Syntax and semantics - Mathematical Background (Homework 1)

1 Readings

Sipser's book: chapter 0 – Introduction – reflect on section 0.4 – Types of Proof

Hüttel's book: Part I – Background

2 Exercises

Exercise 1. Describe the following sets:

- (a) $\{1, 2, 3\} \times \{a, b\}$
- (b) $\mathcal{P}(\{1,2,3\}) \times \{a\}$
- (c) $\mathcal{P}(\emptyset) \setminus \emptyset$
- (d) $\mathcal{P}(\{\emptyset, \{\emptyset\}\})$
- (e) $\mathcal{P}(\{a, b, \{a\}, \{a, b\}\})$
- (f) $\overline{\{a,b,c\}\setminus\{c,d\}}$, where $U = \{a,b,c,d\}$.

Exercise 2. Prove the following equalities for arbitrary sets $A, B \subseteq U$:

- (a) $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- (b) $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Exercise 3. Prove the following statements:

(a) the function $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = x + 2 is bijective;

- (b) the function $f: \mathbb{N} \to \mathbb{N}$, f(x) = x + 2 is not bijective;
- (c) the function $f \colon \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x+1 & \text{if } x \le 5\\ x+2 & \text{otherwise} \end{cases}$$

is injective but not surjective.

Exercise 4. Consider the binary relation $\sqsubseteq \subseteq (\mathbb{R} \times \mathbb{R}) \times (\mathbb{R} \times \mathbb{R})$ defined as follows

$$(x_1, x_2) \sqsubseteq (y_1, y_2)$$
 if $x_1 \le y_1$ and $x_2 \le y_2$.

- (a) Is \sqsubseteq symmetric?
- (b) Is \sqsubseteq antisymmetric?
- (c) Is \sqsubseteq reflexive?
- (d) Is \sqsubseteq transitive?
- (e) Is \sqsubseteq an equivalence relation?

Exercise 5. Prove, using the truth tables, that the following boolean expressions are equal

- (a) $a \to b$ and $(\neg a) \lor b$
- (b) $(a \to (b \to c))$ and $(a \land b) \to c$
- (c) $a \leftrightarrow b$ and $(a \wedge b) \lor ((\neg a) \land (\neg b))$
- (d) $\neg(a \land b)$ and $(\neg a) \lor (\neg b)$
- (e) $\neg (a \lor b)$ and $(\neg b) \land (\neg b)$

Exercise 6. Given the alphabet $\Sigma = \{a, b\}$, we define the prefix order $u \sqsubseteq v$ for arbitrary $u, v \in \Sigma^*$ by

 $u \sqsubseteq v$ if there exists $w \in \Sigma^*$ such that uw = v.

- (a) Find two strings u and v such that $u \sqsubseteq v$.
- (b) Prove that \sqsubseteq is reflexive, antisymmetric and transitive.
- (c) Give an example to show that \sqsubseteq is not symmetric.

Exercise 7. Give a formal description of the following machines:

(a) Describe the sequence of states of M_1 for the following inputs

abbbab, ababaab, aaaaa, ϵ .

- (b) Describe the words accepted by each of the two machines.
- (c) Modify the machine M_1 such that it will accept any word in the language $\{a, b\}$.

Exercise 8. The formal description of a DFA M is

 $(\{q_1, q_2, q_3, q_4, q_5\}, \{u, v\}, \delta, q_3, \{q_3\}),$

where δ is given by the table below

	u	v
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

Give the state diagram of this machine.