Syntax and semantics - Mathematical
 Background
 (Homework 1)

1 Readings

Sipser's book: chapter 0 - Introduction - reflect on section 0.4 - Types of Proof

Hüttel's book: Part I - Background

2 Exercises

Exercise 1. Describe the following sets:
(a) $\{1,2,3\} \times\{a, b\}$
(b) $\mathcal{P}(\{1,2,3\}) \times\{a\}$
(c) $\mathcal{P}(\emptyset) \backslash \emptyset$
(d) $\mathcal{P}(\{\emptyset,\{\emptyset\}\})$
(e) $\mathcal{P}(\{a, b,\{a\},\{a, b\}\})$
(f) $\overline{\{a, b, c\} \backslash\{c, d\}}$, where $U=\{a, b, c, d\}$.

Exercise 2. Prove the following equalities for arbitrary sets $A, B \subseteq U$:
(a) $\overline{A \cup B}=\bar{A} \cap \bar{B}$
(b) $\overline{A \cap B}=\bar{A} \cup \bar{B}$

Exercise 3. Prove the following statements:
(a) the function $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=x+2$ is bijective;
(b) the function $f: \mathbb{N} \rightarrow \mathbb{N}, f(x)=x+2$ is not bijective;
(c) the function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)= \begin{cases}x+1 & \text { if } x \leq 5 \\ x+2 & \text { otherwise }\end{cases}
$$

is injective but not surjective.
Exercise 4. Consider the binary relation $\sqsubseteq \subseteq(\mathbb{R} \times \mathbb{R}) \times(\mathbb{R} \times \mathbb{R})$ defined as follows

$$
\left(x_{1}, x_{2}\right) \sqsubseteq\left(y_{1}, y_{2}\right) \quad \text { if } \quad x_{1} \leq y_{1} \text { and } x_{2} \leq y_{2} .
$$

(a) Is \sqsubseteq symmetric?
(b) Is \sqsubseteq antisymmetric?
(c) Is \sqsubseteq reflexive?
(d) Is \sqsubseteq transitive?
(e) Is \sqsubseteq an equivalence relation?

Exercise 5. Prove, using the truth tables, that the following boolean expressions are equal
(a) $a \rightarrow b$ and $(\neg a) \vee b$
(b) $(a \rightarrow(b \rightarrow c))$ and $(a \wedge b) \rightarrow c$
(c) $a \leftrightarrow b$ and $(a \wedge b) \vee((\neg a) \wedge(\neg b))$
(d) $\neg(a \wedge b)$ and $(\neg a) \vee(\neg b)$
(e) $\neg(a \vee b)$ and $(\neg b) \wedge(\neg b)$

Exercise 6. Given the alphabet $\Sigma=\{a, b\}$, we define the prefix order $u \sqsubseteq v$ for arbitrary $u, v \in \Sigma^{*}$ by
$u \sqsubseteq v \quad$ if there exists $w \in \Sigma^{*}$ such that $u w=v$.
(a) Find two strings u and v such that $u \sqsubseteq v$.
(b) Prove that \sqsubseteq is reflexive, antisymmetric and transitive.
(c) Give an example to show that \sqsubseteq is not symmetric.

Exercise 7. Give a formal description of the following machines:

(a) Describe the sequence of states of M_{1} for the following inputs abbbab, ababaab, aaaaa, ϵ.
(b) Describe the words accepted by each of the two machines.
(c) Modify the machine M_{1} such that it will accept any word in the language $\{a, b\}$.

Exercise 8. The formal description of a DFA M is

$$
\left(\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\},\{u, v\}, \delta, q_{3},\left\{q_{3}\right\}\right),
$$

where δ is given by the table below

	u	v
q_{1}	q_{1}	q_{2}
q_{2}	q_{1}	q_{3}
q_{3}	q_{2}	q_{4}
q_{4}	q_{3}	q_{5}
q_{5}	q_{4}	q_{5}

Give the state diagram of this machine.

