
Memory Interface Analysis
Using the Real-Time Model Checker UPPAAL

Egle Sasnauskaite Marius Mikucionis
eglese@cs.auc.dk marius@cs.auc.dk

Department of Computer Science, Aalborg University
Frederik Bajers Vej 7E, 9220 Aalborg Øst, Denmark

July 14, 2002

Abstract

In this paper we present a model of a memory interface, which is a part of a radar sys-
tem. The memory interface is modelled as a set of connected timed automata with UPPAAL

extensions. The system is modeled and verified formally using the verification tool UPPAAL.
The system safetiness, proper scheduling and the size of buffers are attempted to be verified
and optimized. Partial-order reduction method was a key solution to avoid combinatorial state
explosion. We used heuristic periodical approximation to predict the verification space and find
close cases which we could verify having particular resources. We succeeded to model and to
verify the memory interface with smaller buffer sizes and approximated memory refresh timing
within a reasonable amount of time.

1 Introduction

Radar systems have a wide range of applications in air, naval or surface observations and require
high precision and reliability. Modeling the memory interface (MI) and verifying the model in the
early design phase is important to check if the system complies to the system specifications and
avoid more expensive error corrections at a later stage. We define our problem domain in more
details in Section 1.1, formulate our goals in Section 1.2 and present an overview of what has been
done in Section 1.3.

The rest of the article is organized as follows: Section 2 describes the methods we used in
modeling and experimenting, Section 3 deals with the details of the constructed model, Section 4
discusses the results of the experiments and finally Section 5 summarizes what has been achieved.

1.1 Motivation

A radar system requires high reliability and the MI is directly responsible for the reliability of data
stream manipulation. A verified and inspected MI model is useful to avoid design faults and assure
realiability of the real time system.

The classical radar system consists of a rotating antenna, a single high frequency radio wave
transceiver (transmitter and receiver unit) and a signal processing unit. The signal processing unit
has discrete timing, thus the area around the antenna is divided into location cells (Figure 1(a)) with
corresponding signal data ����� � , where

�
is direction and � is a distance index.

Modern sensor systems [1] provide better rain penetration, resolution and accuracy of the radar
sensor and are able to distinguish between various aircraft types and vehicles. These features are
achieved by dual transmitter-receiver units configured for a frequency diversity. The frequency

1

e
d,i

(a) Signals from cells.

1’2 2’1

(b) Squint phenomena with frequency
diversity.

Figure 1: Additional data processing in SCANTER 2001 Transceiver.

diversity is achieved by so called squint compensation (Figure 1(b)): an antenna transmits two
pulses (1 and 2) of slightly different carrier frequencies in slightly different directions at time

�
;

at the time
�������

the antenna transmits other two pulses (1’ and 2’) and combines the signal (2’)
with the previous one (1). Here the memory interface needs to calculate the sliding window sum:
���	� ��� ��
 � � � � � ���� ����� � ��� � ����� � � , where � is the number of sweeps to calculate sum over.
Combination of the two signals is used to remove noise.

The MI synchronizes signals by storing data in the memory module. The MI consists of adders,
FIFO buffers, registers and an arbiter. Signal data is transfered to the adders for the sliding window
sum calculations. Buffers collect data from a narrow input or adders and pass to registers in larger
packets. Other buffers are used to receive packets from registers, split into smaller words and trans-
fer back to the adders. A register performs a role of a buffer with larger packets and exchanges data
with the memory through a fast and broad data bus. The arbiter takes care of memory addressing
and schedules registers for data transfer. The memory (SDRAM) is used for storing signals for a
certain time in order to synchronize and combine them. Moreover the data transactions between the
memory and registers are suspended while the memory is refreshing. The memory refresh cycle is
considered in the model and is controlled by the arbiter.

1.2 Goals and Aims

Our aim is to model and analyze the memory interface between input, output and memory. For that
purpose we focus on several issues:

� To model the memory interface as a combination of timed automatons with UPPAAL exten-
sions.

� The model must be small enough (in terms of clocks and states) to be able to verify the system
practically within a reasonable amount of time and memory space.

� To verify the system safety property (no deadlock, no underflow or overflow in buffers).

� To optimize the system in terms of the size of the buffers and the arbiter algorithm.

� To summarize the modeling methods for similar systems.

1.3 Contributions and Related Work

The article is a product of a case study, which was provided by the Danish radar manufacturer com-
pany Terma A/S. The case study covers modeling the memory interface for the radar system which

2

uses frequency diversity technology. The model was modeled using the UPPAAL tool developed
in collaboration between BRICS at Aalborg University and Department of Computing systems at
Uppsala University.

We used a form of partial-order reduction by introducing additional templates into our model.
There are many related projects (e.g. [2], [3]) done in this area since we are using relatively

popular automated verification tool UPPAAL [10], but the verification of signal processing systems
(such as in our case with buffered input-output and semi-synchronized buses controlling multiple
components) with UPPAAL are still quite new.

We use concepts and diagrams [9] to understand, model and describe our case details. The ideas
of the scheduler [3] and partial-order reduction [6], [8] are the key solutions widely used in our
verification. Finally we propose methods for synthesis of the optimal infinite scheduling algorithm
based on similar ideas for finite scheduling in [4].

Having components with periodical behaviour we developed method to predict the approximate
amount of resources needed for verification. The concepts and acceleration methods of the period-
ical timed automata verification discussed in [5] did not help much in our case since the periods of
our components are of the same rank and UPPAAL does not support those features yet.

2 Verification Methods

Full system verification establishes that a design or product possesses certain properties from the
system’s specification. Verification requires more time and effort than construction of a complex
software or hardware system [8]. For that reason formal verification techniques are sought to reduce
efforts and time, increase effectiveness and to design a system in a more reliable way.

Formal methods make it possible to obtain an early integration of verification in the design
phase. Deductive and model based methods of formal verification can be distinguished. We will
focus on the second one - the model based verification technique.

Model based techniques are based on models describing the system behaviour in a mathematical
precise and unambiguous manner. After the accurate modeling of the system, verification takes
place using simulation and model checking. We model the memory interface model as a timed
automaton using UPPAAL environment and features.

2.1 Timed Automata

A timed automaton
�

is a tuple ���������	��
������� � �������������	��� � ��� � ��� � � ���! #" , where:

� � is a non-empty finite set of locations with the initial location �$�&%'� ;

�
)(��+*� is a super set of directed edges.

� �,�-� � � is a function that assigns to each ��%!� a set of atomic propositions;

� � is a finite set of real-valued clocks that evolve at the same rate; a clock valuation over C
is a function /.��+02143 , assigning each clock 56%7� its current value 8��58" ; clock 5 valuation
� � � � � in is defined ��� ����� � 5 �9�: �"���;<"
 8��;#" if ;>=
 5 or ��� � � � � 5 ���: �"���;<"
@? if ;
 5 .

� �����	��� � is a function that assigns to each edge � %'
 a set of clocks �����	��� � � � " ;
� � � ��� � is a function that labels each � %'
 with a clock constraint � � ��� � � � " over � ;

� �9�! is a function which assigns an invariant to each � . Invariants on clocks are used to limit
the amount of time that may be spent in a location.

3

Enabling conditions and invariants are �����	��� ��� � � � �&� ��� � . � ���+" is a set of clock constraints over
C. A clock constraint � is defined as grammar �>.
 ��5!"�� ��� ��5!" � ��;<"�� ����� ��� �
	 , where
�:%�� and � %���:���:�
 ��� ����� . Therefore, the addition of clock variables in clock constraints like
 ��5!" � 8��;#"���� would make model checking undecidable.

The semantics of a timed automaton in defined by associating a transition system ��� . A � � � � � of
a timed automaton is a pair ����� �" where ��%!� is location and is a valuation of a clock(s). Valuation
 always satisfies the invariants in location � : �� �9�! ����" .

There are two types of transitions in ��� :

� let
� %@1 3 . We say ((�$�),(��� � �

)) is a
� � � � ����; transition, iff � � � � ���! 8��� " for all? � � � � �

.

� let � %"! . We say � ����� �"�� ��� � � � " " is a � � �-� � �9� � transition, iff an edge � exists such that
 #�)� � � � � � � " , �
 %$ �����	��� � � � " .
@?'& and � � ���! ��� � " .

Timed automata are used to model finite state real time systems [8]. In our model the compo-
nents are modeled as separate timed automata. Clocks and data variables [10] are used to define the
behaviour of the model. The components form a timed automata network communicating through
channels. We used UPPAAL to model, simulate and verify the MI as an extended timed automaton.

2.2 UPPAAL

UPPAAL[10] is a toolbox for symbolic simulation and automatic verification (via automatic model
checking) of real time systems modeled as networks of extended timed automata.

UPPAAL uses templates to construct a compound system. A UPPAAL template resembles timed
automata with additional features that we use: integer data variables and arrays of such variables,
urgent channels and committed locations.

Data variables [11] do not change their values at the delay-transitions as the clock variables do;
they can only be assigned to values from finite domains (bounded integers in our case), and therefore
they do not cause infinite-stateness. Data variables form non-clock constraints similar to clock
constraints (Section 2.1).

� �)(" is a set non-clock constraints, where (is a set of data variables. A
non-clock constraint � is defined as grammar � .
 � � "*� �+�# � � "-, � ��".� �/�0� ��� �
	 , where
 is a valuation of a data variable

� %1(, � %12 , � %3��:���:�
 � =
 ��� ����� and , %4 � � � � *��65�� .� �����7(" ranged over � � ��� � is used to denote the set of formulas that are conjunctions of clock
constraints and non-clock constraints. The elements of

� �����7(" are called ��� � � � �	� ��� � � or � � � � � � .
The global arrays of bounded integers are used to share the state information among template

instances. We exploit urgent channel synchronization priority among other channels to initialize
the template instances before the actual simulation or verification. We use committed locations to
resemble atomic ability to take several transitions in a row without other transition interruptions
[11].

The tool provides support for automatic verification of safety and liveliness properties of real-
time systems. It contains a number of additional features including graphical interfaces for design-
ing and simulating system models.

The model checking with UPPAAL also experiences the problem of the state explosion. The
state space of a system made up of several components is a product of the state spaces of the
individual parts, and its size is therefore exponential in the number of components. The exploration
of the state space is efficient only, when the reachable states are stored in the main memory and the
problem occurs when the available amount of the main memory is highly insufficient. To overcome
state-space explosion different techniques are used [8]. In our case we use a form of partial order
reduction.

4

2.3 Partial-order Reduction

Partial-order reduction [6] is a verification method for concurrent finite state systems that avoid
combinatorial explosion due to the modeling concurrency by interleaving. This method is typically
applied to asynchronous systems consisting of several parallel components, which are described
using an interleaving model of computation.

Partial-order reduction is a technique used to reduce the complexity of state space exploration.
It explores a restricted number of independent concurrent transition interleavings, while preserving
the verified property in the reduced model [7].

Concurrent events are modeled by allowing their execution in all possible orders relative to
each other. This serialization creates a large number of possible states and paths. However, not
all different interleavings can be generally distinguished by a specification. Partial-order reduction
techniques take advantage of this by generating and exploring a model with only a reduced set of
interleavings, and thus fewer states.

We use a form of static partial-order reduction method [8] at the model level and not as a
technique for state space exploration during the actual searching. We obtain partial-order reduction
in the model by introducing additional components: a timer and a bus. However forced event
serialization order was not enough for our exact study case.

2.4 Heuristic Periodical Approximation

We exerienced that the complete memory interface verification is very time and space consuming
even if the order totally determined. We found an approximate solution that seems to be feasible
in practice. This technique lets us to predict how many system states have to be explored to fully
verify it. These calculations can prevent us from running exhaustive queries and give us an idea of
how to optimize the model.

A path [8] of timed automaton is an infinite sequence � � ���-�	� � � ��� � ����� of states alternated by
transition labels such that � � 0 ��� � �

3
� for all � � ? , where labels are either � �
 , (action transition)

or � � % 1 3 (delay transition).
A compressed path (trace) [5] of timed automata is a finite or infinite sequence � �	���-� � � �	��� � � �

� � ��� � � � � ��� � � ����� of states alternated by transition labels such that � � 0 ��� � � � � % 1 3 is a delay
transition in location � � and � � 0 ���� � �

3
� � ��
 , is an action transition.

A state cycle of a timed automaton is a finite sequence �	� , � � , �
� , � � � , ��� 3 � , � � 3 � , �
� 3 � ,� � � 3 � ,..., �
�
3 � ��� , �
� 3 � ��� , �

� �
3 � ��� which appears as a suffix in a compressed path, where �	�
 �
�

3 �
and ��=
��� � � =
 ��� for all � � ��� � � � � ��� .

Obviously the timed automaton loops infinitely if it reaches the state cycle and has no other
alternative enabled edge to escape the cycle. This property is experienced in MI model since only
one edge at most is enabled at a time. UPPAAL stops the verification exactly when it encounters the
first state cycle iteration end - this is why the verification space is approximately proportional to the
period of the state cycle.

A period of a state cycle ��� , � � , �
� , � � � , ��� 3 � , � � 3 � , �
� 3 � , �
� �
3
� ,..., � � 3 � ��� , �
� 3 � ��� , �

� �
3 � ��� is

the time elapsed in one state cycle iteration: �
�� �
3 � �������� � � .

Note that a state cycle is different from a timed automaton location cycle defined in [5]. Acceler-
atable cycles are not explicitly expressed in our separate component models. Moreover the execution
of the local component cycles highly depend on the initial variable values and components, which
share the same global variables, thus making it impossible to compute an acceleration [5] of sep-
arate component models. The acceleration of MI cycles would require to transform the compound
automata network into a single timed automaton consisting of � ����� ��� ��? 	 ���! "� ��? #��$ �&% � �(' � ��? 	 �
states in our model.

Instead of accelerating the non-expressed cycles we explore how the compound system may
be divided into several separate subsystems which interact with each other as little as possible to

5

preserve the property of a constant period. Then we try to find the periods for the smaller subsystems
which is much less time and space consuming. Knowing the periods of the subsystems we calculate
the period for the full system which is expected to be the least common multiple of the subsystems
periods.

The least common multiple assumption is clearly true for unrelated periodical subsystems, but
nothing can be said about closely interacting subsystems, which change each others periodical prop-
erties. So far, this case study shows that even closely interacting memory interface subsystems
behave at least similarly to totally unrelated pseudo ones in terms of verification time and space.

3 Architecture of Memory Interface Model

The goal of the MI is to utilize the fast and broad memory bus to store and process the slow and
narrow signal data streams. To ensure the continuous data-lossless transmission, the interface con-
sists of a number of functional components shown in Figure 21: adders, first-in-first-out (FIFO)
buffers, registers, SDRAM memory and an arbiter which schedules the memory access. The notion
“16b@10-100ns” means that a bus clock period lasts from 10 to 100 nano-seconds and transfers 16
bits during each cycle.

Adder2
T=B+T’−B’

Adder1
S=A+S’−A’

512bit
Reg8

512bit
Reg7

512bit
Reg6

512bit
Reg5

512bit
Reg4

512bit
Reg3

512bit
Reg2

512bit
Reg0

512bit
Reg1

1KByte
Buffer0

1KByte
Buffer1

2KBytes
Buffer3

512Bytes
Buffer2

512Bytes
Buffer4

512Bytes
Buffer5

2KBytes
Buffer6

2KBytes
Buffer7

2KBytes
Buffer8

reads or writes
4x128b @ 30ns

4x128b @ 4x5ns
set address @10ns
set active @10ns

SD
R

A
M

Arbiter100MhzFIFO10−100MhzInput BInput A

8b@10−100ns

1x32b@10ns

32b@10ns

32b@10ns

Registers

S’

32b@10ns

32b@10ns

32b@10ns

32b@10ns

32b@10ns

32b@10ns

32b@10ns8b@10−100ns

16b@10−100ns

16b@10−100ns

16b@10−100ns
Output T

16b@10−100ns
Output S

A’

8b@10−100ns

8b@10−100ns

16b@10−100ns

8b@10−100ns

8b@10−100ns

16b@10−100ns

Figure 2: The memory interface implemented in the Scanter 2001 Transceiver[1].

All functional components are connected via wires which form several data busses. As noted in
Figure 2 input, output, adders and buffer parts are working on the same logical bus which runs at

1We performed experiments on 8 times smaller buffers, treating bytes as bits.

6

some chosen frequency from 10MHz to 100MHz (depending on antenna rotation speed, resolution
and locating distance). The second bus connects buffers and registers and runs at fixed 100MHz
bus. The third bus is exclusive to only one register at a time, it runs at 100MHz through the arbiter,
and transfers 128 bits in each half-period.

We describe all templates involved in the verification in descending order of abstraction level:
at first we describe models responsible for the partial ordering technique (Section 3.1), then models
connecting the functional components (Section 3.2) and finally the functional component details are
in Section 3.3.

3.1 Order Control Templates

The MI model contains additional models that are responsible for the partial-order reduction. The
atomic events are coordinated by series of channel synchronizations through committed locations.
By default any output channel synchronization may occur with any input channel synchronization.
To achieve a complete serialization of synchronizations we add order variables, which are shared
and supported in both: order control and ordered templates instances such as buses (controlled by
� � � � �) and others (initialized by �

� ��� � � �).

Start Stay

start!

starting:=starting+1

starting<7

starting==7

start!

(a) The starter template.

Prepare

Ticking

Pause
time<=period Start

Tacking

tick!
turn<count

tick?
turn:=turn+1

turn:=0

starting==startId
start?

turn==count
time:=0,
turn:=turn-1

tack!
time==periodtack?

turn:=turn-1

turn>0

turn==0

tack?

(b) The timer template.

Figure 3: Templates for complete partial-order reduction.

3.1.1 Starter

The starter in Figure 3(a) initializes deterministicly all instances in order to avoid a combinatorical
state explosion. To support serialized initialization all models must start by receiving �

� ��� � channel
synchronization while the global variable �

� ��� � ���8� is equal to its �
� � � � � �

.

3.1.2 Timer

There is the only clock in the MI model and it is built into a separate template of a timer shown in
Figure 3(b). The connectivity models are synchronized through the timer and the timer implements
the partial order reduction among them.

After initialization the timer sends the cycle start signal and waits for a reply signal from every
connectivity model (

� �9��� channel synchronization). After they have started the timer waits for a
period (

�
� �) to elapse and sends the end cycle signal (the

� �-��� channel synchronization). The timer
ends the cycle in a backward order - the first bus to start is the last to end (later this feature is
exploited in the � � � template).

7

3.2 Connectivity Models

Connectivity models control the order of actual event appearance, such as the start and the finish
of sending or receiving data. We do not model the actual data flow, we consider only the timing
and amount of data transfered, which is enough to detect data underflows and overflows. Alos the
calculation of memory address for the data to be written or read is out of scope of the article; we
consider only the time it takes for the arbiter to setup an address in the memory.

3.2.1 Bus

Our bus is a logical abstraction of all wires transferring data at the same timing and not the actual
bus shared by components transfer the data just between two points. The bus provides a form of
static partial-order reduction among events on the functional components (Section 3.3) level. There
are three busses in the MI - one of them is built into the arbiter. The bus sends begin and end
cycle signals to every functional component through the � � � or � � � channel synchronization while
the variable � � � holds an ID of the component to receive an event (Figure 4). Every instance of

Begin

End

Wait

Start

Stop

FinishBegin

FinishEnd

SkipTackWaitForTick

SkipTick

bus:=bus+1

bus<wireCount-1
beg!

bus==wireCount-1
beg!

end!
bus:=bus-1

bus>0

turn==me,
counter==skipCount
tack?

bus==0

end!

bus:=0

starting==startId
start?

turn==me

tick?

tick!
counter:=0

tack!

turn==me,
counter<skipCount
tack?
counter:=counter+1

tick!

tack!

tick?

turn==me

Figure 4: The template of the bus.

the � � � has its own component ID to support flexible component configuration change. There are
additional locations � � � � � �-��� , � � � ��� � � � �9��� and � � ��� � �9��� in the bus template to support longer
bus periods than the period used in the timer.

3.2.2 Arbiter

The arbiter component has three purposes in the MI: simulates the memory (refresh), excludes the
memory data bus to some register and provides partial bus functionality.

The arbiter template consists of three cycles (Figure 5): bus switching when a register is not
ready, memory refresh when a register is ready and data transfer from a register to the memory. A
bus switch cycle lasts for ��? � � and takes place when a particular register is not ready. The arbiter
chooses the next register from a queue of registers if the present register is not ready. After checking
the last one in the queue the arbiter switches to the first one, i.e. the arbiter provides round-robin
scheduling among the registers. That kind of scheduling is utilized in Terma’s radar systems.

The data transfer cycle starts when a particular register is ready and has two phases: sets up the
address for incoming data in the memory (lasts ��? � �) and transfers data in four chunks of 128 bytes

8

Start

Ready

Transfer

Wait Setting

Setup
FinishSetup

Switch

SkipTack2Switching

SkipTack

WaitForTickSkipTick

Setting2

WaitForTick2

SwitchRefresh

RefreshSkipTack1

openBus:=0,
counter:=0

starting==startId
start?

openBus:=(openBus==N-1?0:openBus+1)

reg[openBus]==0
tack!

turn==me
tack?

turn==me,
ready[openBus]==1,
reg[openBus]==512,
counter<=maxSafe

tick?
counter:=counter+1

end!
beg!

tick!

turn==me
tack?

tack!

turn==me
tack?

tack!
reg[openBus]>0

turn==me
tick?
counter:=counter+1

tick!

turn==me,
ready[openBus]==0

tick?

counter:=(counter==maxUnsafe-1?
0:counter+1)

tick!

turn==me

tack?

tack!
turn==me

tick?
counter:=counter+1

tick!

tack!

turn==me
tick?
counter:=(counter==maxUnsafe-1?0:counter+1),
openBus:=(openBus==N-1?0:openBus+1)

tick!turn==me

tack?

tack!

turn==me,
ready[openBus]==1,
counter>maxSafe
tick?

counter:=(counter==maxUnsafe-1?0:counter+1)

Figure 5: The template of the arbiter.

per
�
� � each and delays � ? � � in total.

The arbiter simulates a memory refresh cycle (Section 3.3.4). The arbiter takes precautions
against interruption of the register data transfer. There is a maximal safe period to start transferring
data without interruption of data refresh. The arbiter suspends a data transfer when the maximal
safe moment is reached (��� � � � � �4�
 � � 5 � � � �). The arbiter can still switch registers during
the memory refresh and if a register is ready for data transfer the arbiter just waits for the memory
refresh to finish.

3.3 Component Models

In this section we describe the main components which were displayed in the transceiver memory
interface in Figure 2. The memory interface contains input, output, adders. Their functionality is
described in Section 3.3.1. A buffer is a region of memory reserved for use as an intermediate repos-
itory, which accumulates data signals into packets and then passes them on for further processing
(Section 3.3.2). A register is a component closely connected to a certain buffer. It splits 256 bit
words into 128 bit words and exploits broad memory bus to transfer them during each half-cycle.
The details are described in Section 3.3.3.

3.3.1 Input, Output and Adders

After the � � � concept introduction (Section 3.2.1) the input, output and even adders become trivial.
The input sets up a new word (8 bits) transfer into the system by the beginning of a bus cycle, stops
the transfer when the cycle ends, starts a new 8 bits transfer on the next cycle beginning and so on
(see diagram in Figure 6(a)). The output component does the same thing with a different amount
of data. The � � � � � component needs several data inputs/outputs to receive all needed data and to
send a previous operation result. However these events happen at the same time: they start on the
beginning of a cycle and finish at the end. The above implies the adder model shown in Figure 6(b).
Having these arguments we do not put these components into the compound model since they just
take up the verification memory resources and have no impact to actual verification.

9

16bit 16bit 16bit 16bit 16bit16bit

8bit 8bit 8bit 8bit 8bit 8bit

clock
bus

output
signal

input
signal

be
gi

n

be
gi

n

be
gi

n

be
gi

n

be
gi

n

en
d

en
d

en
d

en
d

en
d

en
d

be
gi

n

0 1 2 3 4 time, periods

(a) The bus events, the input and output sig-
nal timed diagram.

SwitchCycle CyclebegA?

begAp? begS?

begSp?

endA?

endAp?endS?

endSp?

(b) The adder component model.

Figure 6: Input, output and adders are stateless components.

3.3.2 Buffer

A buffer is responsible for asynchronous data flow between the first (wires connecting input, output,
adders and buffers) and the second (wires connecting buffers and registers) buses. There are two
templates for the buffer component: inBuffer and outBuffer.

Idle

Writing

ReadingReadingWriting

Start

ReadingIgnoreWrite

IgnoreWrite

inWire==inBus,
ready[regId]==0,
space[id+N]>=putAmount
begPut?
space[id+N]:=space[id+N]-putAmount

endPut?

space[id]:=space[id]+putAmount

inWire==inBus,
ready[regId]==0

outWire==outBus,
space[id]>=getAmount
begGet?
space[id]:=space[id]-getAmount

endGet?
space[id+N]:=space[id+N]+getAmount

outWire==outBus

inWire==inBus,
ready[regId]==0,
space[id+N]>=putAmount
begPut?
space[id+N]:=space[id+N]-putAmount

endGet?
space[id+N]:=space[id+N]+getAmount

outWire==outBus

endPut?
space[id]:=space[id]+putAmount

inWire==inBus,
ready[regId]==0

outWire==outBus,
space[id]>=getAmount
begGet?
space[id]:=space[id]-getAmount

space[id]:=initial,
space[id+N]:=size-initial

starting==startId
start?

inWire==inBus,
ready[regId]==1
begPut?

inWire==inBus,
ready[regId]==1
endPut?

inWire==inBus,
ready[regId]==1
endPut?

inWire==inBus,
ready[regId]==1
begPut?

inWire==inBus
endPut?

inWire==inBus,
ready[regId]==0,
space[id+N]<putAmount
begPut?

outWire==outBus,
space[id]>=getAmount
begGet?

space[id]:=space[id]-getAmount

outWire==outBus
endGet?
space[id+N]:=space[id+N]+getAmount

inWire==inBus
endPut?

inWire==inBus,
ready[regId]==0,
space[id+N]<putAmount
begPut?

Figure 7: The UPPAAL template for the output buffer.

The � � � � � � � � � template has parameters: startId for the initialization, id specifies the index
used to access space array, size specifies the capacity of the buffer, initial initializes the buffer with
requested amount of data, regId specifies the register the buffer is bounded to, inWire and outWire
specifies number in the inputting and outputting bus queues, inBus and outBus provides the ordering
in inputting ant outputting buses, begPut and emphendPut are synchronizations for beginning and
ending the input, putAmount specifies the amount of data put at one bus cycle, begGet, endGet,
getAmount mean the same for the outputting.

The output buffer (Figure 7) reads data from a register through a bus in � �&� � ��? � � and outputs
data to an adder through amother bus in � $ � � ��? � � or �&� � ��? � � . An important issue is the amount

10

of used and empty space in the buffer. The filled memory amount is stored in the space variable
� � ��� � $ � � & where � � is the indentificator of the buffer. The variable � � ��� � $ � � � � & stores the amount
of the empty memory space, where

�
is the number of buffers. Figure 8 shows the possible buffer

images which map to states Idle and ReadingWriting in Figure 7.

headtail

������
���
������
���
���������������
���������������
���������������
���������������

������
���
	�		�	
	�	

�
�

�
�

�
�

������
���
������
���
��
�
���������������
���������������

������
���
������
���
���������������
������
���

in out

Buffer usedempty empty

(a) Idle.

headtail

���������������
������
���

���������������
������
���

������
���
������
���
���������������
���������������
���������������
������
���
������
���
������
���
 � �
 �
!�!!�!
!�!
"�"�""�"�""�"�"
#�#�##�#�##�#�#
$�$�$$�$�$$�$�$
%�%�%%�%�%%�%�%

&�&&�&
&�&
'�''�'
'�'
(�((�(
(�(
)�))�)
)�)

in out

being readusedbeing writtenemptyBuffer empty

(b) Read and write.

Figure 8: Possible buffer implementation: various states.

The buffer writes, reads or does both operations at the same time if certain properties hold to
perform a transaction: for writing the empty space is not smaller than the incoming amount of data
� � ��� � $ � � � � & �
 � � � � � � � � � ; for reading the used space is not smaller that the outgoing amount
of data � � ��� � $ � � & �
 � � � � � � � � � ; the register is ready for transaction � � � � ; $ � � � � � &
@? .

A peculiar property of the outBuffer is that it agrees with the register about getting data but it
can not ignore constant out-going data flow.

The inBuffer performs the same operations, but it gets data from the input or the adder in� $ � � ��? � � or �&� � ��? � � and transfers the data to a register in � �&� � ��? � � . Both templates are similar
and have a “mirror” view of each other, just � � �'� � � � � � � � state is logically replaced by � ���'� � �+* � � �
in inBuffer. All buffers are connected to the same busses, but the variable for ��� � ��� � for one tem-
plate becomes � � � � ��� � for another and vice versa.

Buffers and registers form tightly connected pairs which begin and end communication in a
certain order described in Section 3.3.3.

3.3.3 Register

Every register is closely connected to a certain input or output buffer. The register template is
designed to be used in both cases: to upload and download data to and from buffers through ,.-0/214365
and -6798+143:5 channel synchronization. A register also exchanges data with the memory through
� � �<; ��� and � � � ; ��� channel synchronization (Figure 9).

The register template consists of two main cycles: interaction with a buffer and data exchange
with memory. The register interacts only with a certain buffer until the register gets full and is ready
to communicate with the memory. Data transfer is suspended if the buffer is filled or contains no
enough data.

A different situation is when the register gets full and ready to communicate with the memory.
A register needs additional states and transitions to remember the buffer bus state during communi-
cation with the memory.

The buffer and the register are tightly connected and rely on the order of the bus events: the
register needs to start a cycle before the buffer does since it needs to know the buffer state before
cycle start; the buffer needs to end the cycle before the register does since the buffer needs to know
the register state before the cycle ends. This ordering is implemented in the bus template: a bus
cycles ends in an opposite ordering than it starts.

3.3.4 Memory

The memory used in MI is a Synchronous Dynamic Random Access Memory (SDRAM), which
needs to be refreshed from time to time not to loose the data. The main argument to model the

11

Wait

Ready

Start

TransferM

TransferB

Prepare

bufferBusy1

bufferBusy2 Prepare2bufferBusy3

space[spaceId]>=32,
bus==idBuff

begBuff?

reg[idMem]:=reg[idMem]+32

reg[idMem]:=status,
ready[idMem]:=0

status<512,
starting==startId
start?

openBus==idMem

begMem?

reg[idMem]:=reg[idMem]-128

reg[idMem]==0

endMem?
ready[idMem]:=0

reg[idMem]>0

endMem?

endBuff?

reg[idMem]<512,
bus==idBuff

begMem?
reg[idMem]:=reg[idMem]-128

begBuff?
bus==idBuff

endBuff?
bus==idBuff

endBuff?

bus==idBuff

begBuff?

bus==idBuffreg[idMem]==512, bus==idBuff

ready[idMem]:=1
endBuff?

status==512, starting==startId
reg[idMem]:=status, ready[idMem]:=1

start?

begBuff?

bus==idBuff

endBuff?
bus==idBuff

reg[idMem]>0

endMem?

begMem?

reg[idMem]:=reg[idMem]-128

reg[idMem]==0

endMem?

bus==idBuff

endBuff?

ready[idMem]:=0

openBus==idMem

begMem?

reg[idMem]:=reg[idMem]-128

space[spaceId]<32,
bus==idBuff

begBuff?

Figure 9: The template of a register.

memory is that memory can not participate in data transmitions during its refresh time.
The memory refresh period consists of the time before refreshing � � $ � � � � and refresh time��?&? � � . The whole memory refresh period lasts for � �	� � � � � . There can be other alternative memory

refresh implementations, such that memory chip can remember only for � � $ � � � � and thus must be
refreshed before ��?&? � � in advance. Such memory refresh would have the period of � � $ � � � � .

Memory refresh process isolates memory from other components, while they still have to sus-
tain a data flow without interruptions. We model the behaviour of the memory inside the arbiter
(Section 3.2.2) since the refresh process is simple enough. A separate template for the memory
would take much efforts to simulate the synchronized actions with arbiter.

4 Verification Results

To develop and verify a complete compound MI at once is not an easy task. We have developed a
much smaller similar system to experiment on first. The small system is connected the same way
like the complete MI (Figure 2), except it consists of just two buffers, two registers, and the arbiter
being the same. The input buffer receives 8 bits and the output buffer sends 16 bits.

Facing the periodical state explosion at first we search for the MI period length without memory
refresh mechanism. However UPPAAL does not provide a straightforward mechanism to find the
very long cycles or periods of the model (UPPAAL takes much memory and time to dump it all). The
experiment procedure is a binary search for the first start and the first end of the system period. The
search is formulated as a number of queries like

��� � ; � � ��� � � � � � �

 � � ��� � � � � � � � � � � ; � � ��� � � � � �

12

� � ��� � � � � � which is a shortcut for “all component states are equal to the cycle starting state after
the period starting time”. The results displayed in Table 1 are relevant to the model timing charac-
teristics.

Period properties: Start (ns) End (ns) Length (ns)
Small MI period: � ?

� � ? $ ' ?
 � � ���
Complete MI period:

� � ? $ � � ?
�	��$?
 � � � � 	 ���

Memory refresh period: ? � �	� � � � �	� � �
 � 	 � � � � � �

Table 1: System periods without memory refresh.

After experimenting with different memory refresh timings we got the results summarized in
Table 2. We were able to verify the small MI in any case of refresh timing, but had problems with

Model Case Refresh period LCM Verification space
Small MI actual � �	� � � � � � ? � � � ?&? � � � ' � ? � �9�� � � � � "
Small MI close � �	� � ? � � � � � � � ? � � � ?&? ��� �&� � ' $; "
Small MI fastest � � � $? � � � � � $? � � $ ��� �&� � � � $; "
Complete MI actual � �	� � � � � � � � � � � ?&? � � not verified
Complete MI close � �	� � ? � � ��� ' � $? � � � � ����

� � �
; "

Complete MI fastest � � � $? � � ' $? � ? � � � � ��� �&� � � $; "
Complete MI other � � $?&? � � �

� ' ' ?&? � � � � � � ����
�
�
�
; "

Table 2: The small and complete memory interface verification results.

the actual case of the complete MI. Nevertheless we tried a bit different refresh timings which led
to success. We successfully verified the very close case of the complete MI: the chosen � �	� � ? � �
refresh period is reasonable since the memory interface could be programmed to refresh the memory
a bit earlier without causing any damage, while the longer memory refresh timing seems to be more
advantageous to the system. The “other” case in Table 2 is the closest to alternative memory refresh
implementation we were able to verify.

After a number of experiments we discovered that the amount of memory used for small MI
verification is proportional to least common multiple (LCM in the Table 2) discussed in Section2.4.
This draws a conclusion that the small MI interacts with the memory refresh mechanism reasonably
little. After an exhaustive search for verification space patterns in the complete MI we failed to
find any tolerable correlation with LCM (Figure 13). We noticed clear correlations in cases with
small LCM but not in larger ones. We observed that the ratio of the verification space and LCM
varies ? � ��� � $ � ? ����� 5 � � . We can make an assumption that the actual case of the complete MI can
be verified having � �

� ��?	� * � ? � ����
 $ � ? � " % � � ��
 ��? � � � � memory space. While the model is
completely deterministic we need not to worry about the verification time: time in our verification is
proportional to the memory space used and memory ended up being the critical resource, not time.

4.1 Experiment Data

Points above 4GB are not completely verified (because of the lack of memory). The hypothetical
points in Figures 12 and 13 were computed with the following equation: � � � � �9��� � �9� � � � �-� �

�4� ; � ����� ��� " � � � � 5 ��? � ' , where ��� is a period of the system without memory refresh, ��� is the
memory refresh period, � � � is an average memory amount per � � � verification. � � �
 $

���&��; � ���
for the small MI and � � �
 � � $ �&��; � � � for the complete MI. � � � for the small MI was adopted
according to the most exhaustive verification, and � � � for the complete MI came from the obser-
vation that the average memory space consumption is about 3 times larger than in the small system

13

according to the ratio of variables used in both systems. According to Figure 13 a complete MI may
be verified in

%
� � � � $ � space.

time

Memory refresh period Memory refresh period

MI periods without memory refresh

Initialization MI period with memory refresh

(a) Period lengths without collisions are predicted.

time

MI period with memory refresh

collision avoided collision

Initialization

Memory refresh periodMemory refresh period

MI periods without memory refresh

(b) Single collision shifts and prolongs the period.

Figure 10: Examples of period interactions.

A great difference between hypothetical and experimental data in � � � $? � � and � � $ � ? � � mem-
ory period cases in Figure 12 can be explained by collisions between MI periods and memory
refresh period: if the memory refresh happens just before some register become ready to exchange
data with the memory, the exchange is postponed and the MI period is prolonged (Figure 10(b)).
Each such collision can cost a time which is no longer than the MI period in an ideal situation drawn
in Figure 10(a). So far, the experimental data exceeded the hypothetical data no more than 2 times,
i.e. there was one collision at most. Such collision, in some cases even helps to get to the situation
where we have already been. This explains why some of the results verified faster than expected in
Figure 13.

4.2 The Partial-Order Reduction Influence

Starter. We have 23 models in the system, so the �
� � � � � � template needs to start the remaining 22

instances. Without the �
� � � � � � template UPPAAL would initialize our models in a non-deterministic

way having � � � % ��? 	 � calculation branches instead of just one.
Timer. We have 3 buses running in parallel which would start � �

$
non-deterministic calcu-

lation branches on each beginning of a timer period. On each ending of a timer period all branches
meet at the same point, but until that point the verification memory has still wasted almost six times
than actually needed.

Bus. We have 9 components on the input/output bus, 18 on the buffer-register bus and 9 on
the arbiter bus. The bus elements save �

� % � � $ � ��?�� , � �
� % $ �(' � ��? � � and �

�
similar transition

configurations respectively on the start of each bus cycle.

4.3 The Arbiter Algorithm

Verification showed that round-robin algorithm is sufficient for the specified buffer sizes. The ar-
biter algorithm is an important issue if we would like to optimize the buffer sizes. Inspired by [4]
we propose to synthesize the more optimal arbiter algorithm by making it non-deterministic and
searching for the proper schedule to satisfy liveliness property (

���
not buffer.overflow and not

buffer.underflow). To implement this idea we need two additional states in the buffers to identify
overflow and underflow, since they just deadlock the system in case of underflow or overflow in our
present model.

As discussed in 4.2, the non-deterministic arbiter will explode the number of states in the sys-
tem: if we assume at least two registers are ready at each timer cycle start and the system runs
in periods of � timer cycles, we would have � � non-deterministic calculation branches. These
non-deterministic branches may never end up, leading to the halting problem if such scheduling
algorithm does not contain cycles or does not exist for particular buffer sizes. To avoid non-
determinism we propose simple heuristics to choose particular register: choose the fullest buffer
of the corresponding ready register. The reason is that the most filled/emptied buffer is most

14

Start Loop

ChooseMaxI

NoneReady

i:=0,
maxn:=0,
maxi:=0

i==N,
ready[maxi]==1

i<N,
ready[i]==1,
space[i]>maxn

maxn:=number[i],
maxi:=i,
i:=i+1

i<N,
ready[i]==0
i:=i+1

i==N,
ready[maxi]==0

Figure 11: The UPPAAL template for finding the maximum.

likely to be overflowed/underflowed. Figure 11 shows a possible part of arbiter scheduling al-
gorithm to choose ready register according to the maximum filled buffer. These heuristic solu-
tion is suitable only for the algorithm synthesis and not in practice, unless we could implement
constant-time register decider in practice. In this case the verification path still could be long
and generate a complex arbiter algorithm. The upper limit for this algorithm length would be
� ��? � ' 5 � " 	

�
�
� � � 5 � " � �

� � ? ' � 5 � $ " � �
�
 �

� � � � % ��? � - the total state space of the system
(multiplication of buffer sizes divided by granularity and the arbiter switch position count).

4.4 The Buffers Sizes

The size of the buffers used in the models was eight times smaller than proposed by Terma A/S. But
the ratio among buffer sizes was kept the same. Because of much smaller buffer sizes we were able
to verify the models in reasonable space and time.

Having a round-robin scheduling algorithm in the arbiter proved to be simple and sufficient
solution for all verified memory refresh timing cases with existing buffer sizes. However any attempt
to reduce the buffer sizes led into various deadlock situations where random buffers were overflowed
or underflowed. We could not recognize the patterns which buffer sizes should be adjusted even to
minimize the total buffer sizes.

5 Conclusion

We proposed a UPPAAL model of the memory interface which is small enough to verify the system
practically within a reasonable amount of time and space with reasonably approximated memory
refresh timing. According to our approximate calculations we would need about 38GB of memory
to verify the model with exact memory refresh timing.

Our model is verified to be deadlock free in many cases but we experienced lack of the memory
for the actual case verification.

So far all investigations led to negative results towards buffer size optimizations. However it
may be possible with another arbiter algorithm.

The designed model of the memory interface is flexible to be adopted to systems with various
component configurations. So far we noticed that:

� the bus template can be optimized to be aware of readiness of other components to avoid
irrelevant cycles;

� the arbiter could have memory refresh in the middle of a register data transfer, which would
minimize the memory refresh influence to MI periods.

15

We believe that the model can be extended to simulate actual data flow using additional arrays
of bounded integers if needed.

Future UPPAAL versions will have arrays of channels. They could simplify the templates to
avoid shared bus variables that control the order of other components.

References

[1] TERMA Elektronik AS. Product Specification SCANTER 2001 Transceiver, 2000.

[2] Klaus Havelund, Kim Guldstrand Larsen and Arne Skou. Formal Verification of a Power Con-
troller Using the Real-Time Model Checker UPPAAL.

[3] Kim Guldstrand Larsen and others. Model-Checking Real-Time Control Programs Verifying
LEGO c

�
MINDSTORMS ��� Systems Using UPPAAL.

[4] Guided synthesis of control programs using UPPAAL for VHS case study 5. Thomas
Hune, Kim G. Larsen, and Paul Pettersson. VHS deliverable in Workpackage CS.1.1, 1999.
http://www.cs.auc.dk/research/FS/VHS/hlp99.ps.gz

[5] M. Hendriks and K. G. Larsen Exact Acceleration of Real-Time Model Checking, Technical
Report 22. CSI University of Nijmegen, December 2001. ETAPS 2002. Theory and Practice
of Time Systems (TPTS’02) April 6-7, Grenoble, France.

[6] P. Godefroid. Using Partial Orders to Improve Automatic Verification Methods. In Proc. 2nd
Workshop on Computer Aided Verification, volume 531 of Lecture Notes in Computer Sci-
ence, pages 176-185, Rutgers, June 1990. Springer-Verlag. Extended version in ACM/AMS
DIMACS Series, volume 3, pages 321-340, 1991.

[7] Marius Minea. Partial Order Reduction for Verfication of Timed Systems. December 1999,
CMU-CS-00-102. School of Computer Science Carnegie Mellon University Pittsburgh, PA
15213.

[8] Joost-Pieter Katoen. Concepts, algorithms and tools for Model Checking. Lecture notes of the
course “Mechanised validation of paralel systems”. Course number 10359 1998/1999.

[9] Kenneth J. Breeding Digital design fundamentals. Englewood Cliffs, N.J. : Prentice Hall, cop.
1992. ISBN- 0132112779. P. 113

[10] Franck Cassez et al. Modeling and verification of parallel processes: 4th summer school,
MOVEP 2000 Nantes, France, June 19 - 23, 2000: revised tutorial lectures. LNCS 2067.
Berlin : Springer, 2001.

[11] Paul Pettersson. Modelling and Verification of Real-Time Systems Using Timed Automata:
Theory and Practice. A dissertation in Computer Systems for the degree of Doctor of Philos-
ophy. Publicly examined in room X, Uppsala University, 19 February 1999. Technical Report
DoCS 99/101. ISSN 0283-0574.

16

Appended Experiment Data Graphs

1E+4

1E+5

1E+6

1E+7

15000 15050 15100 15150 15200 15250 15300 15350 15400 15450 15500 15550 15600 15650 15700 15750 15800 15850 15900 15950 16000

��������� 	�� �
 � ��� ������ � ����� � �

����� �
 � � � � � ������������� 	�� ��� � 	 � ��� � � � � ��� ��� ������� � � ���
�� ����� � ����� � ��� ��� � �

Figure 12: The small MI verification space on different refresh periods.

1E+5

1E+6

1E+7

1E+8

15000 15050 15100 15150 15200 15250 15300 15350 15400 15450 15500 15550 15600 15650 15700 15750 15800 15850 15900 15950 16000

��������� 	�� �
 � � �������� � ������� �

�!��� �
 � � � � � ���"��������� 	�� �#� � 	 � ��� � � � � ��� ��� ������� � � ���
�� ����� � ����� � ��� ��� � �

Figure 13: The complete MI verification space on different refresh periods.

17

