b O RG UNIVERSI.TY

Mobile Software Technologies
(SW8)

NET Compact Framework

Hua Lu
Department of Computer Science
Aalborg University

Spring 2008

NET Compact Framework

NET Framework

.NET Compact Framework

Basic Supports in .NET Compact Framework
Smart Device Projects

.NET Compact Framework 2.0

Performance Issues

The Core of .NET Framework S

* Framework Class Library (FCL)
= Provides the core functionality:

ASP.NET, Web Services, ADO.NET, Windows Forms, |0, XML,
etc.

« Common Language Runtime (CLR)
= Garbage collection
= Language integration
= Multiple versioning support
= Integrated security

NET Framework

Programming Languages
= Use your favorite language

C++ C# VB.NETF Perl J7

ASP NET
Web Forms Web Services
Mobile Internet Toolkit

ADO .NET and XML

Windows
Forms

NET Framework (Base Class Library)

Cofrrnorn Laglejiizicja FUptlime

Operating System

Common Type System (CTS) S

(2

All .NET languages have the same primitive data types.
An int In C# Is the same as an intin VB.NET, COBOL.Net,
Haskell, ...

When communicating between modules written in any
.NET language, the types are guaranteed to be compatible
on the binary level
Types can be:

=« Value types — passed by value, stored in the stack

=« Reference types — passed by reference, stored in the heap

Strings are a primitive data type now

Common Language Specification (CLS) QO

* Any language that conforms to the CLS is a .NET
language

* A language that conforms to the CLS has the ability to
take full advantage of the Framework Class Library (FCL)

e CLS is standardized by ECMA

NET Languages

Languages provided by Microsoft
= C++, C#, J#, VB.NET, JScript

Third-parties languages

« Perl, Python, Pascal, APL, COBOL, Eiffel, Haskell, ML, Oberon,
Scheme, Smalltalk...

Advanced multi-language features
« Cross-language inheritance and exceptions handling

Object system is built in, not bolted on
= No additional rules or API to learn

All compile to .Net Assemblies

« Contains MSIL and metadata
+ Intermediate Language

Intermediate Language

NET languages are compiled to an Intermediate
Language (IL)
IL is also known as MSIL or CIL

= Microsoft IL or Common IL

CLR compiles IL in just-in-time (JIT) manner — each
function is compiled just before execution

The JIT code stays in memory for subsequent calls
Recompilations of assemblies are also possible

Example of MSIL Code QO

.method private hidebysig static void Main()
cil managed

{ .entrypoint
// Code size 11 (Oxb)
-.maxstack 8
IL_ 0000: Idstr "Hello, world!"
IL_ 0005: call void

[mscorlib]System.Console: :WriteLine(string)
IL O0O0a: ret
} 7/ end of method HelloWorld::Main

.Net Assemblies S

e Compilation

LB
LS Dy N
< \
»‘«ygg "‘ \
Source Code ‘\QL\\\ Assembly
Compiler
csc.exe or vbc.exe
C++, C#, VB or DLL or EXE

any .NET
language

10

.Net Execution Model Q@

Source
code

Native, Code.

OpEraing s

11

NET Compact Framework

NET Framework

NET Compact Framework

Basic Supports in .NET Compact Framework
Smart Device Projects

.NET Compact Framework 2.0

Performance Issues

12

What is the .NET CF? Ry

e Essentially, the .NET CF is an “extended subset” of the
NET Framework
= “Subset”. Some non-essential classes are not included
« “Extended”: Functionality specific to the Windows Mobile platform

« High-level goal: Extend the .NET developer platform to the
Windows Mobile device platform

13

Design Goals oS

« Target mobile and embedded devices

* Portable subset of .NET Framework
= NO new ‘compact’ namespaces
=« Visual Basic .NET and C# compiler
support in v1
* Leverage Visual Studio .NET
« Run managed .EXEs and .DLLs directly
= Debug with Visual Studio .NET

» Peacefully co-exist with host OS

= Run on native threads, P/Invoke to call native code

« Platform Invoke service. This service allows managed code to invoke
unmanaged functions residing in DLLSs.

14

Architecture e

.NET Compact Framework

Agolicatiorns

op Domain Hos

-\

Host Operating System \

15

. : - o
Execution Engine Commonalities S

« Verifiable type safe execution

= No uninitialized variables, unsafe casts, bad array indexing, bad
pointer math

Garbage Collection
= No ref-counting, no leaks

JIT compilation
Error handling with exceptions

Common type system
= Call, inherit, and source-level debug across different languages

16

Supported in .NET CF

« Common Base Classes
« 1O, collections, reflection, math, drawing

o Connectivity
= Networking, HTTP classes, calling XML Web services

« Data Access
« ADO.NET, SQL Server CE, SQL Server

e XML
= XmIDocument, XmIReader/Writer

« Windows Forms

17

Execution Engine Differences

No ASP.NET

COM Interop

= Good support for calling native DLLs
+ * P/Invoke — Platforminvoke enables calls to Win32 DLLs

= Support for calling COM objects using dll wrappers
= No support for writing COM/ActiveX objects

= No Install-time JIT (nGen)

No Reflection Emit

No Remoting
= Client web services is fully supported
No Generic Serialization

« Datasets can be serialized to XML
= No binary Serialization

18

Other Differences

e Class libraries are a subset
(about 25%)

« Different size and scalability characteristics

 Compact Additions
« [rDA support
= SQL Server CE managed classes
« Device-specific controls

19

Framework Size

e Framework size

« 1.35MB (ROM) on
Windows CE .NET Device

* Running RAM needs
= 1 MB+ (depends on app)

 Typical application sizes

«= 5-100 KB

« Apps often smaller due to use of platform features in the
framework

20

NET Framework

ata
m.Dat
ySsie
Sy

NET Compact Framework

NET Framework

.NET Compact Framework

Basic Supports in .NET Compact Framework
Smart Device Projects

.NET Compact Framework 2.0

Performance Issues

23

Basic Data Types

« Base data types are the same as the desktop
Formatting

StringBuilder
+ More efficient when string length changes

Arrays
Value types (Int16, Int32, Int64, UIntl6, etc.)
Floats and doubles

* Collections
= Classes for storing sets of objects
= Arraylists and Hashtables

24

Base: Networking -

» Sockets
= Synchronous and asynchronous
= Multiple protocols

e Streams

= Built on top of sockets
= Synchronous

and asynchronous Agoliceiions .NET Compact
e HTTP request Rl ot
and response WELRSEIVICES
= Use stream model - 00000000000
. Requires no user TR Hecuesi/Hasgdrse, Netwa e Sitrezlr)

knowledge of HTTP

Consinron Ezirejtziefe Ut e

25

Base: Threading

* Applications start with an initial thread
* Applications can start new threads

e Using threads
=« Responsive Ul
=« Program function segregation

« Thread synchronization primitives
* App domains exist until all threads exit

26

Windows Forms Support

 Layout
=« Manual positioning
Drawing

= Polygons, lines, arcs, ellipses, rectangles
« JPEG, BMP images

Text and images
=« TrueType bitmap fonts on Mobile

Most desktop controls
Designer support

27

Supported Controls

Supported controls

Button HScrollBar MainMenu StatusBar
CheckBox ImageList NumericUpDown TabControl
ComboBox Label Panel TextBox
ContextMenu ListBox PictureBox Timer
DataGrid ListView ProgressBar ToolBar
DomainUpDown TreeView RadioButton VScrollBar

FileOpenDialog FileSaveDialog

Unsupported controls

GroupBox RichTextBox NotificationBubble (PPC)
Printing Controls

Unsupported controls — not available in CE

CheckedListBox HelpProvider ToolTip
ColorDialog LinkLabel Splitter
ErrorProvider Notifylcon FontDialog

28

Data Choices

 Remote data
= XML Web Services, ADO.NET
(.NET Data Providers), Networking
* On Device data
= Handle with XML, ADO.NET (DataSet)
= Cache for use offline with SQL CE, ADO.NET (DataSet
persistence as XML)
 Intelligent synchronization of data when connected

« SQL CE Synchronization, ActiveSync

29

XML

XmiTextReader and XmlTextWriter

« Forward-only parsers of XML data

« Better performance, no in-memory caching
= Low memory requirements

XmIDocument

= Parse entire document

= Inmemory traversal

« Higher memory requirements; more functionality
Unsupported:

= XMLDataDocument, XPath, XSL/T, Validation

30

ADO.NET Support

« Handling data offline with DataSet
« Communicating DataSet with XML

e Common data model from server to
PC to device

« Extensible ADO.NET provider model

* Included data providers
= SQL Server (System.Data.SqlClient)
= SQL Server CE (System.Data.SqglServerCe)

31

XML Web Services Support S

o Calling XML Web Services

* All encoding types

« Synchronous and asynchronous invocation

« Basic and Digest authentication

e Secure Sockets Layer support for encryption (SSL)
¢ Custom SOAP headers

 SOAP Extension Framework

32

NET Compact Framework

NET Framework

.NET Compact Framework

Basic Supports in .NET Compact Framework
Smart Device Projects

.NET Compact Framework 2.0

Performance Issues

33

What Are Smart Device Projects? QO

Smart Device Projects are used to develop applications
that target the .NET Compact Framework

Supported devices include:
Pocket PC 2000, 2002 and 2003
Pocket PC 2002 Phone Edition
SmartPhone 2003

Custom-designed embedded devices built with the Windows CE
.NET 4.1 operating system

= Windows Mobile 2003, v5.0, v6.0
Supported languages are Visual Basic and C#

Even if you don't have a smart device, you can create and
test your smart device applications using emulation
technology without leaving the Visual Studio integrated
development environment.

Smart Device Development
« http://msdn2.microsoft.com/en-us/library/sa69he4t(VS.80).aspx

34

How to Design a Smart Device Application

« Usabillity is a key consideration:
= Avoid requiring intensive data entry
= Provide access to the Software Input Panel (SIP)
=« Enable device hardware buttons
= Avoid presenting too many options
= Use large buttons

(2
@

35

How to Create a Smart Device Application 0

e Create a New Smart | Tookbox B %|| StartPage Formlyb [Design]*|

: : : : Device Canitrals ﬂ s W s b e
Device Appllcatlon PrOjeCt a1l HrolBar (ol x]
* Choose the platform u VoolBar | g - [extBord

and type of prOjeCt Tiner e DR

[3 DomainUpDown |

- Add additional forms, [MorerlhD... | ORadofuttont. - [THE0KL
controls, and code f Tagar J

wopogessgr |) I

Smagelit | ;
[ContextMeny Sample Column

A ToolBar . Samule Data

E CpenFileDialog
%7 SaveFileDialog
B InputPanel

Clipboard Ring j E MainMenul

General |

B s, '}@T|

36

. - ()
How to Test a Smart Device Application 'S

* Visual Studio .NET 2003 includes device emulators that let
you test your application
=« Pocket PC and SmartPhone
« Windows CE .NET 4.1

* You should also test with an actual device
« Debugging
= Set breakpoints
« Step through executing code in emulators or on device

37

How to Deploy a Smart Device Application

You can use Microsoft ActiveSync from a desktop
computer to manually deploy applications

You can also use automated distribution mechanisms
such as:

« Downloading CAB files from a Web site
= Microsoft Systems Management Server (SMS)

(2

O

38

NET Compact Framework

NET Framework

.NET Compact Framework

Basic Supports in .NET Compact Framework
Smart Device Projects

.NET Compact Framework 2.0

Performance Issues

39

NET Compact Framework 2.0

e Compatible with full NET Framework
= Interoperability, protocols

e Compatible with .NET CF 1.0
« Side-by-side execution
= Application compatibility
« Enhanced performance
« Unified JIT
=« Improved string handling

.NET CF 1.0
= Improved ADO.NET with SQL Mobile

« XML improvements

.NET CF 2.0

40

NET CF2.0: Displays and Layout QO

e Orientation support
« Docking and anchoring
= AutoScroll property — forms, panels Anchored, all 4 sides to
= SuspendLayout and ResumeLayout otweon contaner
=« ChangeOrientation — portrait or landscape sdoes

* Resolution support
« Automatic scaling

« Graphics
+ DpiX
+ DpiY

Anchored, all 4 sides to maintain
distance between container
edges

41

NET CF2.0: Smartphone Support QQ

e Data access
= SQL Mobile
= DataGridView

e Textbox IME switching
= InputModeEditor

* Enable multiple menu items on left softkey

42

New with Visual Studio 2005

* True ARM emulator with higher fidelity
=« Same executable/CAB for device and emulator
= Realistic device performance
= Direct3D and GAPI support

 New debugger
« Brand new architecture rewritten from line 0
= Optimized for USB 2.0 performance

 New designers
=« Improved Ul designers (docking and anchoring)
« Data designers (drag, drop, bind SQL to forms)
= Improved CAB designer support (new project type)

43

Compatibility 08 "

e Applications written using prior versions of the .NET
Compact Framework just work on new versions

« Goal is full backward compatibility
* New versions of .NET Compact Framework run on

previous versions of Windows CE and Windows Mobile

= Windows Mobile support policy: n-2
=« Windows CE support policy: n-1

44

Release Roadmap oS

(2

2002 2003 2004 2005 2006 2007
Visu _al o .
Studio Visual Visual
Studio Studio
2003 / 2005
NET Compact R o o o .
Fram ewor k 1.0 1.0SP1 1.0 SP2 1.0 SP3 2.0
@ Size @ Smartphone @ Perf update ® Bug fixes @ Generics
@ Portability @ Landscape @ COM interop
® Compatibility @ Autoscroll @ Controls
@ Bug fixes @ MD3DM
@ Performance
(redist)
/redist)
Pocket PC o o ° . o
Sm artp h one PPC 2002 SP 2002 WM 2003 WM PR003SE WM5.0
Windows CE ° ° ° °
3.0 41 4.2 5.0

45

Generics

« Classes and methods that
work similarly on values of
different types

= Variables are specific types, not
objects

= No casting required
 Benefits

= Re-use common code
= Find bugs at compile time

46

More New C# Language Features 080

 Anonymous Methods — Code blocks encapsulated in a delegate

Before After

Partial Types — Split definitions for types and class members across
multiple files

= C# compiler combines all definitions to make a single class

Foo-Partl.cs Foo-Part2.cs

a7

Managed Direct 3D Mobile S

* Included in WInCE 5.0 and Windows Mobile 5.0
= Native API is DX8 inspired
« Managed APIs are DX9 inspired

e Features

= Complete access to the
underlying native D3DM API

» Fixed point support
(Vertex Data, Matrices, Lights,
and Materials)

= Sprite

= Font

= Mesh

= TextureLoader

« Tutorials and Samples

48

Security

* Managed apps have identical security experience as native apps

=« Mobile Operators can restrict app install/start to signed apps only
= Operators can control cert chain of trust, and/or rely on Mobile2ZMarket
= Malicious applications can be revoked if device is restricted

« Security features added:

NET Compact Framework

NET Framework

.NET Compact Framework

Basic Supports in .NET Compact Framework
Smart Device Projects

.NET Compact Framework 2.0

Performance Issues

50

Performance: Garbage Collector

 What triggers a GC?
= Memory allocation failure
= 1M of GC objects allocated (v2)
= Application going to background
= GC.Collect() (Avoid “helping” the GC!)

 What happens at GC time?
= Freezes all threads at safe point

= Finds all live objects and marks them
+ An object s live if it is reachable from root location

= Unmarked objects are freed and added to finalizer queue
+ Finalizers are run on a separate thread

= GC pools are compacted if required (less than 750K of
free space)

= Return free memory to the operating system
* In general, if you don’t allocate objects, GC won'’t occur
= Beware of side-effects of calls that may allocate objects
* http://blogs.msdn.com/stevenpr/archive/2004/07/26/197254.aspx

(2
@

51

Where Garbage Comes From? (1)

 Unnecessary string copies
= Strings are immutable

= String manipulations (Concat(), etc.)
cause copies

= Use StringBuilder

String result = ""; StringBuilder result =
for (int 1=0; 1<10000; 1++) { new StringBuilder();
result += for (int 1=0; 1<10000; 1++){
"_NET Compact Framework"; result.Append("'-NET Compact
result += " Rocks!"; Framework™);
3} result._Append("" Rocks!');
>

52

A Note on StringBuilder oS

« Remember it's all about reducing memory traffic

 If you roughly know the expected length of your final
string — allocate that much before hand (StringBuilder
constructor)

« Getting the string out of a StringBuilder doesn't cause a
new alloc, the existing buffer is converted into a string
* http://weblogs.asp.net/ricom/archive/2003/12/02/40778.aspx

53

Where Garbage Comes From? (2) QO

« Unnecessary boxing

= Value types allocated on the stack (fast to allocate)
= Boxing causes a heap allocation and a copy
= Use strongly typed arrays and collections

(framework collections are NOT strongly typed)
class Hashtable {

struct bucket {
Object key;
Object val;

+

bucket|[] buckets;

public Object this[Object key] { get; set; }
+

54

CLR: Generics oS

* Fully specialized implementation in .NET Compact
Framework v2

= Pros
+ Strongly typed
+ NoO unnecessary boxing and type casts
+ Specialized code is more efficient than shared

= Cons

+ Internal execution engine data structures and JIT-compiled code
aren’t shared

List<int>, List<string>, List<MyType>
= http://blogs.msdn.com/romanbat/archive/2005/01/06/348114.aspx

55

CLR: Execution Engine S

« Call path

= Managed calls are more expensive than native
+ Instance call: ~2-3X the cost of a native function call
+ Virtual call: ~1.4X the cost of a managed instance call

+ Platform invoke: ~5X the cost of managed instance call
(*Marshal int parameter)

= Properties are calls

e JIT compllers

« All platforms have the same optimizing JIT compiler architecture in
v2

= Optimizations
+ Method inlining for simple methods
+ Variable enregistration

56

CLR: Call Path Sample (1)

public class Shape

{

protected int m_volume;

public class Shape

{

protected int m_volume;

public virtual int Volume

public 1nt Volume

{

get {return m_volume;}

}
}

public class Cube:Shape

{
public MyType(int vol)

{

m_volume = vol;

}

{

get {return m_volume;}

}
}

public class Cube:Shape

{
public MyType(int vol)

{

m_volume = vol;

}

57

CLR: Call Path Sample (2) S

public class MyCollection
{
private const i1nt m_capacity = 10000;
private Shape[] storage = new Shape[m_ capacity];

public void Sort
{ callvirt instance i1int32 Shape::get Volume()
Shape tmp;
for (int 1=0; I<m_capacity<l; i1++) {
for (int jJ=0; jJ<m_capacity-1-i1; j++)
iIT (storage[j+1].-Volume < storage[j]-Volume){
tmp = storage[j];
storage[j] = storage[j+1];
storage[j+1] = tmp;

58

CLR: Call Path Sample (3)

(2

O

public class Shape

{

protected int m_volume;

{

public class Shape

protected int m_volume;

public virtual int Volume

public 1nt Volume

{ {
get {return m_volume;} get {return p_volume;}
+ +
+ +
public class Cube:Shape aTie 2 2 e _Shaono
£ *No virtual call overhead
public MyType(int vol)
{ sInlined (no call overhead at all)
m_volume = vol;
by

}

~ Equal to accessing field

59

CLR: Reflection S

Reflection can be expensive

Reflection performance cost
= Type comparisons (for example: typeof())
= Member enumerations (for example: Type.GetFields())
= Member access (for example: Type.lnvokeMember())
= ~10-100x slower

Working set cost

=« Runtime data structures
+ ~100 bytes per loaded type, ~80 bytes per loaded method

Be aware of APIs that use reflection as a side effect
Override

= Object. ToString()
= GetHashCode() and Equals() (for value types)

60

Best Practices for Windows Forms QO

Load and cache Forms in the background

=« Populate data separate from Form.Show()
+ Pre-populate data, or
+ Load data async to Form.Show()

« Use BeginUpdate/EndUpdate when it is available
= e.g. ListView, TreeView

* Use SuspendLayout/Resumelayout when repositioning
controls

« Keep event handling code tight
= Process bigger operations asynchronously
= Blocking in event handlers will affect Ul responsiveness

 Form load performance
=« Reduce the number of method calls during initialization

61

Best Practices for Graphics And Games QO

« Compose to off-screen buffers to minimize direct to screen
blitting
= Approximately 50% faster
* Avoid transparent blitting in areas that require
performance
= Approximate 1/3 speed of normal blitting

e Consider using pre-rendered images versus using
System.Drawing rendering primitives
= Need to measure on a case-by-case basis

62

	Mobile Software Technologies (SW8)
	.NET Compact Framework
	The Core of .NET Framework
	.NET Framework
	Common Type System (CTS)
	Common Language Specification (CLS)
	.NET Languages
	Intermediate Language
	Example of MSIL Code
	.Net Assemblies
	.Net Execution Model
	.NET Compact Framework
	What is the .NET CF?
	Design Goals
	Architecture
	Execution Engine Commonalities
	Supported in .NET CF
	Execution Engine Differences
	Other Differences
	Framework Size
	.NET Framework
	.NET Compact Framework
	.NET Compact Framework
	Basic Data Types
	Base: Networking
	Base: Threading
	Windows Forms Support
	Supported Controls
	Data Choices
	XML
	ADO.NET Support
	XML Web Services Support
	.NET Compact Framework
	What Are Smart Device Projects?
	How to Design a Smart Device Application
	How to Create a Smart Device Application
	How to Test a Smart Device Application
	How to Deploy a Smart Device Application
	.NET Compact Framework
	.NET Compact Framework 2.0
	.NET CF2.0: Displays and Layout
	New with Visual Studio 2005
	Compatibility
	Release Roadmap
	Generics
	More New C# Language Features
	Managed Direct 3D Mobile
	Security
	.NET Compact Framework
	Performance: Garbage Collector
	Where Garbage Comes From? (1)
	A Note on StringBuilder
	Where Garbage Comes From? (2)
	CLR: Generics
	CLR: Execution Engine
	CLR: Call Path Sample (1)
	CLR: Call Path Sample (2)
	CLR: Call Path Sample (3)
	CLR: Reflection
	Best Practices for Windows Forms
	Best Practices for Graphics And Games

