
Database Systems: Physical Design ITEV 13.9.2008 1

Physical Database Design: Outline
• File Organization

Fixed size records
Variable size records

• Mapping Records to Files
Heap
Sequentially
Hashing
Clustered

• Buffer Management
• Indexes (Trees and Hashing)

Single-level versus multi-level
B+-Trees
Static Hashing

• Tuning Physical Design



Database Systems: Physical Design ITEV 13.9.2008 2

Physical Database Design
• File Organization

Fixed size records
Variable size records

• Mapping Records to Files
• Buffer Management
• Indexes (Trees and Hashing)
• Tuning Physical Design



Database Systems: Physical Design ITEV 13.9.2008 3

Storage Hierarchy

volatile storage: loses 
contents when power is 
switched off

non-volatile 
storage:

Contents 
persist even 
when power 
is switched 
off. 

Faster but 
more expensive



Database Systems: Physical Design ITEV 13.9.2008 4

seek time rotational delay

transfer time
Each disk access:

Magnetic Disk Access

Platters

Spindle
Read-write head

Arm movement

Arm assembly

Tracks

Sector



Database Systems: Physical Design ITEV 13.9.2008 5

Optimization of Disk Block Access
• Each track is divided into sectors.

A sector is the smallest unit of data that can be read or written.

• Block – a contiguous sequence of sectors from a single 
track 

data is transferred between disk and memory in blocks (I/O)

• Optimization of disk block access
Optimize block access time by organizing the blocks to 
correspond to how data will be accessed
E.g.  Store related information on the same or nearby 
cylinders.

To reduce the time-consuming track seeking



Database Systems: Physical Design ITEV 13.9.2008 6

The Problem of Physical Design
• Conceptual relations are sequences of bits on disk.

• Functionality Requirements
Be able to sequentially process records.
Be able to search for key-values efficiently.
Be able to insert and delete records.

• Performance Objectives
Achieve a high packing density (little wasted space).
Achieve fast response time
Support a high volume of transactions.



Database Systems: Physical Design ITEV 13.9.2008 7

File Organization
• The database is stored as a fixed collection of files. 

Each file is a set of records. 
• A record is a sequence of fields.

• Record size
Fixed
Variable

• Files reside on mass storage, usually a disk.
Fast random access
Non-volatile storage



Database Systems: Physical Design ITEV 13.9.2008 8

Fixed Size Records
• Record access simple: to access record i, get record at 

location n × i.

• Deletion of record i
Move records i +1, ... , n to i, ... , n - 1.

This is costly in time.
Need to worry about auxiliary pointers to the moved records.

Move record n to i.
This is fast.
Need to worry only about pointers to record n.

• Link all free records on a free-list.



Database Systems: Physical Design ITEV 13.9.2008 9

Variable Size Records
• Example: Film and Performers

• Record access is difficult.
• Implementation alternatives

Can implement variable-size records with one byte record 
size, using “end-of-record” control character.

Difficulty with deletion.
Difficulty with growth, e.g., another performer was added to the Lion 
King

Toy Story Tom Tim #
Lion King Simba Mufasa Scar Timon #
True Lies Arnold Jamie #



Database Systems: Physical Design ITEV 13.9.2008 10

Variable Size Records, cont.
• Use fixed size records

If maximum size is known (at most four performers per film)
Toy Story Tom Tim - -
Lion King Simba Mufasa Scar Timon
True Lies Arnold Jamie - -

If maximum size is not known
• Toy Story
• Lion King
• True Lies
• Tom
/ Tim
• Simba
• Mufasa
• Scar
/ Timon
• Arnold
/ Jamie



Database Systems: Physical Design ITEV 13.9.2008 11

Physical Database Design
• File Organization
• Mapping Records to Files

Heap
Sequentially
Hashing
Clustered

• Buffer Management
• Indexes (Trees and Hashing)
• Tuning Physical Design



Database Systems: Physical Design ITEV 13.9.2008 12

Mapping Records to Files
• Ways to organize records in a file

Heap (unordered)
A record can be placed anywhere in the file where there is space

Sequential (sorted on one or more attributes)
Store records in sequential order, based on the value of the search key 
of each record

Hash (hash the record to a block based on a hash key)
A hash function computed on some attribute of each record; the result 
specifies in which block of the file the record should be placed

Clustering (Store one or more tables based on a cluster key)
Records with the same or similar key values are stored close to each 
other



Database Systems: Physical Design ITEV 13.9.2008 13

Heap Example
• Heap Example

Customer(Name, Film, ResDate)

• Search by scanning the file
• Insertion of (‘Hans’, ‘ET’, 2006-04-22) is straight 

forward
To find a free slot

Merrie True Lies 2006-03-29 
Melanie True Lies 2006-04-19 
Eric Lion King 2006-04-18 
Melanie Lion King 2006-02-21 
Eric Toy Story 2006-04-19 

 



Database Systems: Physical Design ITEV 13.9.2008 14

Sequential Examples

Eric Toy Story 2006-04-19 
Eric Lion King 2006-04-18 
Melanie True Lies 2006-04-19 
Melanie Lion King 2006-02-21 
Merrie True Lies 2006-03-29 

 
 

• Sorted on one or more attributes
Customer(Name, Film, ResDate)
Search on Name: log2 (size)
Insertion of (‘Hans’, ‘ET’, 2006-04-22) cause the file 
to be reorganized.



Database Systems: Physical Design ITEV 13.9.2008 15

Clustering Examples
Customer(Name, Film, ResDate)
Keep all information concerning 
a customer and her reservations 
in the same block (or chain of 
blocks).
In case a block is too small to 
hold all accounts, a new block is 
allocated and chained to the 
previous appropriate blocks.

Melanie  
True Lies 2006-04-19 
Lion King 2006-02-21 
Eric  
Toy Story 2006-04-19 
Lion King 2006-04-18 
Merrie  
True Lies 2006-03-29 

 



Database Systems: Physical Design ITEV 13.9.2008 16

Mapping Relations to Files
• Store each relation in a separate file.

Good for queries in which all attributes in a tuple need to be 
examined.

• Store several relations in one file.
Good for

queries involving Customer n Reserved
queries involving a single customer and her reservations.

Bad for queries involving only customers.
Variable size records complicate storage management.

Customer 1
Reserved 1

Customer 2
Reserved 2

Customer 3
Reserved 3



Database Systems: Physical Design ITEV 13.9.2008 17

Packing Records Into Blocks
• Goal: minimize I/O transfer in processing queries.

• Idea: pack the information that is likely to be used in a 
single query in the same block.

block 1 block 2 block 3 ... ... ... block n File

Blockpage1 page 2 page 3



Database Systems: Physical Design ITEV 13.9.2008 18

Physical Database Design
• File Organization
• Mapping Records to Files
• Buffer Management
• Indexes (Trees and Hashing)
• Tuning Physical Design



Database Systems: Physical Design ITEV 13.9.2008 19

Buffer Management
• Buffer – portion of main memory available to store copies of 

disk blocks. It can reduce I/O transfer.
• Buffer manager – subsystem responsible for allocating buffer 

space in main memory.
• Programs call on the buffer manager when they need a block.

1. If the block is already in the buffer, buffer manager returns the address of 
the block in main memory

2. If the block is not in the buffer, the buffer manager
1. Allocates space in the buffer for the block

1. Replacing (throwing out) some other block, if required, to make 
space for the new block.

2. Replaced block written back to disk only if it was modified since 
the most recent time that it was written to/fetched from the disk.

2. Reads the block from the disk to the buffer, and returns the address of the 
block in main memory to requester. 



Database Systems: Physical Design ITEV 13.9.2008 20

Buffer-Replacement Policies
• Most systems replace the block least recently used (LRU 

strategy)
• Idea behind LRU – use past pattern of block references as a 

predictor of future references
• Queries have well-defined access patterns (such as sequential 

scans), and a database system can use the information in a user’s 
query to predict future references

LRU can be a bad strategy for certain access patterns involving repeated 
scans of data

For example: when computing the join of 2 relations r and s by a nested loops 
for each tuple tr of r do 

for each tuple ts of s do 
if the tuples tr and ts match …

Mixed strategy with hints on replacement strategy provided
by the query optimizer is preferable



Database Systems: Physical Design ITEV 13.9.2008 21

Buffer-Replacement Policies, cont.
• Pinned block – memory block that is not allowed to be written 

back to disk at this point of time.
• Toss-immediate strategy – frees the space occupied by a block 

as soon as the final tuple of that block has been processed
• Most recently used (MRU) strategy – system must pin the 

block currently being processed.  After the final tuple of that 
block has been processed, the block is unpinned, and it becomes 
the most recently used block.

• Buffer manager can use statistical information regarding the 
probability that a request will reference a particular relation

E.g., the data dictionary is frequently accessed.  Heuristic:  keep data-
dictionary blocks in main memory buffer

• Buffer managers also support forced output of blocks for the 
purpose of recovery

force a memory block to be written back to disk.



Database Systems: Physical Design ITEV 13.9.2008 22

Physical Database Design
• File Organization
• Mapping Records to Files
• Buffer Management
• Indexes (Trees and Hashing)

Single-level versus multi-level
B+-Trees
Static Hashing

• Tuning Physical Design



Database Systems: Physical Design ITEV 13.9.2008 23

Types of Single-Level Indexes
• Primary Index

Defined on a data file ordered on the primary key.
Includes one index entry for each block in the data file.

The index entry has the key field value for the first record in the 
block, which is called the block anchor.

• Clustering Index
Defined on a data file ordered on a non-key field.
Includes one index entry for each distinct value of the field.

The index entry points to the first data block that contains records 
with that field value.

• Secondary Index
Defined on a data file not ordered on the index key.
Includes one entry for each record in the data file: termed a 
dense index.



Database Systems: Physical Design ITEV 13.9.2008 24

Example: Primary Index

123456 Melanie 701 Broad Tucson AZ

246800 Eric 701 Broad Tucson AZ

336699 Merrie 123 Speed Tucson AZ

456789 Tom 197 Cardiff Houston TX

555555 Lee 221 Post Houston TX

678900 Jane 197 Cardiff Houston TX

890890 Linda 234 Oak Houston TX

993889 David 564 Alberca Tucson AZ

CustomerID Name Street City State

123456 •
336699 •
555555 •

890890 •
•••

Index

Data File

Block 1

Block 2

Block 3

Block n

Search key: 456789



Database Systems: Physical Design ITEV 13.9.2008 25

Example: Clustering Index

456789 Tom 197 Cardiff Houston TX

678900 Jane 197 Cardiff Houston TX

890890 Linda 234 Oak Houston TX

112200 Ken 73 Elm Houston TX

246800 Eric 701 Broad Tucson AZ

123456 Melanie 701 Broad Tucson AZ

147906 Cheryl 89 Pine Wichita KS

034321 Karsten 15 Main Wichita KS

CustomerID Name Street City State

Houston •
Tucson •

Wichita •
•••

Index

Data File

555555 Lee 221 Post Houston TX

Block 1

Block 2

Block 3

Block m

I know Linda lives in Houston. 
Find her record.



Database Systems: Physical Design ITEV 13.9.2008 26

Example: Secondary Index

123456 Melanie 701 Broad Tucson AZ

246800 Eric 701 Broad Tucson AZ

336699 Merrie 123 Speed Tucson AZ

456789 Tom 197 Cardiff Houston TX

555555 Lee 221 Post Houston TX

678900 Jane 197 Cardiff Houston TX

890890 Linda 234 Oak Houston TX

993889 David 564 Alberca Tucson AZ

CustomerID Name Street City State

David •
Eric •
Jane •

Linda •

Index

Data File

Lee •

Melanie •
Merrie •
Tom •

Block 1

Block 2

Block 3

Block o

Find Linda’s record.



Database Systems: Physical Design ITEV 13.9.2008 27

Multi-Level Indexes
• Because a single-level index is an ordered file, we can 

create a primary index to the index itself.
The original index file is called the  second-level index.
The index to the index is called the (top-) first-level index.

• We can repeat the process, until all entries of the top 
level index fit in one disk block, which is pinned in 
main memory.



Database Systems: Physical Design ITEV 13.9.2008 28

Multi-level Index Example

123456 Melanie 701 Broad Tucson AZ

246800 Eric 701 Broad Tucson AZ

336699 Merrie 123 Speed Tucson AZ

456789 Tom 197 Cardiff Houston TX

555555 Lee 221 Post Houston TX

678900 Jane 197 Cardiff Houston TX

890890 Linda 234 Oak Houston TX

993889 David 564 Alberca Tucson AZ

CustomerID Name Street City StateSecond 
Level Index

Data File

123456 •

336699 •
•••

123456 •

555555 •
•••

555555 •

890890 •
•••

Top Level 
Index



Database Systems: Physical Design ITEV 13.9.2008 29

Limitations of Multi-Level Indexes
• Suppose we have a number of levels
• Insertion and deletion of new index entries is a severe 

problem, because every level of the index is an ordered 
file.

• Most multi-level indexes use B-tree or B+-tree data 
structures, which leave space in each disk block to 
allow for new index entries.

• B+-trees can be used as an efficient tool for maintaining 
a hierarchy of indices. They are, in effect, balanced 
search trees.



Database Systems: Physical Design ITEV 13.9.2008 30

B+-Tree
• A B+-tree is a balanced tree in which every path from 

the root of the tree to a leaf of the tree is of the same 
length.

• Typical node: having n-1 keys and n pointers.

Ki are the search-key values 
Pi are pointers to children (for non-leaf nodes) or pointers to 
records or buckets of records (for leaf nodes).
n is often called fan-out.

• The search-keys in a node are ordered 
K1 < K2 < K3 < . . . < Kn–1

P1 K1 P2 K2 Pn-1 Kn-1 Pn



Database Systems: Physical Design ITEV 13.9.2008 31

Example of a B+-tree
• Here, n = 3. • 27 • 68 /

• 2 • 7 • • 12 • 15 • • 23 • 27 • • 35 • 43 • • 56 • 68 /

• 43 • 68 /• 7 • 15 •

Main Data File

• A B+-tree of size n is a rooted tree satisfying the 
following properties.

All paths from root to leaf are of the same length.
Each node that is not a root or a leaf has between ⎡n/2⎤ and n
children.
A leaf has between  ⎡(n-1)/2⎤ and n-1 children.



Database Systems: Physical Design ITEV 13.9.2008 32

B+-tree Properties
• All the keys in the subtree to which P1 points are ≤ K1
• For 1 < i < n all the keys in the subtree to which Pi points 

have values Ki-1< X ≤ Ki
• All the keys in the subtree to which Pn points > Kn
• In the leaf nodes Pi points to the record with key value Ki
• The last pointer in each leaf is not needed for pointing 

into the main file. It is used instead to link all the leaf 
nodes to form a sequential index. (sometimes double link)

• 2 • 7 • • 12 • 15 • • 23 • 27 • • 35 • 43 • • 56 • 68 /

• 43 • 68 /• 7 • 15 •

• 27 • 68 /P1 K1 P2 K2 Pn-1Kn-1 Pn



Database Systems: Physical Design ITEV 13.9.2008 33

B+-tree in Practice
• Each B+-tree node has the size of one I/O block of data.
• The B+-tree contains a rather small number of levels, 

usually logarithmic in the size of the main file.
minimize tree height and thus searches can be conducted 
efficiently.

• First one or two levels of the tree are stored in main 
memory to speed up searching

• Most internal nodes have less than (n-1) searching keys 
most of the time

huge space wastage for main memory, but not a big problem 
for disk



Database Systems: Physical Design ITEV 13.9.2008 34

More B+-tree Properties
• Note that here is no assumption that in the B+-tree the 

“logically” close blocks are “physically” close, as the 
parent/child connections are done by pointers.

• The non-leaf levels of the B+-tree form a hierarchy of 
sparse indices.

• Insertions and deletions to the main file can be handled 
efficiently, as the index can be reconstructed in 
logarithmic time as well.

• 2 • 7 • • 12 • 15 • • 23 • 27 • • 35 • 43 • • 56 • 68 /

• 43 • 68 /• 7 • 15 •

• 27 • 68 /



Database Systems: Physical Design ITEV 13.9.2008 35

B+-tree Insertions
• Find the leaf node in which the search-key value would 

appear.
• If the search-key value is already there, add data to 

bucket.
• If the search-key value is not there:

if there is room in the node record, add the search-key value 
in appropriate order, and add data to bucket.
if there is no room in record split the record.
Splitting can go up until the root, which if necessary will also
split and a new root will be created.



Database Systems: Physical Design ITEV 13.9.2008 36

B+-tree Insertions, cont.
• Example: (n = 3)

Insert new leaf here



Database Systems: Physical Design ITEV 13.9.2008 37

Root
17 24 3013

2* 3* 5* 7* 8*

2* 5* 7*3*

17 24 3013

8*

You overflow

One new child (leaf node) 
generated; must add one more 
pointer to its parent, thus one more 
key value as well.

14*    15* 16*

Inserting 16*, 8* into Example B+ tree
• n = 5



Database Systems: Physical Design ITEV 13.9.2008 38

• Copy up the 
middle value 
(leaf split)

2* 3* 5* 7* 8*

5
Entry to be inserted in parent node.
(Note that 5 is
continues to appear in the leaf.)

s copied up and

13       17      24     30

You overflow!5       13     17     24     30

Inserting 8*, cont.



Database Systems: Physical Design ITEV 13.9.2008 39

(Note that 17 is pushed up and only
appears once in the index. Contrast

Entry to be inserted in parent node.

this with a leaf split.)

5 24 30

17

13

5       13     17     24     30

• Understand 
difference between 
copy-up and push-
up

• Observe how 
minimum 
occupancy is 
guaranteed in both 
leaf and non-leaf
splits.

We split this non-leaf node, redistribute entries 
evenly, and push up middle key.

⇓

Inserting 8*, cont.



Database Systems: Physical Design ITEV 13.9.2008 40

Example B+ Tree After Inserting 8*

Notice that root was split, leading to increase in height.

2* 3*

Root

17

24 30

14* 15* 19* 20* 24* 25* 27* 29* 33* 34* 38* 39*

135

7*5* 8*



Database Systems: Physical Design ITEV 13.9.2008 41

B+-tree Deletions
• Find the record to be deleted, and remove it from the 

bucket.
• If the bucket becomes empty, remove the search-key 

from the leaf node.
• Adjust the tree, if necessary.

Merge leaf nodes if underflow.
Recurse up the tree if necessary, to ensure that all nodes are 
not underfull.

• For both insertions and deletions, the probability that 
reorganization will be necessary is low, ensuring 
logarithmic average case performance.



Database Systems: Physical Design ITEV 13.9.2008 42

Delete 19* and 20*

2* 3*

Root

17

24 30

14* 16* 19* 20* 24* 25* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

24*

27* 29*24*   25*

You underflow

•Notice how 25 is copied up.

25



Database Systems: Physical Design ITEV 13.9.2008 43

Static Hashing Index
• In a static hash index, the keys are not stored in 

sequential order.
• Rather, the key is stored in a bucket computed by 

applying a hash function to the key.

123456 Melanie 701 Broad Tucson AZ

246800 Eric 701 Broad Tucson AZ

336699 Merrie 123 Speed Tucson AZ

456789 Tom 197 Cardiff Houston TX

555555 Lee 221 Post Houston TX

678900 Jane 197 Cardiff Houston TX

890890 Linda 234 Oak Houston TX

993889 David 564 Alberca Tucson AZ

CustomerID Name Street City State

Bucket directory
Block 1

Block 2

Block 3

Block n

h
key

Hash function

890890 •

555555 •

123456 •

336699 •

…



Database Systems: Physical Design ITEV 13.9.2008 44

Static Hashing Index, cont.
• In direct hashing, the bucket directory points to blocks 

of the data file.
• In indirect hashing, the bucket directory points to 

blocks of index entries, which themselves point to the 
blocks of the data file.

• Bucket overflow (when too many different key values 
hash to the same bucket) is handled with overflow 
chains.

• Lookup: 2 accesses, one to the bucket and one to the 
data file.

• Good performance depends on a good hash function.



Database Systems: Physical Design ITEV 13.9.2008 45

Deficiencies of Static Hashing
• In static hashing, function h maps search-key values to a fixed 

set of B of bucket addresses. Databases grow or shrink with 
time. 

If initial number of buckets is too small, and file grows, performance will 
degrade due to too much overflows.
If space is allocated for anticipated growth, a significant amount of space 
will be wasted initially (and buckets will be underflow).
If database shrinks, again space will be wasted.

• One solution: periodic re-organization of the file with a new 
hash function

Expensive, disrupts normal operations

• Better solution: allow the number of buckets to be modified 
dynamically. 

Dynamic hashing (not covered here)



Database Systems: Physical Design ITEV 13.9.2008 46

Physical Database Design
• File Organization
• Mapping Records to Files
• Buffer Management
• Indexes (Trees and Hashing)
• Tuning Physical Design

Design decisions concerning indexes



Database Systems: Physical Design ITEV 13.9.2008 47

Tuning Physical Design
• Design decisions

Ordered indexes vs. Hashing
Sparse vs. dense index
Clustering vs. Non-clustering indexes
Joins and indexes

• When is the index not used?



Database Systems: Physical Design ITEV 13.9.2008 48

Ordered Indexes vs. Hashing
• In an ordered index, index entries are stored sorted on 

the search key value.  E.g., author catalog in library.
Primary index and secondary index are ordered indexes
Hashing is not

• Cost of periodic re-organization
• Relative frequency of insertions and deletions
• Is it desirable to optimize average access time at the 

expense of worst-case access time?
• Expected type of queries:

Hashing is generally better at retrieving records having a 
specified value of the key.
If range queries are common, ordered indices are to be 
preferred



Database Systems: Physical Design ITEV 13.9.2008 49

Sparse vs. Dense Index
• #pointers in dense index = 

#pointers in sparse index ⋅ #records per block
• For large records, dense and sparse indexes are about the 

same size
• Sparse index usually has one level less

Recall in B+-tree all non-leaf levels form a hierarchy of sparse 
indexes

• Sparse index is better for all updates and most queries
• IF query retrieves index attribute (e.g. count queries) only

THEN use dense index
ELSE use sparse index



Database Systems: Physical Design ITEV 13.9.2008 50

Clustering vs. Non-clustering
• Good news for clustering 

Clustering index may be sparse (small)
Good for range queries (e.g., 20000 < E.sal < 40000) and    
prefix queries (e.g., E.Name='Sm%')

• Bad news for clustering 
Inserts tend to be placed in the middle of the table. This 
causes overflows, destroying the benefits of clustering
Similarly for updates

• Use low block utilisation when clustering
• Good news for non-clustering

Dense, so some queries can be answered without access to 
table (Example on the next slide)
Good for point queries and multi-point queries



Database Systems: Physical Design ITEV 13.9.2008 51

Joins & Indexes
• An index on R.B or S.C will help: 

SELECT R.A, R.D
FROM R, S
WHERE R.B = S.C

• An index on R.B or S.C will not help (selection is 
done first). 

SELECT R.A, R.D
FROM R, S
WHERE R.B = S.C AND S.D = 5 AND R.E = 6

• A dense index on S.C is better than sparse clustering 
index (semijoin; no access to S needed). 

SELECT R.A, R.D
FROM R, S
WHERE R.B = S.C



Database Systems: Physical Design ITEV 13.9.2008 52

Joins & Indexes, cont.
• A non-clustering index on S.C will help (but every 

match gives a logical block access). 
SELECT R.A, R.D, S.E
FROM R, S
WHERE R.B = S.C

• A clustering index on S.C will also help (but every 
match gives a logical block access). 

SELECT R.A, R.D, S.E
FROM R, S
WHERE R.B = S.C

• B+-tree can be used for <, <=, =, >=, > joins.
• Hash index can only be used for equijoins.



Database Systems: Physical Design ITEV 13.9.2008 53

Composite Index
• Phone book: Composite index on (lastname, firstname)
• Advantages:

If dense, then query may be answered from index attributes only
Composite index more selective, i.e. returns fewer tuples
Sometimes good for multi-dimensional queries, e.g. 
SELECT phonenum FROM phonebook
WHERE lastname='Smith' AND'Jason'<firstname<'John'

• Disadvantages:
They tend to have large keys (key compression may help)
An update to any of the key attributes causes an index update
Sometimes bad for multi-dimensional queries, e.g. 
SELECT phonenum FROM phonebook
WHERE firstname='Jim'AND'Jamison'<lastname<'Johnson'



Database Systems: Physical Design ITEV 13.9.2008 54

When Isn't the Index Used?
• Catalogue out of date 

optimizer may think table is small

• “Good” and “bad” query examples:
SELECT * FROM EMP WHERE salary/12 > 4000
SELECT * FROM EMP WHERE salary > 48000
SELECT * FROM EMP WHERE SUBSTR(name, 1, 1) = 'G’
SELECT * FROM EMP WHERE name = 'G%’
SELECT * FROM EMP WHERE salary IS NULL

• Nested sub-query
• Selection by negation
• Queries with OR



Database Systems: Physical Design ITEV 13.9.2008 55

Summary
• Variable length records complicate storage management.
• Requiring the main file to be sorted slows down 

insertions and deletions.
• B+-trees support logarithmic insertion, deletion, and 

lookup, without excessive space costs.
• Query processing should take file structure and presence 

of indexes into account.
• Tuning the physical design requires knowing query and 

modification mix.


	Physical Database Design: Outline
	Physical Database Design
	Storage Hierarchy
	Magnetic Disk Access
	Optimization of Disk Block Access
	The Problem of Physical Design
	File Organization
	Fixed Size Records
	Variable Size Records
	Variable Size Records, cont.
	Physical Database Design
	Mapping Records to Files
	Heap Example
	Sequential Examples
	Clustering Examples
	Mapping Relations to Files
	Packing Records Into Blocks
	Physical Database Design
	Buffer Management
	Buffer-Replacement Policies
	Buffer-Replacement Policies, cont.
	Physical Database Design
	Types of Single-Level Indexes
	Example: Primary Index
	Example: Clustering Index
	Example: Secondary Index
	Multi-Level Indexes
	Multi-level Index Example
	Limitations of Multi-Level Indexes
	B+-Tree
	Example of a B+-tree
	B+-tree Properties
	B+-tree in Practice
	More B+-tree Properties
	B+-tree Insertions
	B+-tree Insertions, cont.
	Inserting 16*, 8* into Example B+ tree
	Inserting 8*, cont.
	Inserting 8*, cont.
	Example B+ Tree After Inserting 8*
	B+-tree Deletions
	Delete 19* and 20*
	Static Hashing Index
	Static Hashing Index, cont.
	Deficiencies of Static Hashing
	Physical Database Design
	Tuning Physical Design
	Ordered Indexes vs. Hashing
	Sparse vs. Dense Index
	Clustering vs. Non-clustering
	Joins & Indexes
	Joins & Indexes, cont.
	Composite Index
	When Isn't the Index Used?
	Summary

