
Hua Lu
Department of Computer Science

Aalborg University
Spring 2008

Mobile Software Technologies
(SW8)

.NET Compact Framework

2

.NET Compact Framework
• .NET Framework
• .NET Compact Framework
• Basic Supports in .NET Compact Framework
• Smart Device Projects
• .NET Compact Framework 2.0
• Performance Issues

3

The Core of .NET Framework
• Framework Class Library (FCL)

Provides the core functionality:
ASP.NET, Web Services, ADO.NET, Windows Forms, IO, XML,
etc.

• Common Language Runtime (CLR)
Garbage collection
Language integration
Multiple versioning support
Integrated security

4

.NET Framework
• Programming Languages

Use your favorite language

Operating SystemOperating System

Common Language RuntimeCommon Language Runtime

.NET Framework (Base Class Library).NET Framework (Base Class Library)

ADO .NET and XMLADO .NET and XML

ASP .NETASP .NET
Web Forms Web ServicesWeb Forms Web Services

Mobile Internet ToolkitMobile Internet Toolkit

WindowsWindows
FormsForms

C++C++ C#C# VB.NETVB.NET PerlPerl J#J# ……

5

Common Type System (CTS)
• All .NET languages have the same primitive data types.

An int in C# is the same as an int in VB.NET, COBOL.Net,
Haskell, …

• When communicating between modules written in any
.NET language, the types are guaranteed to be compatible
on the binary level

• Types can be:
Value types – passed by value, stored in the stack
Reference types – passed by reference, stored in the heap

• Strings are a primitive data type now

6

Common Language Specification (CLS)

• Any language that conforms to the CLS is a .NET
language

• A language that conforms to the CLS has the ability to
take full advantage of the Framework Class Library (FCL)

• CLS is standardized by ECMA

7

.NET Languages
• Languages provided by Microsoft

C++, C#, J#, VB.NET, JScript

• Third-parties languages
Perl, Python, Pascal, APL, COBOL, Eiffel, Haskell, ML, Oberon,
Scheme, Smalltalk…

• Advanced multi-language features
Cross-language inheritance and exceptions handling

• Object system is built in, not bolted on
No additional rules or API to learn

• All compile to .Net Assemblies
Contains MSIL and metadata

Intermediate Language

8

Intermediate Language
• .NET languages are compiled to an Intermediate

Language (IL)
• IL is also known as MSIL or CIL

Microsoft IL or Common IL

• CLR compiles IL in just-in-time (JIT) manner – each
function is compiled just before execution

• The JIT code stays in memory for subsequent calls
• Recompilations of assemblies are also possible

9

Example of MSIL Code
.method private hidebysig static void Main()
cil managed

{
.entrypoint
// Code size 11 (0xb)
.maxstack 8
IL_0000: ldstr "Hello, world!"
IL_0005: call void
[mscorlib]System.Console::WriteLine(string)
IL_000a: ret

} // end of method HelloWorld::Main

10

.Net Assemblies
• Compilation

Source Code

C++, C#, VB or C++, C#, VB or
any .NET any .NET
languagelanguage

csc.execsc.exe or or vbc.exevbc.exe
CompilerCompiler

Assembly

DLL or EXEDLL or EXE

11

.Net Execution Model

VBVBSource Source
codecode

CompilerCompiler

C++C++C#C#

CompilerCompilerCompilerCompiler

Operating System ServicesOperating System Services

Common Language RuntimeCommon Language Runtime

JIT CompilerJIT Compiler

Native CodeNative Code

ManagedManaged
codecode

AssemblyAssembly
IL CodeIL Code

AssemblyAssembly
IL CodeIL Code

AssemblyAssembly
IL CodeIL Code

12

.NET Compact Framework
• .NET Framework
• .NET Compact Framework
• Basic Supports in .NET Compact Framework
• Smart Device Projects
• .NET Compact Framework 2.0
• Performance Issues

13

What is the .NET CF?
• Essentially, the .NET CF is an “extended subset” of the

.NET Framework
“Subset”: Some non-essential classes are not included
“Extended”: Functionality specific to the Windows Mobile platform

• High-level goal: Extend the .NET developer platform to the
Windows Mobile device platform

14

Design Goals
• Target mobile and embedded devices
• Portable subset of .NET Framework

No new ‘compact’ namespaces
Visual Basic .NET and C# compiler
support in v1

• Leverage Visual Studio .NET
Run managed .EXEs and .DLLs directly
Debug with Visual Studio .NET

• Peacefully co-exist with host OS
Run on native threads, P/Invoke to call native code

Platform Invoke service. This service allows managed code to invoke
unmanaged functions residing in DLLs.

15

Architecture

Host Operating SystemHost Operating System

Platform Adaptation LayerPlatform Adaptation Layer

Execution Engine (MSCOREE.DLL)Execution Engine (MSCOREE.DLL)

Platform Specific Class LibsPlatform Specific Class Libs

Base Class LibsBase Class Libs

ApplicationsApplications

.NET Compact Framework.NET Compact Framework

A
pp

 D
om

ai
n

H
os

t
A

pp
 D

om
ai

n
H

os
t

… Launch
ManagedManaged
NativeNative

16

Execution Engine Commonalities
• Verifiable type safe execution

No uninitialized variables, unsafe casts, bad array indexing, bad
pointer math

• Garbage Collection
No ref-counting, no leaks

• JIT compilation
• Error handling with exceptions
• Common type system

Call, inherit, and source-level debug across different languages

17

Supported in .NET CF
• Common Base Classes

IO, collections, reflection, math, drawing

• Connectivity
Networking, HTTP classes, calling XML Web services

• Data Access
ADO.NET, SQL Server CE, SQL Server

• XML
XmlDocument, XmlReader/Writer

• Windows Forms

18

Execution Engine Differences
• No ASP.NET
• COM Interop

Good support for calling native DLLs
• P/Invoke – PlatformInvoke enables calls to Win32 DLLs

Support for calling COM objects using dll wrappers
No support for writing COM/ActiveX objects
No Install-time JIT (nGen)

• No Reflection Emit
• No Remoting

Client web services is fully supported
• No Generic Serialization

Datasets can be serialized to XML
No binary Serialization

19

Other Differences
• Class libraries are a subset

(about 25%)
• Different size and scalability characteristics
• Compact Additions

IrDA support
SQL Server CE managed classes
Device-specific controls

20

Framework Size
• Framework size

1.35MB (ROM) on
Windows CE .NET Device

• Running RAM needs
1 MB+ (depends on app)

• Typical application sizes
5 - 100 KB
Apps often smaller due to use of platform features in the
framework

21

System.WebSystem.Web System.Windows.FormsSystem.Windows.Forms

System.DrawingSystem.Drawing

System.XMLSystem.XMLSystem.DataSystem.Data

SystemSystem

Services
Description
Discovery
Protocols

UI
HTML Controls
Web Controls

Security
Session StateConfiguration

Cache

SQL Client
SQL ServerCEDesign

ADO.NET

IO
Net

Collections
Security

Reflection
Resources

Text
Globalization

Configuration
Service Process
Diagnostics
Threading

Runtime
Interop Services
Remoting
Serialization

Design

Drawing 2D
Imaging

XML Document
Xslt/XPath

Serialization
Reader/Writers

Printing
Text

Component
Model

.NET Framework

22

System.WebSystem.Web System.Windows.FormsSystem.Windows.Forms

System.DrawingSystem.Drawing

System.XMLSystem.XMLSystem.DataSystem.Data

SystemSystem

Services
Description
Discovery
Protocols

UI
HTML Controls
Web Controls

Security
Session StateConfiguration

Cache

SQL Client
SQL ServerCEDesign

ADO.NET

IO
Net

Collections
Security

Reflection
Resources

Text
Globalization

Configuration
Service Process
Diagnostics
Threading

Runtime
Interop Services
Remoting
Serialization

Design

Drawing 2D
Imaging

XML Document
Xslt/XPath

Serialization
Reader/Writers

Printing
Text

Component
Model

.NET Compact Framework

23

.NET Compact Framework
• .NET Framework
• .NET Compact Framework
• Basic Supports in .NET Compact Framework
• Smart Device Projects
• .NET Compact Framework 2.0
• Performance Issues

24

Basic Data Types
• Base data types are the same as the desktop

Formatting
StringBuilder

More efficient when string length changes
Arrays
Value types (Int16, Int32, Int64, UInt16, etc.)
Floats and doubles

• Collections
Classes for storing sets of objects
Arraylists and Hashtables

25

Base: Networking
• Sockets

Synchronous and asynchronous
Multiple protocols

• Streams
Built on top of sockets
Synchronous
and asynchronous

• HTTP request
and response

Use stream model
Requires no user
knowledge of HTTP

Common Language RuntimeCommon Language Runtime

.NET Compact .NET Compact
FrameworkFramework

Web ServicesWeb Services

HTTP Request/Response, Network StreamHTTP Request/Response, Network Stream

SocketsSockets

ApplicationsApplications

26

Base: Threading
• Applications start with an initial thread
• Applications can start new threads
• Using threads

Responsive UI
Program function segregation

• Thread synchronization primitives
• App domains exist until all threads exit

27

Windows Forms Support
• Layout

Manual positioning

• Drawing
Polygons, lines, arcs, ellipses, rectangles
JPEG, BMP images

• Text and images
TrueType bitmap fonts on Mobile

• Most desktop controls
• Designer support

28

Supported Controls

Button
CheckBox
ComboBox
ContextMenu
DataGrid
DomainUpDown
FileOpenDialog

• Supported controls
HScrollBar
ImageList
Label
ListBox
ListView
TreeView
FileSaveDialog

MainMenu
NumericUpDown
Panel
PictureBox
ProgressBar
RadioButton

StatusBar
TabControl
TextBox
Timer
ToolBar
VScrollBar

GroupBox
Printing Controls

RichTextBox NotificationBubble (PPC)
• Unsupported controls

• Unsupported controls – not available in CE
CheckedListBox
ColorDialog
ErrorProvider

HelpProvider
LinkLabel
NotifyIcon

ToolTip
Splitter
FontDialog

29

Data Choices
• Remote data

XML Web Services, ADO.NET
(.NET Data Providers), Networking

• On Device data
Handle with XML, ADO.NET (DataSet)
Cache for use offline with SQL CE, ADO.NET (DataSet
persistence as XML)

• Intelligent synchronization of data when connected
SQL CE Synchronization, ActiveSync

30

XML
• XmlTextReader and XmlTextWriter

Forward-only parsers of XML data
Better performance, no in-memory caching
Low memory requirements

• XmlDocument
Parse entire document
In memory traversal
Higher memory requirements; more functionality

• Unsupported:
XMLDataDocument, XPath, XSL/T, Validation

31

ADO.NET Support
• Handling data offline with DataSet
• Communicating DataSet with XML
• Common data model from server to

PC to device
• Extensible ADO.NET provider model
• Included data providers

SQL Server (System.Data.SqlClient)
SQL Server CE (System.Data.SqlServerCe)

32

XML Web Services Support
• Calling XML Web Services
• All encoding types
• Synchronous and asynchronous invocation
• Basic and Digest authentication
• Secure Sockets Layer support for encryption (SSL)
• Custom SOAP headers
• SOAP Extension Framework

33

.NET Compact Framework
• .NET Framework
• .NET Compact Framework
• Basic Supports in .NET Compact Framework
• Smart Device Projects
• .NET Compact Framework 2.0
• Performance Issues

34

What Are Smart Device Projects?
• Smart Device Projects are used to develop applications

that target the .NET Compact Framework
• Supported devices include:

Pocket PC 2000, 2002 and 2003
Pocket PC 2002 Phone Edition
SmartPhone 2003
Custom-designed embedded devices built with the Windows CE
.NET 4.1 operating system
Windows Mobile 2003, v5.0, v6.0

• Supported languages are Visual Basic and C#
• Even if you don't have a smart device, you can create and

test your smart device applications using emulation
technology without leaving the Visual Studio integrated
development environment.

• Smart Device Development
http://msdn2.microsoft.com/en-us/library/sa69he4t(VS.80).aspx

35

How to Design a Smart Device Application

• Usability is a key consideration:
Avoid requiring intensive data entry
Provide access to the Software Input Panel (SIP)
Enable device hardware buttons
Avoid presenting too many options
Use large buttons

36

How to Create a Smart Device Application

• Create a New Smart
Device Application Project

• Choose the platform
and type of project

• Add additional forms,
controls, and code

37

How to Test a Smart Device Application

• Visual Studio .NET 2003 includes device emulators that let
you test your application

Pocket PC and SmartPhone
Windows CE .NET 4.1

• You should also test with an actual device
• Debugging

Set breakpoints
Step through executing code in emulators or on device

38

How to Deploy a Smart Device Application

• You can use Microsoft ActiveSync from a desktop
computer to manually deploy applications

• You can also use automated distribution mechanisms
such as:

Downloading CAB files from a Web site
Microsoft Systems Management Server (SMS)

39

.NET Compact Framework
• .NET Framework
• .NET Compact Framework
• Basic Supports in .NET Compact Framework
• Smart Device Projects
• .NET Compact Framework 2.0
• Performance Issues

40

• Compatible with full .NET Framework
Interoperability, protocols

• Compatible with .NET CF 1.0
Side-by-side execution
Application compatibility

• Enhanced performance
Unified JIT
Improved string handling
XML improvements
Improved ADO.NET with SQL Mobile

.NET CF 1.0.NET CF 1.0

.NET CF 2.0.NET CF 2.0

.NET Compact Framework 2.0

41

• Orientation support
Docking and anchoring
AutoScroll property – forms, panels
SuspendLayout and ResumeLayout
ChangeOrientation – portrait or landscape

• Resolution support
Automatic scaling
Graphics

DpiX
DpiY

.NET CF2.0: Displays and Layout

42

• Data access
SQL Mobile
DataGridView

• Textbox IME switching
InputModeEditor

• Enable multiple menu items on left softkey

.NET CF2.0: Smartphone Support

43

New with Visual Studio 2005
• True ARM emulator with higher fidelity

Same executable/CAB for device and emulator
Realistic device performance
Direct3D and GAPI support

• New debugger
Brand new architecture rewritten from line 0
Optimized for USB 2.0 performance

• New designers
Improved UI designers (docking and anchoring)
Data designers (drag, drop, bind SQL to forms)
Improved CAB designer support (new project type)

44

Compatibility
• Applications written using prior versions of the .NET

Compact Framework just work on new versions
Goal is full backward compatibility

• New versions of .NET Compact Framework run on
previous versions of Windows CE and Windows Mobile

Windows Mobile support policy: n-2
Windows CE support policy: n-1

Supported Devices

V1 V2

PocketPC 2000
PocletPC 2002
PocketPC 2003, SE
SmartPhone 2003
WinCE 4.1
WinCE 4.2
WinCE 5.0

Pocket PC 2003 SE
Pocket PC 2005
Smart Phone 2005
WinCE 5.0

45

Release Roadmap

20022002 20032003 20042004 20052005

Pocket PCPocket PC
SmartphoneSmartphone PPC 2002PPC 2002 SP 2002SP 2002 WM 2003WM 2003 WM 2003 SEWM 2003 SE WM 5.0WM 5.0

VisualVisual
StudioStudio Visual Visual

Studio Studio
20032003

Visual Visual
Studio Studio
20052005

Windows CEWindows CE
3.03.0 4.24.2 5.05.0

.NET Compact .NET Compact
FrameworkFramework

4.14.1

1.01.0
SizeSize
PortabilityPortability
CompatibilityCompatibility

(redist)(redist)

1.0 SP11.0 SP1
SmartphoneSmartphone

1.0 SP21.0 SP2
Perf updatePerf update
LandscapeLandscape
AutoscrollAutoscroll
Bug fixesBug fixes

2.02.0
GenericsGenerics
COM interopCOM interop
ControlsControls
MD3DMMD3DM
PerformancePerformance

(redist)(redist)

1.0 SP31.0 SP3
Bug fixesBug fixes

20072007

WM 6.0WM 6.0

20062006

6.06.0

……

46

Generics
• Classes and methods that

work similarly on values of
different types

Variables are specific types, not
objects
No casting required

• Benefits
Re-use common code
Find bugs at compile time

class Stack<T>
{

private T[] store;
private int size;

public Stack() {
store = new T[10];
size = 0;

}

public void Push(T x) {
// push code goes here

}

public T Pop() {
return store[--size];

}
}

void Add(Stack<int> s) {
int x = s.Pop();
int y = s.Pop();
s.Push(x+y);

}

47

More New C# Language Features
• Anonymous Methods – Code blocks encapsulated in a delegate

// in constructor
button.Click += new EventHandler(sender,args)
{
// increment a counter or other action
};

// in constructor
button.Click += new
EventHandler(ProcessClick);

// separate method
void ProcessClick(object sender,EventArgs e)
{

// increment a counter or other action
}

BeforeBefore AfterAfter

public partial class Foo
{

public void CodeGenFunc()
{

// emitted by tool
}

}

public partial class Foo
{

public void UserFunc()
{

// user code
}

}

FooFoo--Part1.csPart1.cs FooFoo--Part2.csPart2.cs

• Partial Types – Split definitions for types and class members across
multiple files

C# compiler combines all definitions to make a single class

48

Managed Direct 3D Mobile
• Included in WinCE 5.0 and Windows Mobile 5.0

Native API is DX8 inspired
Managed APIs are DX9 inspired

• Features
Complete access to the
underlying native D3DM API
Fixed point support
(Vertex Data, Matrices, Lights,
and Materials)
Sprite
Font
Mesh
TextureLoader
Tutorials and Samples

49

Security
• Managed apps have identical security experience as native apps

Mobile Operators can restrict app install/start to signed apps only
Operators can control cert chain of trust, and/or rely on Mobile2Market
Malicious applications can be revoked if device is restricted

• Security features added:
V1 V1 SP1 V2

Permissions

Cryptography

Network Protocols

Integration with WM load-
time infrastructure for
run/no-run decision

• Certificates
ASN1/X.509

• Hashing
MD5, SHA1

• Symmetric key encryption
RC2, RC4, 3DES, DES

• Asymmetric key encryption
RSA, DSA

• Authentication
Digest

• HTTPS (Server auth only)

• Authentication
Negotiate
NTLM
Kerberos

50

.NET Compact Framework
• .NET Framework
• .NET Compact Framework
• Basic Supports in .NET Compact Framework
• Smart Device Projects
• .NET Compact Framework 2.0
• Performance Issues

51

Performance: Garbage Collector
• What triggers a GC?

Memory allocation failure
1M of GC objects allocated (v2)
Application going to background
GC.Collect() (Avoid “helping” the GC!)

• What happens at GC time?
Freezes all threads at safe point
Finds all live objects and marks them

An object is live if it is reachable from root location
Unmarked objects are freed and added to finalizer queue

Finalizers are run on a separate thread
GC pools are compacted if required (less than 750K of
free space)
Return free memory to the operating system

• In general, if you don’t allocate objects, GC won’t occur
Beware of side-effects of calls that may allocate objects

• http://blogs.msdn.com/stevenpr/archive/2004/07/26/197254.aspx

52

• Unnecessary string copies
Strings are immutable
String manipulations (Concat(), etc.)
cause copies
Use StringBuilder

String result = "";

for (int i=0; i<10000; i++) {

result +=

".NET Compact Framework";

result += " Rocks!";

}

StringBuilder result =

new StringBuilder();

for (int i=0; i<10000; i++){

result.Append(".NET Compact
Framework");

result.Append(" Rocks!");

}

Where Garbage Comes From? (1)

53

A Note on StringBuilder
• Remember it's all about reducing memory traffic
• If you roughly know the expected length of your final

string – allocate that much before hand (StringBuilder
constructor)

• Getting the string out of a StringBuilder doesn't cause a
new alloc, the existing buffer is converted into a string

• http://weblogs.asp.net/ricom/archive/2003/12/02/40778.aspx

54

Where Garbage Comes From? (2)
• Unnecessary boxing

Value types allocated on the stack (fast to allocate)
Boxing causes a heap allocation and a copy
Use strongly typed arrays and collections
(framework collections are NOT strongly typed)
class Hashtable {

struct bucket {
Object key;
Object val;

}
bucket[] buckets;
public Object this[Object key] { get; set; }

}

55

CLR: Generics
• Fully specialized implementation in .NET Compact

Framework v2
Pros

Strongly typed
No unnecessary boxing and type casts
Specialized code is more efficient than shared

Cons
Internal execution engine data structures and JIT-compiled code
aren’t shared
List<int>, List<string>, List<MyType>

http://blogs.msdn.com/romanbat/archive/2005/01/06/348114.aspx

56

CLR: Execution Engine
• Call path

Managed calls are more expensive than native
Instance call: ~2-3X the cost of a native function call
Virtual call: ~1.4X the cost of a managed instance call
Platform invoke: ~5X the cost of managed instance call
(*Marshal int parameter)

Properties are calls

• JIT compilers
All platforms have the same optimizing JIT compiler architecture in
v2
Optimizations

Method inlining for simple methods
Variable enregistration

57

CLR: Call Path Sample (1)

public class Shape
{

protected int m_volume;
public virtual int Volume
{
get {return m_volume;}

}
}
public class Cube:Shape
{

public MyType(int vol)
{

m_volume = vol;
}

}

public class Shape
{

protected int m_volume;
public int Volume
{
get {return m_volume;}

}
}
public class Cube:Shape
{

public MyType(int vol)
{

m_volume = vol;
}

}

58

CLR: Call Path Sample (2)
public class MyCollection

{
private const int m_capacity = 10000;
private Shape[] storage = new Shape[m_capacity];
…
public void Sort()
{

Shape tmp;
for (int i=0; i<m_capacity-1; i++) {
for (int j=0; j<m_capacity-1-i; j++)

if (storage[j+1].Volume < storage[j].Volume){
tmp = storage[j];
storage[j] = storage[j+1];
storage[j+1] = tmp;

}
}

}
}

callvirt instance int32 Shape::get_Volume()

59

CLR: Call Path Sample (3)

public class Shape
{

protected int m_volume;
public virtual int Volume
{
get {return m_volume;}

}
}
public class Cube:Shape
{

public MyType(int vol)
{

m_volume = vol;
}

}

public class Shape
{

protected int m_volume;
public int Volume
{
get {return m_volume;}

}
}
public class Cube:Shape
{

public MyType(int vol)
{

m_volume = vol;
}

}

••No virtual call overheadNo virtual call overhead

••InlinedInlined (no call overhead at all)(no call overhead at all)

~ Equal to accessing field~ Equal to accessing field

57 sec57 sec 39 sec39 sec

60

CLR: Reflection
• Reflection can be expensive
• Reflection performance cost

Type comparisons (for example: typeof())
Member enumerations (for example: Type.GetFields())
Member access (for example: Type.InvokeMember())
~10-100x slower

• Working set cost
Runtime data structures

~100 bytes per loaded type, ~80 bytes per loaded method

• Be aware of APIs that use reflection as a side effect
• Override

Object.ToString()
GetHashCode() and Equals() (for value types)

61

Best Practices for Windows Forms
• Load and cache Forms in the background

Populate data separate from Form.Show()
Pre-populate data, or
Load data async to Form.Show()

• Use BeginUpdate/EndUpdate when it is available
e.g. ListView, TreeView

• Use SuspendLayout/ResumeLayout when repositioning
controls

• Keep event handling code tight
Process bigger operations asynchronously
Blocking in event handlers will affect UI responsiveness

• Form load performance
Reduce the number of method calls during initialization

62

Best Practices for Graphics And Games

• Compose to off-screen buffers to minimize direct to screen
blitting

Approximately 50% faster

• Avoid transparent blitting in areas that require
performance

Approximate 1/3 speed of normal blitting

• Consider using pre-rendered images versus using
System.Drawing rendering primitives

Need to measure on a case-by-case basis

	Mobile Software Technologies (SW8)
	.NET Compact Framework
	The Core of .NET Framework
	.NET Framework
	Common Type System (CTS)
	Common Language Specification (CLS)
	.NET Languages
	Intermediate Language
	Example of MSIL Code
	.Net Assemblies
	.Net Execution Model
	.NET Compact Framework
	What is the .NET CF?
	Design Goals
	Architecture
	Execution Engine Commonalities
	Supported in .NET CF
	Execution Engine Differences
	Other Differences
	Framework Size
	.NET Framework
	.NET Compact Framework
	.NET Compact Framework
	Basic Data Types
	Base: Networking
	Base: Threading
	Windows Forms Support
	Supported Controls
	Data Choices
	XML
	ADO.NET Support
	XML Web Services Support
	.NET Compact Framework
	What Are Smart Device Projects?
	How to Design a Smart Device Application
	How to Create a Smart Device Application
	How to Test a Smart Device Application
	How to Deploy a Smart Device Application
	.NET Compact Framework
	.NET Compact Framework 2.0
	.NET CF2.0: Displays and Layout
	New with Visual Studio 2005
	Compatibility
	Release Roadmap
	Generics
	More New C# Language Features
	Managed Direct 3D Mobile
	Security
	.NET Compact Framework
	Performance: Garbage Collector
	Where Garbage Comes From? (1)
	A Note on StringBuilder
	Where Garbage Comes From? (2)
	CLR: Generics
	CLR: Execution Engine
	CLR: Call Path Sample (1)
	CLR: Call Path Sample (2)
	CLR: Call Path Sample (3)
	CLR: Reflection
	Best Practices for Windows Forms
	Best Practices for Graphics And Games

