Syntax and semantics - The Basic Principles of SOS

1 Learning Objectives

1. Abstract syntax - BIMS.
2. Transition Systems.
3. Big-Step Semantics for AEXP; derivation trees.
4. Small-Step Semantics for AEXP; derivation trees.
5. Determinacy.

2 Readings

Hüttel's book:
Part II - First Examples, Chapter 3. The basic Principles

3 Homework - Exercises

Exercise 1. This exercise is about big-step semantics of commands. Evaluate the following expressions and describe the derivation trees

$$
\begin{gathered}
(\underline{3}+\underline{12}) *(\underline{4} *(\underline{5} * \underline{8})) \\
(\underline{3}+(\underline{12} * \underline{4})) *(\underline{5} * \underline{8})) \\
(\underline{3}+(\underline{12})) *((\underline{4}) *(\underline{5} * \underline{8}))
\end{gathered}
$$

Exercise 2. Suggest a new small-step semantics of $\mathbf{A} \exp$, which is deterministic. Hint: Use syntax-driven rules to ensure the evaluation is always from left to right.

Exercise 3. Give a big-step semantics for BEXP for the case

$$
b::=a_{1}=a_{2}\left|a_{1}<a_{2}\right| \neg b_{1}\left|b_{1} \wedge b_{2}\right|\left(b_{1}\right)
$$

assuming that we have defined a big-step semantics \longrightarrow_{A} for AEXP.
Exercise 4. Consider the following non-deterministic automaton.

Convert this NFA to a DFA.
Exercise 5. Consider the above non-deterministic automaton:

Convert this NFA to a DFA.
Exercise 6. Consider the following DFA:

c
Define a regular expression equivalent to the DFA. You must only use the textbook's method, i.e., no ad hoc solutions and "smart" shortcuts.

Exercise 7. Consider the regular expression

$$
(\mathrm{bc} \cup \mathrm{aaa})^{*} .
$$

Construct, by using the book's algorithm, an NFA which is equivalent to this regular expression. No ad hoc solution or "smart shortcuts".

Exercise 8. Consider the language L_{1} defined by

$$
L_{1}=\left\{a^{k} b^{2 k} \mid k \geq 0\right\}
$$

Prove that L_{1} is context-free
Exercise 9. Consider the following language

$$
L_{1}=\left\{w \in\{a, b\}^{*} \mid w \text { is a palindrome }\right\}
$$

A palindrome is a string that is the same both read backwards and forwards. Examples of palindromes are $a b b a$ and $b b b$ whereas $a b$ is not a palindrome.

Prove that L_{1} is context-free.

