
Syntax and semantics
Basic Imperative Statements and Control

Structures

1 Learning Objectives

1. Evaluating variables in states.

2. Big-Step Semantics for STM; derivation trees.

3. Small-Step Semantics for STM; derivation trees.

4. Equivalence of Big-Step and Small-Step Semantics for BIMS.

5. Loop Constructs: Repeat-loops and For-loops.

6. Semantic Equivalence.

7. Abnormal termination.

8. Nondeterminism

9. Concurrency

2 Readings

Hüttel’s book:
Part II – First Examples
Chapter 4. Basic Imperative Statements
Chapter 5. Control structures

1



3 Exercises

Exercise 1. Consider the following big-step semantics transition rule for the
variable allocation.

(ass) 〈x := a, s〉 → s[x 7→ v] where s ` a→a v

Identify the part of the rule corresponding to the item below, underline
it and label it with the number of the item it refers to.

1. the list of values for the variables before executing the command;

2. the evaluation of right hand side of the assignment;

3. the value of the right hand side of the transition;

4. the list of values for the variables after the command has been per-
formed.

Exercise 2. Consider the following big-step semantics transition rule for the
sequential composition.

(comp-1)
〈S1, s〉 ⇒ 〈S ′

1, s
′〉

〈S1;S2, s〉 ⇒ 〈S ′
1;S2, s′〉

(comp-2)
〈S1, s〉 ⇒ s′

〈S1;S2, s〉 ⇒ 〈S2, s′〉

Identify the part of the rule corresponding to the item below, underline
it and label it with the number of the item it refers to (the same item may
refer to both of the rules).

1. The first command terminates after one step.

2. The first command is terminated, and the second command can be
executed.

3. The first command does not terminate after one step.

4. The remaining portion of the first command.

5. The list of values for the variables after the sequential composition has
been performed.

2



Exercise 3. Give a small-step semantics for the repeat-until command. Hint:
It is a good idea to take inspiration from small-step rule for while-loops. But
do not use while loops in the rules you propose. Think instead of what should
be the first thing to happen when a repeat loop is executed. And what is
the next thing to be done, then?

Exercise 4. Let S = i := 1; while (¬x = 0) do (i := i * x; x := x-1).
Show the derivation for 〈S, s〉 → s′ where s = [x −→ 3] and show how s′ is
defined. You do not have to specify the derivations trees for the Aexp- and
Bexp-transitions.

Exercise 5. Find all transitions (if any) in the transition sequence starting
with if x > 3 then (x := 3+x; y := 4) else skip from the state
s = [x −→ 4]. Construct derivations trees for each transition. You do not
need to specify derivations trees for Aexp- and Bexp-transitions.

Exercise 6. Give a small-step semantics for the repeat-until command. Hint:
It is a good idea to take inspiration from small-step rule for while-loops. But
do not use while loops in the rules you propose. Think instead of what should
be the first thing to happen when a repeat loop is executed. And what is
the next thing to be done, then?

Exercise 7. Some programming languages have a general loop construction.

loop S1; exit on b; S2 end

The meaning of this command is that first S1 is executed and then the
condition b is evaluated. If the condition b is true, we exit the loop, otherwise,
we perform S2 and repeat the loop. Extend Bims with this command and
give it a big-step semantics.

Exercise 8. Consider the big-step semantics for the while-loop in Bims
described by the rules below.

(while-1)
〈S, s〉 → s′′ 〈while b do S, s′′〉 → s′

〈while b do S, s〉 → s′
if s ` b→b tt

(while-2) 〈while b do S, s〉 → s if s ` b→b ff

Identify the part of the rule corresponding to each item below, underline
it and label it with the number of the item it refers to.

3



1. The while-loop body is executed.

2. The evaluation of the condition is done before the loop body can be
performed.

3. The list of the variables values after the execution of the loop body.

4. Variables values remains unchanged if the loop condition evaluates to
false.

5. This rule is not compositional.

6. Here you can see that the rule is not compositional.

Exercise 9. Tick the answer you think is right.
Yes No

skip ∼bss abort

〈while 0 = 0 do skip, s〉 → s

while 0 = 0 do skip ∼bss abort

Parallelism can be described with a big-step
semantics
Nondeterminism can be described with a big-
step semantics

Exercise 10. Is (while 0=0 do skip) ∼bss (if 0=0 then skip else skip)?
Justify your answer by using the semantics as accurately as possible.

4


