Syntax and semantics - The Basic Principles of SOS

1 Learning Objectives

- 1. Abstract syntax BIMS.
- 2. Transition Systems.
- 3. Big-Step Semantics for AEXP; derivation trees.
- 4. Small-Step Semantics for AEXP; derivation trees.
- 5. Determinacy.

2 Readings

Hüttel's book: Part II – First Examples, Chapter 3. The basic Principles

3 Homework - Exercises

Exercise 1. This exercise is about big-step semantics of commands. Evaluate the following expressions and describe the derivation trees

```
(\underline{3+\underline{12}})*(\underline{4}*(\underline{5}*\underline{8}))(\underline{3}+(\underline{12}*\underline{4}))*(\underline{5}*\underline{8}))(\underline{3}+(\underline{12}))*((\underline{4})*(\underline{5}*\underline{8}))
```

Exercise 2. Suggest a new small-step semantics of **Aexp**, which is *deterministic*. *Hint:* Use syntax-driven rules to ensure the evaluation is always from left to right.

Exercise 3. Give a big-step semantics for BEXP for the case

$$b ::= a_1 = a_2 \mid a_1 < a_2 \mid \neg b_1 \mid b_1 \land b_2 \mid (b_1)$$

assuming that we have defined a big-step semantics \longrightarrow_A for AEXP.

Exercise 4. Consider the following non-deterministic automaton.

Convert this NFA to a DFA.

Exercise 5. Consider the above non-deterministic automaton:

Convert this NFA to a DFA.

Exercise 6. Consider the following DFA:

Define a regular expression equivalent to the DFA. You must only use the textbook's method, i.e., no ad hoc solutions and "smart" shortcuts.

Exercise 7. Consider the regular expression

 $(\mathtt{bc} \cup \mathtt{aaa})^*$.

Construct, by using the book's algorithm, an NFA which is equivalent to this regular expression. *No ad hoc solution or "smart shortcuts"*.

Exercise 8. Consider the language L_1 defined by

$$L_1 = \{ a^k b^{2k} \mid k \ge 0 \}$$

Prove that L_1 is context-free

Exercise 9. Consider the following language

$$L_1 = \{ w \in \{a, b\}^* \mid w \text{ is a palindrome} \}$$

A palindrome is a string that is the same both read backwards and forwards.

Examples of palindromes are *abba* and *bbb* whereas *ab* is not a palindrome. Prove that L_1 is context-free.