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Redundant Information
• Suppose a “big” schema Rents(r) is designed for both 

films and reservations of our Video Store
Title, Price, and Kind is repeated for each film.

• Wastes space
• Potential for inconsistent data is increased

Murphy’s Law
• New movies?

CustomerID
True Lies

Title Price Kind ResDate
0001 3.25 D 2006-04-19

True Lies0002 3.25 D 2006-04-21
The Lion King0001 3.25 C 2006-04-19

Henry V0001 1.75 D 2006-04-18
The Lion King0003 3.25 C 2006-04-19

The Matrix 4 3.25 DNULL NULL
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Anomalies Resulting From A Bad Design

• Update anomaly
Update rental price to $4 for ‘True Lies’, have to change 
several tuples => anomaly if changes in some but not in all. 

• Insertion anomaly
Cannot insert information about a film if it has no rentals.

• Deletion anomaly
If no rentals, information about the film disappears!

CustomerID
True Lies

Title Price Kind ResDate
0001 3.25 D 2006-04-19

True Lies0002 3.25 D 2006-04-21
The Lion King0001 3.25 C 2006-04-19

Henry V0001 1.75 D 2006-04-18
The Lion King0003 3.25 C 2006-04-19



Database Systems: The Relational Data Model ITEV 6.9.2008 R-5

Goals of Logical Database Design
• Logical database design requires that we find a “good”

collection of relation schemes.
Avoid redundant data.
Avoid modification anomalies.
Ensure that relationships among attributes are represented.
Facilitate the checking of updates for violation of database 
integrity constraints.

• Logical design methods apply even if initial relational 
schema is obtained without first designing an ER 
model.
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Fix the Bad Design Example
• Solution: decompose the relation schema Rents (r) into:

R1 = (CustomerID, Title, ResDate)
R2 = (Title, Price, Kind)

• Requirements
All attributes of the original schema (R) must appear in the 
decomposition 

R =  R1 ∪ R2

Lossless-join decomposition: For all possible relations r on 
schema R,

r = πR1
(r)     πR2

(r)
• How do we ensure that the decomposition is a lossless-

join decomposition?

n
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A Good Decomposition

r1 = πCustomerID, Title, ResDate(r) r2 = πTitle, Price, Kind (r)

CustomerID
True Lies

Title Price Kind Date
0001 3.25 D 2006-04-19

True Lies0002 3.25 D 2006-04-21
The Lion King0001 3.25 C 2006-04-19

Henry V0001 1.75 D 2006-04-18
The Lion King0003 3.25 C 2006-04-19

CustomerID
True Lies

Title ResDate
0001 2006-04-19

True Lies0002 2006-04-21
The Lion King0001 2006-04-19

Henry V0001 2006-04-18
The Lion King0003 2006-04-19

True Lies
Title Price Kind

3.25 D

Henry V 1.75 D
The Lion King 3.25 C

r1 r2n
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A Bad Decomposition

r1 r2

r1 = πCustomerID, Price, ResDate(r) r2 = πTitle, Price, Kind (r)

True Lies
Title Price Kind

3.25 D
The Lion King 3.25 C

Henry V 1.75 D

CustomerID Price ResDate
0001 3.25 2006-04-19
0002 3.25 2006-04-21

0001 1.75 2006-04-18
0003 3.25 2006-04-19

CustomerID
True Lies

Title Price Kind ResDate
0001 3.25 D 2006-04-19

True Lies0002 3.25 D 2006-04-21
The Lion King0001 3.25 C 2006-04-19

Henry V0001 1.75 D 2006-04-18
The Lion King0003 3.25 C 2006-04-19

The Lion King0002 3.25 C 2006-04-21
True Lies0003 3.25 D 2006-04-19

n
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• Normal Forms
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Process of Logical Design
• Normalization

“Norm” means ideal (as in a normative process)

• What is norm?
Set of conditions: normal form
Many different normal forms

• How to achieve norm?
Identify violating condition
Decompose relation(s) to avoid violation

Making more relations, but fewer columns
More joins during queries
Denormalizing: process of undoing normalization to improve query 
performance
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Decompositions
• Let U be a relation schema.
• A set of relation schemas {R1 , R2 , ... , Rn} is a 

decomposition of U if and only if

U = R1 ∪ R2 ∪ … ∪ Rn

• Extra information is needed to guarantee lossless join 
decomposition. 

An integrity constraint is a condition which must be satisfied 
by all instances of a set of relational schemas.
Domain and key constraints are examples of integrity 
constraints.
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Lossless-Join Decomposition
• A decomposition {R, T} of U is a lossless-join

decomposition (with respect to a set of constraints) if the 
constraints imply that 

u = r t 
for all possible instances of R, T, and U.  

• The decomposition is said to be lossy otherwise.

• It is always the case for any decomposition {R, T} of U
that 

u ⊆ r t . 

n

n
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Functional Dependencies
• Functional dependencies generalize the previously 

introduced notions of keys.
• They also allow us to identify possible information loss 

from a given decomposition.

• Functional dependencies
Definition
Example
Closure of a set of dependencies
Closure of a set of attributes
Canonical representation: minimal cover
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Functional Dependency Definition
• Definition: Let α and β be subsets of schema R. A 

functional dependency α → β holds on R if for all 
legal instances r of R,

∀ t1 , t2 ∈r (t1[α] = t2[α] ⇒ t1[β] = t2[β]) 

• We use a functional dependency F for two different 
purposes.

Intensionally: F holds for schema R
Extensionally: relation instance r satisfies F

• A functional dependency α → β is trivial if β ⊆ α
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Functional Dependency Examples
• “A film has a unique title, rental price, and distributor.”

Title → RentalPrice, Distributor

• “The CustomerID uniquely identifies the customer and 
his/her address.”

CustomerID → Name, Street, City, State

• “Each video tape has a unique status.”
FilmID, TapeNum → Status
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More Functional Dependency Examples
• “On any particular day, a video tape can be checked out to 

at most one customer.”
CheckDate, FilmID, TapeNum → CustomerID

• “A performer can have only one role in a particular film.”
PerformerID, FilmID → Role
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Closure of Functional Dependency
• Let F be a set of functional dependencies. The closure

of F, denoted by F+, consists of all dependencies 
implied by the dependencies in F. (F ⊆ F+)

• Example
R = (A, B, C, D)
F = { A → B, A → C, CD → A}
Some members of F+

A → BC
CD → B
AD → B
AD → ABCD

• If α → R ∈ F+ then α is a superkey of R.
candidate key, primary key
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Armstrong's Axioms
• Armstrong's Axioms help us compute closures.

Reflexivity rule: If β ⊆ α then α → β (for any two sets of 
attributes α and β).
Augmentation rule: If α → β then γα → γβ.
Transitivity rule: If α → β and β → γ then α → γ.

• Armstrong's axioms are sound and complete.
They are sound in that they generate only correct functional 
dependencies.
They are complete in that they generate all possible FDs (F+) 
from a given set F.
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Armstrong's Axioms, cont.
• Additional rules:

Union rule: If α → β and α → γ then α → βγ.
Decomposition rule: If α → βγ then α → β and α → γ.
Pseudotransitivity rule: If α → β and γβ → δ then αγ → δ.

• These rules are sound.



Database Systems: The Relational Data Model ITEV 6.9.2008 R-20

Example
• Given the following functional dependencies F, 

compute F+

A → BC
CD → E
B → D
E → A.

• Computing F+

E → A and A → BC, so E → BC (transitivity)
B → D, so CB → CD (augmentation)
CB → CD and CD → E, so CB → E (transitivity)
And many more…
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Algorithm for Computing F+

• F + = F
repeat

for each FD f in F+

apply reflexivity and augmentation rules on f
add the resulting FDs to F +

for each pair of FDs f1 and f2 in F +
if f1 and f2 can be combined using transitivity

then add the resulting FD to F +
until F + does not change any further
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Closure of a Set of Attributes
• The closure of a set of attributes α with respect to a set 

of dependencies F is all attributes determined by α.

α+ = {A | α → A ∈ F+}

• Observation:
If α → β is in the closure of F, then β is in the closure of α.

• This yields the following algorithm for computing the 
closure of α.
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Closure Algorithm
• Algorithm for computing the closure of α.

result = α
while result changes do

for each γ → δ in F do
if γ ⊆ result then result := result ∪ δ

• The algorithm computes the closure of α correctly.
All parts of result upon termination are in the closure of α.
All parts of the closure of α are in result upon termination.
The algorithm terminates.
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Example of Attribute Closure
• R = (A, B, C, D)
• F = { A → B, A → C, CD → A}
• AD+

result = AD
result = ADB (A → B and A ⊆ AD)
result = ADBC (A → C and A ⊆ ABD)

• Is AD a candidate key?
Does AD → R?
Does A → R?
Does D → R?
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Minimal Covers
• A minimal cover of a set F of functional dependencies is 

a canonical representation, itself a set of functional 
dependencies.

In each functional dependency, the right-hand side is a single 
attribute

No redundant attributes on the left-hand side. That is, there is 
no X → A ∈ F such that:

Z ⊆ X
Z → A

There are no redundant functional dependencies. That is, there 
is no X → A in F such that (F - (X → A))+ =  F+
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Minimal Covers, cont.
• Example: A minimal cover for 

F = {A→BC,CD→E,B→D,A → E} is 

Fc = {A→B, A→C, CD→E, B→D}. 

• Every set of dependencies F has a minimal cover.
• The minimal cover is not necessarily unique.

• How to compute minimal covers?
Three properties in the previous slide
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Minimal Cover Algorithm
G := F
replace each functional dependency X → A1 A2 ...An ∈ G  with functional 
dependencies X → A1, X → A2 ,... , X → An

for each FD  X → A ∈ G
for each attribute B ∈ X

compute (X - B)+ with respect to the functional dependencies G
if (X - B)+ contains  A
then replace X → A with (X - B) → A in G

for each remaining FD X → A ∈ G
compute X+ with respect to the set of dependencies G - ({X → A})

if X+ contains  A
then remove X → A from G
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Minimal Cover Example
• F = {S → T, ST → U, S → TU}

Step 1: Break  up right-hand sides.
• G = {S → T, ST → U, S → U}

Step 2: Shrink left-hand sides.
• S T → U

S+ with respect to G’ = {S → T, S → U} is {S, T, U}: T is not 
needed.
T+ with respect to G’ = {S → T, S → U} is { T }: S is needed.

• Result: G = {S → T,S → U,S → U} = {S → T, S → U}
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Minimal Cover Example, cont.
• G = {S → T, S → U}

• Step 3: eliminate superfluous functional dependencies.
S → T: S+ with respect to G’ = { S → U } is { S, U }, so 
dependency S → T is not superfluous.
S → U: S+ with respect to G’ = { S → T } is { S, T }, so 
dependency S → U is not superfluous.

• Result: G = {S → T, S → U}
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Important Points So Far
• Properties of a good relational design

No redundancy
No update anomalies
Ability to represent all the information

• Converting a bad design to a good design
Decompose large relation schemas into smaller ones 
(Then we will need to do more joins to answer queries.)

• Ensuring lossless join decomposition
Specify semantic integrity constraints to be satisfied by all 
instances of the schemas.
Use constraints to argue that decompositions are lossless.

• Functional dependencies
• Armstrong's axioms to determine closure
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Properties of a Good Decomposition
• A relational schema R with a set of functional 

dependencies F is decomposed into R1 and R2.
1. Lossless-join decomposition

Test to see if at least one of the following dependencies are in F+

R1 ∩ R2 → R1

R1 ∩ R2 → R2

If not, decomposition may be lossy

2. Dependency preservation
Let Fi be the set of dependencies in F+ that include only attributes in 
Ri (Notation: Fi =πRi

(F+))
Test to see if (F1 ∪ F2)+= F+

When a relation is modified, no other relations need to be checked 
to preserve dependencies.

3. No redundancy
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Example
• R = (A, B, C)
• F = {A → B, B → C}
• R1 = (A, B), R2 = (B, C)

Lossless-join decomposition? 
R1 ∩ R2 = {B} and B → BC ∈ F+

Dependency preserving?
F+ = {A → B, A → C, A → AB, A → BC, A → AC, A → ABC, 

AB → C, AB → AC, AB → BC, AB → ABC, AC → BC,
AC → B, B → C, B → BC} ∪ {many trivial dependencies}

F1 = {A → B, A → AB} ∪ {many trivial dependencies}
F2 = {B → C, B → BC} ∪ {many trivial dependencies}
(F1 ∪ F2)+ = F+
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Another Example
• R = (A, B, C)
• F = {A → B, B → C}
• R1 = (A, B), R2 = (A, C)

Lossless-join decomposition: yes
R1 ∩ R2 = {A} and A → AB

Dependency preserving: no
F+ = {A → B, A → C, A → AB, A → BC, A → AC, A → ABC, 

AB → C, AB → AC, AB → BC, AB → ABC, AC → BC,
AC → B, B → C, B → BC} ∪ {many trivial dependencies}

F1 = {A → B, A → AB} ∪ {many trivial dependencies}
F2 = {A → C, A → AC} ∪ {many trivial dependencies}
(F1 ∪ F2)+ ≠ F+

Cannot check B → C without computing R1 R2n
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Impact of Non-Dependency Preservation
• r1:

• r2:

• r1 satisfies {A → B}.
• r2 satisfies {A → C}.
• The programmer must maintain {B → C} manually, 

which is difficult.

A B
1 17
2 18

A C
1 109
2 231

Solution: 
using Norm Forms to 
guide decomposition!
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Logical Database Design
• Motivation
• Logical Design
• Normal Forms

Boyce-Codd Normal Form (BCNF)
3th Normal Form (3NF)
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Normal Forms
• First Normal Form (1NF)

Domains of all attributes of relation schema are atomic.

• Second Normal Form (2NF)
Of historical interest only.

• Boyce-Codd Normal Form (BCNF)
• Third Normal Form (3NF)
• Fourth Normal Form (4NF)

Multivalued Dependencies (MVDs)

• Fifth Normal Form (5NF)
Join Dependencies (JDs)
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Boyce-Codd Normal Form
• A relation schema R is in Boyce-Codd Normal Form 

(BCNF) if for all X → A ∈ F+, at least one of the 
following holds: 

X → A is trivial (i.e., A ⊆ X), or
X is a superkey for R.

• Note that A is a single attribute.
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Example
• R = (A, B, C)

F = {A → B, B → C}
Key = {A}

• Is R is in BCNF?
NO. Why?

• Decomposition: R1 = (A, B), R2 = (B, C)
R1 and R2 are in BCNF.
Decomposition is a lossless-join decomposition.
Resulting schema is dependency preserving.
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BCNF Decomposition Algorithm
• Algorithm to decompose a relation schema R into a set 

of relation schemas {R1, R2,..., Rn} such that:
each relation schema Ri is in BCNF, and
get a lossless-join decomposition.

result := {R}
done := false
while (not done) do

if (there is a schema Ri in result not in BCNF) then
let X → A be a BCNF violating FD, that is, a nontrivial functional
dependency that holds on Ri such that X → Ri ∉ F+ and X ∩ A = ∅
result := (result - Ri) ∪ {(Ri - A)} ∪ {(X, A)}

else done := true
Combine Ri and Rj if:

Ri was obtained by using Xi → Ai
Rj was obtained by using Xi → Aj
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Decompose Bad Schema Rents(r)
• R={CustomerID, Title, Price, Kind, ResDate}

Identify FDs.
Identify candidate key(s).
Which FD(s) violates the BCNF?

CustomerID
True Lies

Title Price Kind ResDate
0001 3.25 D 2006-04-19

True Lies0002 3.25 D 2006-04-21
The Lion King0001 3.25 C 2006-04-19

Henry V0001 1.75 D 2006-04-18
The Lion King0003 3.25 C 2006-04-19
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Dependency Preservation
• It is not always possible to get a BCNF decomposition 

that is dependency preserving.

• R= (C, S, Z)  (City, State, and Zip code)
• F = {CS → Z, Z → S}
• There are two candidate keys: CS and CZ.

• R is not in BCNF.
• Any decomposition of R will fail to preserve CS → Z.

• It is not always possible to achieve both BCNF and 
dependency preservation.

Consider a weaker normal form – 3NF.
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Third Normal Form
• A relation schema R is in third normal form (3NF) if 

for all X → A ∈ F+ at least one of the following holds:
X → A is trivial (i.e., A ⊆ X),
X is a superkey for R, or
A is contained in a candidate key.

• Note that A is a single attribute.
• If a relation is in BCNF it is in 3NF.
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Example, Cont.
• R = (C, S, Z)  (City, State, and Zip code)
• F = {CS → Z, Z → S}
• There are two candidates keys: CS and CZ.
• R is in 3NF.

CS → Z (CS is a superkey.)
Z → S (S is contained in a key.)

• 3NF admits some redundancy

• ? = Arizona by Z → S.
• Thus, all redundancy is not eliminated.

C S Z
Tucson Arizona 85718
Marana ? 85718
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3NF Decomposition Algorithm
• Algorithm to decompose a relation schema R into a set 

of relation schemas {R1, R2, ... ,Rn} such that:
each relation schema Ri is in 3NF,
lossless-join decomposition, and
decomposition is dependency preserving.

Let FC  be the minimal cover of F
m := 0
for each functional dependency X → A ∈ FC do

m := m + 1
Rm := XA

if none of the schemas Rj 1 ≤ j ≤ m contains a candidate key for R then
m := m + 1
Rm := any candidate key for R

Combine Ri and Rj if:
Ri was obtained by using Xi → Ai
Rj was obtained by using Xi → Aj
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An Exercise on 3NF
• R={A, B, C, D, E}
• F={A →BC, CD →E, B →D, E →A}

• Give a lossless, dependency preserving decomposition
into 3NF of schema R.
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What Can Be Achieved?
• It is always possible to decompose a relation into 

relations in 3NF such that
the decomposition is lossless, and
dependencies are preserved.

• It is always possible to decompose a relation into 
relations in BCNF such that

the decomposition is lossless.

• It may not be possible to preserve dependencies and 
BCNF.
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Summary
• Properties of a “good” relational design

No redundancy
Ability to represent all the information

• Functional dependencies (FDs) 
The single most important concept in relational database 
design.
Armstrong's axioms to determine closure
Minimal covers
FDs are a tool to ensure a “good” relational design.

• Normal Forms
BCNF: Lossless but not always dependency preserving
3NF: Lossless and dependency preserving
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