, invoke-static/range

invoke-interface 72, 78 invoke-interface, invoke-interface/range

unop 7b..8f neg-int, not-int, neg-long, not-long, ...

binop 90..cf add-int, sub-int, ..., add-int/2addr, ...

binop-lit d0..e2 add-int/lit16, rsub-int, mul-int/lit16, ...

Appendix B. Occurrences of Instructions

The generalized instructions in our data set ordered by the percentage of the
1,700 apps in our data set that use the instruction.

41

Instruction Occurs in # of occurrences Part of total occ.
invoke-direct 100.00 % 4,533,934 4.80 %
return-void 100.00 % 2,683,104 2.84 %
invoke-virtual 99.59 % 12,718,970 13.47 %
const 99.53 % 8,157,468 8.64 %
move-result 99.47 % 12,391,920 13.13 %
invoke-super 99.47 % 215,434 0.23 %
const-string 99.29 % 5,200,603 5.51 %
new-instance 99.29 % 2,900,269 3.07 %
invoke-static 99.24 % 3,833,347 4.06 %
iput 99.12 % 3,389,122 3.59 %
iget 99.06 % 8,062,226 8.54 %
ifz 99.06 % 3,984,192 4.22 %
goto 98.76 % 3,263,902 3.46 %
return 98.06 % 2,166,727 2.29 %
move-exception 97.71 % 761,554 0.81 %
check-cast 97.53 % 1,055,790 1.12 %
if 97.24 % 1,304,228 1.38 %
binop-lit 96.59 % 1,232,732 1.31 %
invoke-interface 96.35 % 1,761,883 1.87 %
move 96.24 % 5,503,780 5.83 %
new-array 95.47 % 557,610 0.59 %
sget 95.18 % 1,792,583 1.90 %
aput 94.88 % 1,864,219 1.97 %
binop 94.53 % 1,218,279 1.29 %
aget 94.47 % 734,425 0.78 %
unop 94.00 % 530,779 0.56 %
sput 93.88 % 607,269 0.64 %
array-length 93.65 % 263,662 0.28 %
const-class 93.53 % 182,077 0.19 %
throw 93.47 % 521,299 0.55 %
packed-switch 93.35 % 86,468 0.09 %
nop 92.76 % 56,951 0.06 %
cmp 92.00 % 189,789 0.20 %
monitor-exit 88.76 % 287,310 0.30 %
monitor-enter 88.76 % 134,466 0.14 %
fill-array-data 86.71 % 97,906 0.10 %
instance-of 85.76 % 144,576 0.15 %
sparse-switch 69.71 % 21,149 0.02 %
filled-new-array 22.29 % 1,930 0.00 %
Total 94,413,932 100.00 %

Appendix C. Structural Domains

The semantic domains that were left out of the text are listed here. The
domains included in App could be specified further for an extension of the se-
mantics into the Android API.

App = (name : AppName)× (classes : P(Class))×
(interfaces : P(Interface))× (manifest : Manifest)×
(certificate : Certificate)× (resources : P(Resource))×
(assets : P(Asset))× (libs : P(Lib))

Package = (name : PackageName)× (app : App)× (classes : P(Class))

DataTable = ArrayData ∪ SparseSwitch ∪ PackedSwitch

ArrayData = (size : N0)× (data : N0 → Prim)

SparseSwitch = (sparseTargets : N0 → PC)

42

PackedSwitch = (firstKey : N0)× (size : N0)× (packedTargets : N0 → PC)

The type domains are specified using BNF notation:

Type ::= RefType | PrimType
PrimType ::= PrimSingle | PrimDouble

PrimSingle ::= boolean | char | byte | short | int | float
PrimDouble ::= long | double

RefType ::= Class | ArrayType
ArrayType ::= ArrayTypeSingle | ArrayTypeDouble

ArrayTypeSingle ::= array (RefType | PrimSingle)
ArrayTypeDouble ::= array PrimDouble

Class hierarchy functions and the subtyping relation:

super∗(⊥) = ∅
super∗(cl) = {cl .super} ∪ (cl .super).super∗

implements∗(⊥) = ∅
implements∗(cl) = cl .implements ∪ (cl .super).implements∗ ∪ (cl .implements).super∗

super∗(ifaces) =
⋃

iface∈ifaces

iface.super ∪ (iface.super).super∗

cl ∈ Class

cl � cl

cl ′ ∈ super∗(cl)

cl � cl ′
iface ∈ implements∗(cl)

cl � iface

t � t′

(array t) � (array t′)

Appendix D. Subject Reduction Proof

We here present four cases of the subject reduction proof introduced in
Section 4.3. The cases demonstrate updates to a register value and the heap
as well as the central invoke-virtual instruction and object sharing in the
const-class instruction.

Appendix D.1. The move Case

By definition:

m.instructionAt(pc) = move v1 v2
A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ R(v2)]〉 :: SF 〉

For the proof we assume an analysis result satisfying the judgement for the
instruction parameterized by its program point as well as an instantiation of the
theorem assumption with an expansion of the domains to facilitate referencing:

(Ŝ, Ĥ, R̂) |= (m, pc) : move v1 v2 (D.1)

〈S,H, 〈m, pc,R〉 :: SF 〉 RConf (Ŝ, Ĥ, R̂) (D.2)

From (D.1) and the flow logic judgement (see Section 4.2) we get

R̂(m, pc)(v2) v R̂(m, pc+ 1)(v1) (D.3)

R̂(m, pc) v{v1} R̂(m, pc+ 1) (D.4)

43

and from (D.2) it follows that

βHStaticHeap(S) v Ŝ (D.5)

βHeap(H) v Ĥ (D.6)

βHLocalReg(R) v R̂(m, pc) (D.7)

From (D.7) and the definition of v (see Section 4.1) we have

βHVal(R(v2)) v R̂(m, pc)(v2) (D.8)

While (D.8) holds for any v2 we are interested in the specific v2 given as an
argument to the instruction. Combining (D.8) and (D.3),

βHVal(R(v2)) v R̂(m, pc)(v2) v R̂(m, pc+ 1)(v1) (D.9)

From (D.4) we get

∀r ∈ dom(R̂(m, pc)) \ {v1} : R̂(m, pc)(r) v R̂(m, pc+ 1)(r) (D.10)

Now (D.9) covers the case where we consider register v1 and (D.10) covers all
other cases. Therefore:

βHLocalReg(R[v1 7→ R(v2)]) v R̂(m, pc+ 1) (D.11)

The case then follows from (D.5), (D.6), and (D.11).

Appendix D.2. The iput Case

By definition:

m.instructionAt(pc) = iput v1 v2 fld
R(v2) = loc 6= null o = H(loc)

o.class � fld .class o′ = o[field 7→ o.field[fld 7→ R(v1)]]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H[loc 7→ o′], 〈m, pc+ 1, R〉 :: SF 〉

We assume

(Ŝ, Ĥ, R̂) |= (m, pc) : iput v1 v2 fld (D.12)

〈S,H, 〈m, pc,R〉 :: SF 〉 RConf (Ŝ, Ĥ, R̂) (D.13)

From (D.12) we get
R̂(m, pc) v R̂(m, pc+ 1) (D.14)

and
∀(ObjRef cl ,m′, pc′) ∈ R̂(m, pc)(v2) :

cl � fld .class ⇒
R̂(m, pc)(v1) v Ĥ(ObjRef cl ,m′, pc′)(fld)

(D.15)

From (D.13) follows

βHStaticHeap(S) v Ŝ (D.16)

βHeap(H) v Ĥ (D.17)

βHLocalReg(R) v R̂(m, pc) (D.18)

44

Combining (D.18) and (D.14),

βHLocalReg(R) v R̂(m, pc) v R̂(m, pc+ 1) (D.19)

Two out of the three parts of the correctness of the new configuration follow
from (D.16) and (D.19).

For the final part, the dynamic heap, we recall from Section 4.3 that the
abstract representation of the concrete heap is the union of the representations
of its objects who are in turn represented as the representations of their fields.
Since we know from (D.17) that the existing representation is part of the analysis
result, we can reduce the problem of showing

βHeap(H[loc 7→ o[field 7→ o.field[fld 7→ R(v1)]]]) v Ĥ (D.20)

to showing
βHVal(R(v1)) v Ĥ(ObjRef cl ,m′, pc′)(fld) (D.21)

From (D.18) we have
βHVal(R(v1)) v R̂(m, pc)(v1) (D.22)

Because the semantic step has been taken, the premises of the semantic rule
must have been satisfied, so from (D.15) we get

R̂(m, pc)(v1) v Ĥ(ObjRef cl ,m′, pc′)(fld) (D.23)

Combining (D.22) and (D.23) finishes the proof of this case.

Appendix D.3. The const-class Sharing Object Case

There are two subcases for const-class: one that creates a new object and
one that re-uses and shares an already existing object. Here we look only at the
latter case.

By definition:

m.instructionAt(pc) = const-class v cl
findClassObject(H, cl) = locc 6= ⊥

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ locc]〉 :: SF 〉

We assume

(Ŝ, Ĥ, R̂) |= (m, pc) : const-class v cl (D.24)

〈S,H, 〈m, pc,R〉 :: SF 〉 RConf (Ŝ, Ĥ, R̂) (D.25)

From (D.25) it follows that

βHStaticHeap(S) v Ŝ (D.26)

βHeap(H) v Ĥ (D.27)

βHLocalReg(R) v R̂(m, pc) (D.28)

Further, it follows from (D.24) that

∀v′ : v 6= v′ ⇒ R̂(m, pc+ 1)(v′) = R̂(m, pc)(v′) (D.29)

45

and
dom(Ĥ)|java/lang/Class ⊆ R̂(m, pc+ 1)(v)

Now, since locc = findClassObject(H, cl) it follows that H(locc) ∈ Object with
H(locc).class = java/lang/Class, H(locc).class = cl , and H(locc).origin =
(m′, pc′) for some (m′, pc′), it follows from (D.27) that:

βHObject(H(locc)) v βHeap(H)(ObjRef (java/lang/Class,m′, pc′))

where βHVal(locc) = (ObjRef (java/lang/Class,m′, pc′)). We can now calcluate
as follows:

(βHVal ◦R[v 7→ locc])(v) = βHVal(locc)
= {(ObjRef (java/lang/Class,m′, pc′))}
⊆ dom(Ĥ)|java/lang/Class
⊆ R̂(m, pc+ 1)(v)

(D.30)

Combining (D.29) and (D.30) we have

βHLocalReg(R[v 7→ locc]) v R̂(m, pc+ 1) (D.31)

The case now follows from (D.26), (D.27), and (D.31).

Appendix D.4. The invoke-virtual Case

By definition:

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth
R(v1) = loc loc 6= null o = H(loc)

n = arity(meth) m′ = resolveMethod(meth, o.class) 6= ⊥
R′ = [0 7→ ⊥, . . . ,m′.numLocals − 1 7→ ⊥,

m′.numLocals 7→ R(v1), . . . ,m′.numLocals + n− 1 7→ R(vn)]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

We assume

(Ŝ, Ĥ, R̂) |= (m, pc) : invoke-virtual v1 . . . vn meth (D.32)

〈S,H, 〈m, pc,R〉 :: SF 〉 RConf (Ŝ, Ĥ, R̂) (D.33)

From (D.32) we get

∀(ObjRef cl ,mt, pct) ∈ R̂(m, pc)(v1) :
m′ = resolveMethod(meth, cl)
∀1 ≤ i ≤ n :

R̂(m, pc)(vi) v R̂(m′, 0)(m′.numLocals − 1 + i)

(D.34)

From (D.33) follows

βHStaticHeap(S) v Ŝ (D.35)

βHeap(H) v Ĥ (D.36)

βHLocalReg(R) v R̂(m, pc) (D.37)

46

It remains to be shown that the new stack frame, 〈m′, 0, R′〉, is correctly
represented in R̂. It follows from (D.33) that the rest of the stack, 〈m, pc,R〉 :: S,
is correctly represented. Therefore we now need to show

βHLocalReg(R
′) v R̂(m′, 0) (D.38)

and that them′ referenced in the analysis is the same as the one in the semantics.
The latter follows because R̂(m, pc)(v1) is a sound over-approximation of R(v1)
and thus, by the induction hypothesis, must contain an abstract representation
of the correct object reference. The same method lookup is used in the semantics
and in (D.34) so the correct method must be included in the analysis.

By the definition of v, (D.38) is equivalent to

∀r ∈ dom(R′) : βHVal(R
′(r)) v R̂(m′, 0)(r) (D.39)

Since R′ is used both to transfer parameter values to the called method as well
as for storing (the value of) local variables in the called method, we split this
into two cases for r ∈ dom(R′):

1. 0 ≤ r ≤ m′.numLocals − 1

2. m′.numLocals ≤ r ≤ m′.numLocals + n− 1

From the semantics it follows that R′(r) = ⊥Val for all r such that 0 ≤ r ≤
m′.numLocals − 1 and thus

βHLocalReg(R
′)(r) = βHVal(R

′(r))

= βHVal(⊥Val)
= ⊥

V̂al

v R̂(m′, 0)(r)

(D.40)

which completes the first sub-case. For the second sub-case we have from the
definition of R′ in the semantics and equations (D.37) and (D.34) that for 1 ≤
i ≤ n:

βHVal(R
′(m′.numLocals − 1 + i)) = βHVal(R(vi))

v R̂(m, pc)(vi)

v R̂(m, 0)(m′.numLocals − 1 + i)

(D.41)

Combining equations (D.40) and (D.41) we conclude that βHLocalReg(R
′) v R̂(m′, 0)

which finishes the proof.

47

