Adaptable Value-Set Analysis for Low-Level Code

Jörg Brauer¹ *, René Rydhof Hansen², Stefan Kowalewski¹, Kim G. Larsen² and Mads Chr. Olesen²

¹ Embedded Software Laboratory, RWTH Aachen University, Germany
² Department of Computer Science, Aalborg University, Denmark

Abstract. This paper presents a framework for binary code analysis that uses only SAT-based algorithms. Within the framework, incremental SAT solving is used to perform a form of weakly relational value-set analysis in a novel way, which connects the expressiveness of the value-sets to computational complexity. Another key feature of our framework is that it translates the semantics of binary code into an intermediate representation. This allows for a straightforward translation of the program semantics into Boolean logic and eases the implementation efforts. We show that leveraging the efficiency of contemporary SAT solvers allows us to prove interesting properties about medium-sized microcontroller programs.

1 Introduction

Model checking and abstract interpretation have long been considered as formal verification techniques that are diametrically opposed. In model checking, the behavior of a system is formally specified with a model. All paths through the system are then exhaustively checked against its requirements, which are classically specified in some temporal logic. Of course, the detailed nature of the requirements entails that the program is simulated in a fine-grained fashion, sometimes down to the level of individual bits. Since the complexity of this style of reasoning naturally leads to state explosion, and there has thus been much interest in representing states symbolically, i.e., to represent states that share some commonality without duplicating their commonality. As one instance, Boolean formulae have successfully been applied to this task [10].

By way of comparison, the key idea in abstract interpretation [14] is to abstract away from the detailed nature of states, and rather represent sets of concrete states using geometric concepts such as affine [19] or polyhedral spaces [15]. A program analyzer then operates over classes of states that are related in some sense — for instance, sets of states that are described by the shape of a convex polyhedron — rather than individual states. If the number of classes is small, then all paths through the program can be examined without incurring the problems of state explosion. Further, when carefully constructed, the classes of states can preserve sufficient information to prove correctness of the system. However, sometimes

* The work of Jörg Brauer was carried out while being on leave at Aalborg University.
0x42: ANDI R1 15
0x43: ADD R0 R1
0x44: LSL R0
0x45: BRCS label
0x46: INC R0

**Fig. 1.** The target of the conditional branch BRCS label depends on the value of the carry flag after the left-shift has been executed. This value, in turn, depends on the values of R0 and R1 on input.

so much detail is lost when working with abstract classes that the technique cannot infer useful results (they are too imprecise). This is because the approach critically depends on the expressiveness of the classes and the class transformers chosen to model the instructions that arise in a program. It is thus desirable to express the class transformers, also called transfer functions, as accurately as possible. The difficulty of doing so, however, necessitates automation [24,30], which is especially the case if the programs/operations are low-level and defined over finite bit-vectors [5,6]. Recent research has demonstrated that automatic abstraction on top of sophisticated decision procedures provides a way to tame this complexity for low-level code [15,16,20,21,30]. Using these approaches, a decision procedure (such as a SAT or SMT solver) is invoked on a relational representation of the semantics of the program so as to automatically compute the desired abstraction. Since representing the concrete semantics as a Boolean formula has become a standard technique in program analysis (it is colloquially also referred to as *bit-blasting*), owing much to the advances of bounded model checking [11], such encodings can straightforwardly be derived.

### 1.1 Value-Set Analysis using SAT

This paper studies an extension of the algorithm of Barrett and King [4, Fig. 3], who showed how incremental SAT solving can be used to converge onto the value-sets of a register (or bit-vector, equivalently) that is constrained by some Boolean formula. However, when considering the application of this technique to binary or assembly code analysis, it is worth noting that many blocks in a typical low-level program end in a conditional branching instruction. As an example, consider the program for 8-bit AVR microcontrollers in Fig. 1. The fragment depends on two input registers R0 and R1, which are used to mutate the contents of R0 and R1, and then jumps to label if the instruction LSL R0 (logical left-shift of R0 by one position) sets the carry flag. Otherwise, control proceeds with the increment located at address 0x46.

Our desire is to precisely reconstruct the value-sets of R0 at the entries and exits of each basic block in a program. To accurately do so for the values of R0 in instruction 0x46, it is necessary to distinguish those inputs to the program which cause the carry flag to be set from those which lead to a cleared carry. This necessitates taking the relation between the values of R0 on input and output as well as the carry-flag on output into account. To capture this relation,
we argue that it is promising to consider a bit-vector representing not only \( R_0 \), but simultaneously the carry flag (or any other status flag the branching instruction ultimately depends on). Suppose the initial block in Fig. 1 starting at address 0x42 is described by a Boolean formula \( \varphi \). Our description relies on the convention that input bit-vectors are denoted \( r_0 \) and \( r_1 \), respectively, whereas the outputs are primed. Further, each bit-vector \( r \) takes the form \( r = (r[0], \ldots, r[7]) \). Additionally, the carry flag on output is represented by a single propositional variable \( c' \). Rather than projecting \( \varphi \) onto \( r_0' \) so as to perform value-set analysis (VSA), one can likewise project \( \varphi \) onto the bit-vector \( (r_0'[0], \ldots, r_0'[7], c') \). By decomposing the resulting value-sets into those where \( c' \) is cleared and those where \( c' \) is set, we have reconstructed a 9-bit value-set representation for an 8-bit register that takes some relational information into account; it is thus weakly relational. The first contribution of this paper is a discussion and experimental evaluation of this technique, where status flags guide the extension of bit-vectors for VSA.

1.2 Intermediate Representation for Assembly Code

Implementing SAT-based program analyzers that operate on such low-level representations requires significant effort because Boolean formulae for the entire instruction set of the hardware have to be provided. Although doing so is merely an engineering task, this situation is rather unsatisfactory if the program analyzer shall support different target platforms. Indeed, the instruction set of different hardware platforms often varies only in minor details, but their sheer number makes the implementation (and testing, of course) complex. To overcome this complexity, we propose to decompose each instruction into an intermediate representation [3,9], where the instruction is characterized as an atomic sequence of basic operations. Each of the basic operations can then straightforwardly be translated into Boolean logic, thereby providing a program representation that depends on few primitive operations only. We further discuss several characteristics of our intermediate representation (IR), and discuss our experiences with connecting the VSA presented in this paper with the tool metamoc [17], which performs worst-case execution time analysis using timed automata. The system abstraction in terms of timed automata is then generated on top of a static VSA.

1.3 Structure of the Presentation

This paper builds towards these contributions using a worked example in Sect. 2. The three key ingredients of our framework are:

1. translate a given binary program into our IR,
2. express the semantics of the translated program in Boolean logic,
3. compute projections onto the relevant bit-vectors, and perform VSA using SAT solving until a fixed point is reached.
2 Worked Example

The key idea of our approach is to first translate each instruction in a program from a hardware-specific representation into an intermediate language. Liveness analysis is then performed to eliminate redundant operations from the IR. This step is followed by a conversion of each basic block into static single assignment (SSA) form [16]. The semantics of each block in the IR is then expressed in the computational domain of Boolean formulae. To derive over-approximations of value-sets of each register, we combine quantifier elimination using SAT solving [8] with a VSA based on [4, Fig. 3].

2.1 Translating a Binary Program

It is important to note that assembly instructions typically have side-effects. The instruction \texttt{ANDI R1 15} from Fig. 1, for instance, computes the bit-wise and of register \texttt{R1} with the constant \texttt{15} and stores the result in \texttt{R1} again. However, it also mutates some of the status flags, which are located in register \texttt{R95} (in case of the ATmega16). Our IR makes these hidden side-effects explicit, which then allows us to represent large parts of the instruction set using a small collection of building blocks. However, this additional flexibility also implies that some hardware-related information has to be included in the IR, most notably operand sizes and atomicity (instructions are executed atomically, and thus cannot be interrupted by an interrupt service routine). We tackle these two problems by representing a single instruction as an uninterruptible sequence of basic operations, and by postfixing the respective basic operation with one of the following operand-size identifiers:

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Meaning</th>
<th>Size</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>.b</td>
<td>Bit</td>
<td>1</td>
<td>XOR.b R0:0 R0:1 R0:2</td>
</tr>
<tr>
<td>.B</td>
<td>Byte</td>
<td>8</td>
<td>AND.B R0 R0 #15</td>
</tr>
<tr>
<td>.W</td>
<td>Word</td>
<td>16</td>
<td>INC.W R1 R1</td>
</tr>
<tr>
<td>.DW</td>
<td>Double Word</td>
<td>32</td>
<td>ADD.DW R0 R1 R2</td>
</tr>
</tbody>
</table>

In this encoding, the first operand is always the target, followed by a varying number of source operands (e.g., bit-wise negation has a single source operand whereas addition has two). The AVR instruction \texttt{AND R0 #15} then translates into \texttt{AND.B R0 R0 #15}, thus far ignoring the side-effects. The side-effects are given in
the instruction-set specification [1] by the following Boolean formula:

\[
    r_{95}'[1] \leftrightarrow \bigwedge_{i=0}^{7} \neg r_{0}'[i] \land r_{95}'[2] \leftrightarrow r_{0}'[7] \\
    \land r_{95}'[3] \leftrightarrow \neg r_{95}'[2] \oplus r_{95}'[3]
\]

Given the classical bit-wise operations, these side-effects are encoded (with some simplifications applied and using an additional macro `isZero`) as:

\[
\begin{align*}
    \text{AND.B R1 R1 #15; MOV.b R95:3 #0; MOV.b R95:2 R0:7; } \\
    \text{MOV.b R95:4 R95:2; MOV.b R95:1 isZero(R0);}
\end{align*}
\]

The other instructions can likewise be decomposed into such a sequence of building blocks, and then be conjoined to give a sequence that describes the instructions 0x42 to 0x45 from Fig. 1 as follows (note that some auxiliary variables are required to express the side-effects of ADD R0 R1):

\[
\begin{align*}
    0x42 : & \text{AND.B R1 R1 #15; MOV.b R95:3 #0; MOV.b R95:2 R1:7; } \\
            & \text{MOV.b R95:4 R95:2; MOV.b R95:1 isZero(R1);}
    0x43 : & \text{MOV.B F R0; ADD.B R0 R0 R1; MOV.b R95:1 isZero(R0); } \\
            & \text{MOV.b R95:2 R0:7; XOR.b R95:4 R95:2 R95:1; AND.b R95:0 F:7 R1:7; } \\
            & \text{NOT.b d R0:7; AND.b e R1:7 d; OR.b R95:0 R95:0 e; } \\
            & \text{AND.b e d F:7; OR.b R95:0 R95:0 e; AND.b e F:7 R1:7; } \\
            & \text{AND.b R95:3 e d; NOT.b f F:7; NOT.b g R1:7; } \\
            & \text{AND.b f f g; AND.b f f d; OR.b R95:3 R95:3 f; } \\
    0x44 : & \text{MOV.b R95:5 R0:3; MOV.b R95:0 R0:7; LSL.B R0 R0 #1; } \\
            & \text{MOV.b R95:2 R0:7; XOR.b R95:3 R95:0 R95:2; XOR.b R95:4 R95:2 R95:3; } \\
            & \text{MOV.b R95:1 isZero(R0);}
    0x45 : & \text{BRANCH (R95:0) label #0x46;}
\end{align*}
\]

Clearly, the side-effects define the lengthy part of the semantics. Hence, before translating the IR into a Boolean formula for VSA, we perform liveness analysis [26] and in order to eliminate redundant assignments, which do not have any effect on the program execution. This technique typically simplifies the programs — and thus the resulting Boolean formulae — significantly because most side-effects do not influence any further program execution, and so does liveness analysis for the given example:

\[
\begin{align*}
    0x42 : & \text{AND.B R1 R1 #15; } \\
    0x43 : & \text{ADD.B R0 R0 R1; } \\
    0x44 : & \text{MOV.b R95:0 R0:7; LSL.B R0 R0 #1; } \\
    0x45 : & \text{BRANCH (R95:0) label #0x46;}
\end{align*}
\]

Indeed, similar reductions can be observed for all our benchmark programs. It is thus meaningful with respect to tractability to decouple the explicit effects of an instruction from its side-effects.

### 2.2 Bit-Blasting Blocks

Expressing the semantics of a block in Boolean logic has become a standard technique in program analysis due to the rise in popularity of SAT-based bounded
model checkers [11]. To provide a formula that describes the semantics of the simplified block, we first apply SSA conversion (which ensures that each variable is assigned exactly once). We then have bit-vectors $V = \{r_0, r_1\}$ on input of the block, bit-vectors $V' = \{r_0', r_1', r_{95}'\}$ on output, and an additional intermediate bit-vector $r_{09}'$. The most sophisticated encoding is that of the ADD instruction, which is encoded as a full adder with intermediate carry-bits $c$. Given these bit-vectors, the instructions are translated into Boolean formulae as follows:

\[
\begin{align*}
\varphi_{0x42} &= \bigwedge_{i=0}^{3} (r_1'[i] \leftrightarrow r_1[i]) \land \bigwedge_{i=4}^{7} (\neg r_1'[i]) \\
\varphi_{0x43} &= (\bigwedge_{i=0}^{6} r_0'[i] \leftrightarrow r_0[i] \oplus r_1'[i] \lor c[i]) \land \neg c[0] \land \\
\varphi_{0x44} &= (r_{95}'[0] \leftrightarrow r_0'[7]) \land \bigwedge_{i=1}^{7} (r_0'[i] \leftrightarrow r_0'[i-1]) \land \neg r_0'[0]
\end{align*}
\]

Observe that instruction 0x45 does not alter any data, and is thus not included in the above enumeration. Then, the conjoined formula

\[\varphi = \varphi_{0x42} \land \varphi_{0x43} \land \varphi_{0x44}\]

describes how the block relates the inputs $V$ to the outputs $V'$ using some intermediate variables (which are existentially quantified). In the remainder of this example, we additionally assume that our analysis framework has inferred that $R_0$ is in the range of 110 to 120 on input of the program, and that $\varphi$ has been extended with this constraint.

### 2.3 Value-Set Analysis for Extended Bit-Vectors

The algorithm of Barrett and King [4, Fig. 3] computes the VSA of a bit-vector $v$ in unsigned or two’s complement representation as constraint by some Boolean formula $\psi$. It does so by converging onto the value-sets of $v$ using over- and under-approximation. However, the drawback of their method is that it requires $\text{vars}(\psi) = v$, i.e., $\psi$ ranges only over the propositional variables in $v$. To apply the method to the above formula $\varphi$ and compute the value-sets of $r_0 \in V$ on entry, e.g., it is thus necessary to eliminate all variables $\text{vars}(\varphi) \setminus r_0$ from $\varphi$ using existential quantifier elimination. Intuitively, this step removes all information pertaining to the variables $\text{vars}(\varphi) \setminus r_0$ from $\varphi$. In what follows, denote the operation of projecting a Boolean formula $\psi$ onto a bit-vector $v \subseteq \text{vars}(\psi)$ by $\pi_v(\psi)$. In our framework, we apply the SAT-based quantifier elimination scheme by Brauer et al. [8], though other approaches [22] are equally applicable.

**Projecting onto Extended Bit-Vectors** As stated before, it is our desire to reason about the values of register $R_0$ on the entries of both successors of instruction 0x45. These values correspond to the values of the bit-vector $r_{09}'$. Yet, we also need to take into account the relationship between $r_{09}'$ and the carry flag $r_{95}'[0]$. We therefore treat $o = r_{09}' : r_{95}'[0]$, where $: :$ denotes concatenation, as the target bit-vector for VSA, and project $\varphi$ onto $o$. Then, $\pi_o(\varphi)$ describes a Boolean relationship between $r_{09}'$ and the carry-flag $r_{95}'[0]$. 


Value-Set Analysis

We finally apply the VSA to $\pi_\phi(\omega)$ so as to compute the unsigned values of $R_0$ on entry of both successor blocks of 0x45. To express the unsigned value of a bit-vector $v = \langle v[0], \ldots, v[n] \rangle$, let $\langle v \rangle = \sum_{i=0}^{n-1} 2^i \cdot v[i]$. Since $R_0$ is an 8-bit register, and the representing bit-vector is extended by the carry-flag to give $o$, we clearly have $0 \leq \langle o \rangle \leq 2^9 - 1$. Applying VSA then yields the following value-sets:

$$\langle o \rangle \in \{ 220, 222, \ldots, 252, 254, 256, 258, \ldots, 268, 270 \}$$

Observe that the values in the range $2^8 \leq \langle o \rangle \leq 2^9 - 1$ reduced by $2^8$ correspond to those values for which the branch is taken. Likewise, the values of $\langle o \rangle$ in the range $0 \leq \langle o \rangle \leq 2^8 - 1$ correspond to the values for which the branch is not taken. Hence, the results of VSA can be interpreted as follows:

1. The value-set $\langle r' \rangle \in \{ 220, 222, \ldots, 252, 254 \}$ is propagated into the successor block 0x46. This is because it is possible that the branch is not taken for these values.

2. The value-set $\langle r' \rangle \in \{ 256, 258, \ldots, 268, 270 \}$ is reduced by 256 so as to eliminate the set carry-flag, which gives $\langle r' \rangle \in \{ 0, 2, \ldots, 12, 14 \}$ as potential values if the branch is taken.

In this example, the definition of the carry-flag is straightforward: the most significant bit of $R_0$ in instruction 0x44 is moved into the carry. This is clearly not always the case. As an example, recall the lengthy definition of the effects of ADD $R_0$ $R_1$ on the carry-flag in Sect. 2.1 (consisting of one negation, three conjunctions and three disjunctions). By encoding these relations in a single formula and projecting onto the carry-flag conjoined with the target register, our analysis makes such relations explicit.

3 Weak Relations Between Registers

It is interesting to observe that the approach can likewise be applied to derive relations between different bit-vectors which, in turn, represent different registers. Suppose we apply the same strategy to the extended bit-vector $o' = r' : r[7]$. Applying VSA to $o'$ then yields results in the range $0 \leq \langle o' \rangle \leq 2^9 - 1$. Following from the encoding of unsigned integer values, the results exhibit which values $r'$ can take for inputs such that either $0 \leq \langle r \rangle \leq 127$ or $128 \leq \langle r \rangle \leq 255$. If VSA yields a value such that the most significant bit of $o'$ is set, then $\langle o'[0], \ldots, o'[7] \rangle$ is a value which is reachable if $\langle r \rangle \geq 128$.

However, a more precise characterization of the relation between $r$ and $r'$ can be obtained by applying VSA to $o'' = o' : r[6]$, which partitions the values according to the inputs (i) $0 \leq 63$, (ii) $64 \leq 127$, (iii) $128 \leq 191$, and (iv) $192 \leq 255$. Yet, the payoff for the increase in expressiveness is higher computational complexity. In fact, the payoff is two-fold. First, the efficiency of SAT-based quantifier elimination decreases as the number of propositional variables to project onto increases. Second, the size of the resulting value-sets increases, and thus the number of SAT calls to compute them.
4 Experimental Evidence

We have implemented the techniques discussed in this paper in Java using the Sat4J solver \cite{sat4j}. The experiments were performed with the expressed aim of answering the following questions:

- How does the translation of the instructions into an IR affect the performance of SAT-based value-set analysis? This is of interest since the decoupling of the side-effects from the intended effect of the instruction allows for a more effective liveness analysis than implemented in tools such as \texttt{mc\_square} \cite{mc_square}.
- How does analyzing extended bit-vectors affect the overall performance compared to the SAT-based analysis discussed in \cite{vsa}. Their analysis recovers weakly-relational information using alternating executions of forward and backward analysis so as to capture the relation between, e.g., a register \texttt{R0} and the carry-flag after a branching has been analyzed, whereas our analysis tracks such information beforehand.

We have applied the analysis to various benchmark programs for the Intel MCS-51 microcontroller, which we have used before to evaluate the effectiveness of our analyses \cite{vsa, benchmark}. VSA is used to compute the target addresses of indirect jumps, where bit-vectors are extended based on the status flags that trigger conditional branching (like the carry-flag in the worked example). Decoupling the instructions from the side-effects led to a reduction in size of the Boolean formulae of at least 75%. Experimental results with respect to runtime requirements are shown in Tab. 1. Compared to the analysis in \cite{vsa}, the runtime decreases by at least 50% for the benchmarks, due to fewer VSA executions. The computed value-sets are identical for this benchmark set.

<table>
<thead>
<tr>
<th>Name</th>
<th>LoC</th>
<th># instr.</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Row Input</td>
<td>80</td>
<td>67</td>
<td>1.42s</td>
</tr>
<tr>
<td>Keypad</td>
<td>113</td>
<td>113</td>
<td>1.93s</td>
</tr>
<tr>
<td>Communication Link</td>
<td>111</td>
<td>164</td>
<td>1.49s</td>
</tr>
<tr>
<td>Task Scheduler</td>
<td>81</td>
<td>105</td>
<td>6.77s</td>
</tr>
<tr>
<td>Switch Case</td>
<td>82</td>
<td>166</td>
<td>8.09s</td>
</tr>
<tr>
<td>Emergency Stop</td>
<td>138</td>
<td>150</td>
<td>0.91s</td>
</tr>
</tbody>
</table>

To investigate the portability of our IR to other architectures, we have implemented a compiler from ARM assembly to the sketched IR. We have done so within the Metamoc \cite{metamoc} toolchain which already provides support for disassembling ARM binaries and reconstructing some control flow. Furthermore, Metamoc contains formal descriptions of instruction effects. We translated these formal descriptions to the required IR format manually, requiring approximately one day. Translating a different platform to the IR uncovered a few areas where we
might beneficially extend our intermediate language: the ARM architecture excessively uses conditional execution of instructions. In this situation, an instruction is executed if some logical combination of bits evaluates to \textit{true}; otherwise, the instruction is simply skipped. Compilers for ARM use such constructs frequently to simplify the control structure of programs, leading to fewer branches. Adding support for such instruction features is fundamental to support different hardware platforms. We have chosen to support such behavior by means of \textit{guarded execution}. Each operation can be annotated with a guard. If the guard evaluates to \textit{true}, the corresponding instruction is executed, and otherwise it is the identity. The translation of this construct into Boolean logic is then trivial.

5 Related Work

In abstract interpretation [14], even for a fixed abstract domain, there are typically many different ways of designing the abstract operations. Ideally, the abstract operations should be as descriptive as possible, although there is usually interplay with accuracy and complexity. A case in point is given by the seminal work of Cousot and Halbwachs [15 Sect. 4.2.1] on polyhedral analysis, which discusses different ways of modeling multiplication. However, designing transfer functions manually is difficult (cp. the critique of Granger [18] on the difficulty of designing transformers for congruences), there has thus been increasing interest in computing the abstract operations from their concrete versions automatically, as part of the analysis itself [5,6,20,21,24,27,28,30]. In their seminal work, Reps et al. [30] showed that a theorem prover can be invoked to compute an transformer on-the-fly, during the analysis, and showed that their algorithm is feasible for any domain that satisfies the ascending chain condition. Their approach was later put forward for bit-wise linear congruences [21] and affine relations [5]. Both approaches replace the theorem prover from [30] by a SAT solver and describe the concrete (relational) semantics of a program (over finite bit-vectors) in propositional Boolean logic. Further, they abstract the Boolean formulae offline and describe input-output relations in a fixed abstract domain. Although the analysis discussed in this paper is based on a similar Boolean encoding, it does not compute any transformers, but rather invokes a SAT solver dynamically, during the analysis. Contemporaneously to Reps et al. [30], it was observed by Regrèr et al. [27,28] that BDDs can be used to compute best transformers for intervals using interval subdivision. The lack of abstraction in their approach entails that the runtimes of their method are often in excess of 24h, even for 8-bit architectures.

The key algorithms used in our framework have been discussed before, though in different variations. In particular, value-set analysis heavily depends on the algorithm in [4 Fig. 3], which is combined with a recent SAT-based projection scheme by Brauer et al. [8]. Comparable projection algorithms have been proposed before [22,23], but they depend on BDDs to obtain a CNF representation of the quantifier-free formula (which can be passed to the SAT solver for value-set abstraction). By way of comparison, using the algorithm from [8] allows for
a lightweight implementation. The value-set abstraction, in turn, extends an
interval abstraction scheme for Boolean formulae using a form of dichotomic
search, which has (to the best of our knowledge) first been discussed by Codish
et al. [12] in the context of logic programming. Their scheme has later been
applied in different settings, e.g., in transfer function synthesis [6] or a reduced
product operator for intervals and congruences over finite integer arithmetic [7].
Reinbacher and Brauer [29] have proposed a similar technique for control flow
recovery from executable code, but they do not extend their bit-vectors for
value-set analysis. They thus combine SAT-based forward analysis with bounded
backward analysis so as propagate values only into the desired successor branches.

Over recent years, many different tools for binary code analysis have been
proposed, the most prominent of which probably is CodeSurfer/x86 [2]. Yet,
since the degree of error propagation is comparatively high in binary code analysis
(cp. [28]), we have decided to synthesize transfer functions (or abstractions,
respectively) in our tool \texttt{mc\square} [31] so as to keep the loss of information at
a minimum.

6 Concluding Discussion

This paper essentially advocates two techniques for binary code analysis. First of
all, it argues that SAT solving provides an effective and efficient tool for VSA of
bit-vector programs. Different fairly novel algorithms — projection using prime
implicants and dichotomic search — are paired to achieve this, thereby benefiting
from the impressive progress on state-of-the-art SAT solvers. Secondly, the efforts
required to implement a SAT-based program analysis framework largely depend
on the complexity of the target instruction set. To mitigate this problem, we have
proposed an intermediate representation based on decomposing instructions and
their side-effects into sequences of basic operations. This significantly eases the
implementation efforts and allows us to port our framework to different hardware
platforms in a very short time frame. Our experiences with the AVR ATmega,
Intel MCS-51 and ARM9 hardware platforms indicates that adding support for a
hardware platform can easily be achieved within one week, whereas several
man-months were required otherwise. In particular, testing and debugging the
implementation of the Boolean encodings is eased. In this paper, we have not
presented a formal semantics for the IR, mostly because it is straightforward to
drive such a semantics from existing relational semantics for flow-chart programs
over finite bit-vectors. Examples of such semantics are discussed in [21 Sect. 4]
or [13 Sect. 2.1].

Acknowledgements Jörg Brauer and Stefan Kowalewski were supported, in part,
by the DFG research training group 1298 Algorithmic Synthesis of Reactive and
Discrete-Continuous Systems and the by the DFG Cluster of Excellence on Ultra-
high Speed Information and Communication, German Research Foundation grant
DFG EXC 89. The authors want to thank Axel Simon for interesting technical
discussions on the subject.
References

A Reference for Download

The paper [29], which describes the use of SAT-based value-set analysis for control flow recovery, is available for download at http://www.embedded.rwth-aachen.de/lib/exe/fetch.php?media=en:lehrstuhl:mitarbeiter:brauer:emsoft11.pdf. The key differences of the paper [29] to this work are that they use alternating forward and backward executions so as to increase the expressiveness of the non-relational value-set domain on top of an encoding of the instruction set of the INTEL MCS-51 microcontroller (with translating programs into intermediate representations).