Logical Database Design: Outline

- Motivation
 - Update anomalies
 - Properties of a good design
- Logical Design
 - Lossless-Join Decomposition
 - Functional Dependency
 - Normalization
- Normal Forms
 - Boyce-Codd Normal Form (BCNF)
 - 3th Normal Form (3NF)

Logical Database Design

- Motivation
 - Update anomalies
 - Properties of a good design
- Logical Design
- Normal Forms

Redundant Information

- Suppose a "big" schema *Rents(r)* is designed for both films and reservations of our Video Store
 - *Title*, *Price*, and *Kind* is repeated for each film.

CustomerID	Title	Price	Kind	ResDate
0001	True Lies	3.25	D	2006-04-19
0002	True Lies	3.25	D	2006-04-21
0001	The Lion King	3.25	С	2006-04-19
0003	The Lion King	3.25	С	2006-04-19
0001	Henry V	1.75	D	2006-04-18
NULL	The Matrix 4	3.25	D	NULL

• Wastes space

- Potential for inconsistent data is increased
 - Murphy's Law
- New movies?

Anomalies Resulting From A Bad Design

	· · · · · · · · · · · · · · · · · · ·		i	I
CustomerID	Title	Price	Kind	ResDate
0001	True Lies	3.25	D	2006-04-19
0002	True Lies	3.25	D	2006-04-21
0001	The Lion King	3.25	С	2006-04-19
0003	The Lion King	3.25	С	2006-04-19
0001	Henry V	1.75	D	2006-04-18

• Update anomaly

 Update rental price to \$4 for 'True Lies', have to change several tuples => anomaly if changes in some but not in all.

Insertion anomaly

• Cannot insert information about a film if it has no rentals.

Deletion anomaly

• If no rentals, information about the film disappears!

Goals of Logical Database Design

- Logical database design requires that we find a "good" collection of relation schemes.
 - Avoid redundant data.
 - Avoid modification anomalies.
 - Ensure that relationships among attributes are represented.
 - Facilitate the checking of updates for violation of database integrity constraints.
- Logical design methods apply even if initial relational schema is obtained without first designing an ER model.

Fix the Bad Design Example

- Solution: *decompose* the relation schema *Rents* (*r*) into:
 - $R_1 = ($ CustomerID, Title, ResDate)
 - $R_2 = (\text{Title, Price, Kind})$
- Requirements
 - All attributes of the original schema (*R*) must appear in the decomposition

 $R = R_1 \cup R_2$

• *Lossless-join decomposition*: For all possible relations *r* on schema *R*,

$$r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r)$$

• How do we ensure that the decomposition is a losslessjoin decomposition?

A Good Decomposition

Title	ResDate
True Lies	2006-04-19
True Lies	2006-04-21
The Lion King	2006-04-19
The Lion King	2006-04-19
Henry V	2006-04-18
	TitleTrue LiesTrue LiesThe Lion KingThe Lion KingHenry V

Title	Price	Kind
True Lies	3.25	D
The Lion King	3.25	C
Henry V	1.75	D

 $r_1 = \pi_{CustomerID, Title, ResDate}(r)$

 $r_2 = \pi_{Title, Price, Kind}(r)$

CustomerID	Title	Price	Kind	Date
0001	True Lies	3.25	D	2006-04-19
0002	True Lies	3.25	D	2006-04-21
0001	The Lion King	3.25	С	2006-04-19
0003	The Lion King	3.25	С	2006-04-19
0001	Henry V	1.75	D	2006-04-18

A Bad Decomposition

CustomorID	Drico	PasData			
CusiomeriD	Ince	ResDuie	Title	Price	Kind
0001	3.25	2006-04-19			
0000	2.25		True Lies	3.25	D
0002	3.25	2006-04-21	The Lien Vine	2.05	C
0003	3 25	2006 04 10	The Lion King	5.23	
0003	5.25	2000-04-19	Henry V	1 75	
0001	1.75	2006-04-18		1.75	
0001	1.75	2000 01 10			

 $r_1 = \pi_{CustomerID, Price, ResDate}(r)$

$$r_2 = \pi_{Title, Price, Kind}(r)$$

CustomerID	Title	Price	Kind	ResDate
0001	True Lies	3.25	D	2006-04-19
0002	True Lies	3.25	D	2006-04-21
0001	The Lion King	3.25	С	2006-04-19
0003	The Lion King	3.25	С	2006-04-19
0001	Henry V	1.75	D	2006-04-18
0002	The Lion King	3.25	C	2006-04-21
0003	True Lies	3.25	D	2006-04-19

$$r_1 \bowtie r_2$$

Logical Database Design

- Motivation
- Logical Design
 - Lossless-Join Decomposition
 - Functional Dependency
 - Normalization
- Normal Forms

Process of Logical Design

- Normalization
 - "Norm" means *ideal* (as in a *normative* process)
- What is norm?
 - Set of conditions: *normal form*
 - Many different normal forms
- How to achieve norm?
 - Identify violating condition
 - Decompose relation(s) to avoid violation
 - Making more relations, but fewer columns
 - More joins during queries
 - *Denormalizing*: process of undoing normalization to improve query performance

Decompositions

- Let U be a relation schema.
- A set of relation schemas $\{R_1, R_2, ..., R_n\}$ is a *decomposition* of *U* if and only if

$$U = R_1 \cup R_2 \cup \ldots \cup R_n$$

- Extra information is needed to guarantee lossless join decomposition.
 - An *integrity constraint* is a condition which must be satisfied by all instances of a set of relational schemas.
 - Domain and key constraints are examples of integrity constraints.

Lossless-Join Decomposition

• A decomposition {*R*, *T*} of *U* is a *lossless-join decomposition* (*with respect to a set of constraints*) if the constraints imply that

 $u = r \bowtie t$

for all *possible* instances of *R*, *T*, and *U*.

- The decomposition is said to be *lossy* otherwise.
- It is always the case for any *decomposition* {*R*, *T*} of *U* that

$$\mathcal{U} \subseteq \mathcal{r} \bowtie \mathcal{t}$$
.

Functional Dependencies

- Functional dependencies generalize the previously introduced notions of keys.
- They also allow us to identify possible information loss from a given decomposition.
- Functional dependencies
 - Definition
 - Example
 - Closure of a set of dependencies
 - Closure of a set of attributes
 - Canonical representation: minimal cover

Functional Dependency Definition

• Definition: Let α and β be subsets of schema *R*. A *functional dependency* $\alpha \rightarrow \beta$ holds on *R* if for all legal instances *r* of *R*,

$$\forall t_1, t_2 \in r (t_1[\alpha] = t_2[\alpha] \Longrightarrow t_1[\beta] = t_2[\beta])$$

- We use a functional dependency *F* for two different purposes.
 - Intensionally: *F* holds for schema *R*
 - Extensionally: relation instance *r* satisfies *F*
- A functional dependency $\alpha \rightarrow \beta$ is *trivial* if $\beta \subseteq \alpha$

Functional Dependency Examples

- "A film has a unique title, rental price, and distributor."
 - Title \rightarrow RentalPrice, Distributor
- "The CustomerID uniquely identifies the customer and his/her address."
 - CustomerID \rightarrow Name, Street, City, State
- "Each video tape has a unique status."
 - FilmID, TapeNum \rightarrow Status

More Functional Dependency Examples

- "On any particular day, a video tape can be checked out to at most one customer."
 - CheckDate, FilmID, TapeNum \rightarrow CustomerID
- "A performer can have only one role in a particular film."
 - PerformerID, FilmID \rightarrow Role

Closure of Functional Dependency

- Let *F* be a set of functional dependencies. The *closure* of *F*, denoted by *F*⁺, consists of all dependencies implied by the dependencies in *F*. (*F* ⊆ *F*⁺)
- Example
 - $\bullet \quad R = (A, B, C, D)$
 - $F = \{ A \rightarrow B, A \rightarrow C, CD \rightarrow A \}$
 - Some members of *F*⁺
 - $A \to BC$ $CD \to B$ $AD \to B$ $AD \to ABCD$
- If $\alpha \rightarrow R \in F^+$ then α is a superkey of *R*.
 - candidate key, primary key

Armstrong's Axioms

- Armstrong's Axioms help us compute closures.
 - *Reflexivity rule*: If $\beta \subseteq \alpha$ then $\alpha \rightarrow \beta$ (for any two sets of attributes α and β).
 - Augmentation rule: If $\alpha \rightarrow \beta$ then $\gamma \alpha \rightarrow \gamma \beta$.
 - *Transitivity rule*: If $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$ then $\alpha \rightarrow \gamma$.
- Armstrong's axioms are sound and complete.
 - They are *sound* in that they generate only correct functional dependencies.
 - They are *complete* in that they generate all possible FDs (*F*⁺) from a given set F.

Armstrong's Axioms, cont.

- Additional rules:
 - *Union rule*: If $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$ then $\alpha \rightarrow \beta \gamma$.
 - *Decomposition rule*: If $\alpha \rightarrow \beta \gamma$ then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$.
 - *Pseudotransitivity rule*: If $\alpha \rightarrow \beta$ and $\gamma\beta \rightarrow \delta$ then $\alpha\gamma \rightarrow \delta$.
- These rules are sound.

Example

- Given the following functional dependencies F, compute *F*⁺
 - $A \rightarrow BC$
 - $CD \rightarrow E$
 - $B \to D$
 - $E \rightarrow A$.
- Computing F⁺
 - $E \rightarrow A \text{ and } A \rightarrow BC$,
 - $B \rightarrow D$,
 - $CB \rightarrow CD$ and $CD \rightarrow E$,
 - And many more...

so $E \rightarrow BC$ (transitivity) so $CB \rightarrow CD$ (augmentation) so $CB \rightarrow E$ (transitivity)

Algorithm for Computing F⁺

• $F^+ = F$ repeat for each FD f in F^+ apply *reflexivity* and *augmentation* rules on f add the resulting FDs to F^+ for each pair of FDs f_1 and f_2 in F^+ if f_1 and f_2 can be combined using *transitivity* then add the resulting FD to F^+ **until** F⁺ does not change any further

Closure of a Set of Attributes

 The *closure* of a set of attributes α *with respect to* a set of dependencies *F* is all attributes determined by α.

$$\alpha^{+} = \{A \mid \alpha \to A \in F^{+}\}$$

- Observation:
 - If $\alpha \rightarrow \beta$ is in the closure of *F*, then β is in the closure of α .
- This yields the following algorithm for computing the closure of α .

Closure Algorithm

• Algorithm for computing the closure of α .

- The algorithm computes the closure of α correctly.
 - All parts of *result* upon termination are in the closure of α .
 - All parts of the closure of α are in *result* upon termination.
 - The algorithm terminates.

Example of Attribute Closure

- R = (A, B, C, D)
- $F = \{ A \rightarrow B, A \rightarrow C, CD \rightarrow A \}$
- *AD*+
 - result = AD
 - result = ADB $(A \rightarrow B \text{ and } A \subseteq AD)$
 - result = ADBC $(A \rightarrow C \text{ and } A \subseteq ABD)$
- Is *AD* a candidate key?
 - Does $AD \rightarrow R$?
 - Does $A \rightarrow R$?
 - Does $D \to R$?

Minimal Covers

- A *minimal cover* of a set *F* of functional dependencies is a canonical representation, itself a set of functional dependencies.
 - In each functional dependency, the right-hand side is a single attribute
 - No redundant attributes on the left-hand side. That is, there is no X → A ∈ F such that:
 - $\bullet \ Z \subseteq X$
 - $\bullet \ Z \to A$
 - There are no redundant functional dependencies. That is, there is no $X \rightarrow A$ in F such that $(F (X \rightarrow A))^+ = F^+$

Minimal Covers, cont.

• Example: A minimal cover for $F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, A \rightarrow E\}$ is

$$F_c = \{A \rightarrow B, A \rightarrow C, CD \rightarrow E, B \rightarrow D\}.$$

- Every set of dependencies *F* has a minimal cover.
- The minimal cover is not necessarily unique.
- How to compute minimal covers?
 - Three properties in the previous slide

Minimal Cover Algorithm

G := F

replace each functional dependency $X \to A_1 A_2 \dots A_n \in G$ with functional dependencies $X \to A_1, X \to A_2, \dots, X \to A_n$

for each FD $X \rightarrow A \in G$ for each attribute $B \in X$ compute $(X - B)^+$ with respect to the functional dependencies Gif $(X - B)^+$ contains Athen replace $X \rightarrow A$ with $(X - B) \rightarrow A$ in G

for each remaining $FD X \rightarrow A \in G$ compute X^+ with respect to the set of dependencies $G - (\{X \rightarrow A\})$ if X^+ contains Athen remove $X \rightarrow A$ from G

Minimal Cover Example

•
$$F = \{S \to T, ST \to U, S \to TU\}$$

Step 1: Break up right-hand sides.

• $G = \{S \rightarrow T, ST \rightarrow U, S \rightarrow U\}$

Step 2: Shrink left-hand sides.

- $S T \to U$
 - S^+ with respect to $G' = \{S \rightarrow T, S \rightarrow U\}$ is $\{S, T, U\}$: *T* is not needed.
 - T^+ with respect to $G' = \{S \rightarrow T, S \rightarrow U\}$ is $\{T\}: S$ is needed.
- Result: $G = \{S \rightarrow T, S \rightarrow U, S \rightarrow U\} = \{S \rightarrow T, S \rightarrow U\}$

Minimal Cover Example, cont.

- $G = \{S \to T, S \to U\}$
- Step 3: eliminate superfluous functional dependencies.
 - S → T: S⁺ with respect to G' = { S → U } is { S, U }, so dependency S → T is *not* superfluous.
 - S → U: S⁺ with respect to G' = { S → T } is { S, T }, so dependency S → U is not superfluous.
- Result: $G = \{S \rightarrow T, S \rightarrow U\}$

Important Points So Far

- Properties of a good relational design
 - No redundancy
 - No update anomalies
 - Ability to represent all the information
- Converting a bad design to a good design
 - Decompose large relation schemas into smaller ones (Then we will need to do more joins to answer queries.)
- Ensuring lossless join decomposition
 - Specify semantic integrity constraints to be satisfied by all instances of the schemas.
 - Use constraints to argue that decompositions are lossless.
- Functional dependencies
- Armstrong's axioms to determine closure

Properties of a Good Decomposition

- A relational schema R with a set of functional dependencies F is decomposed into R_1 and R_2 .
 - 1. Lossless-join decomposition
 - Test to see if *at least one* of the following dependencies are in F^+
 - $\bullet \quad R_1 \cap R_2 \to R_1$
 - $\bullet \quad R_1 \cap R_2 \to R_2$
 - If not, decomposition may be lossy
 - 2. Dependency preservation
 - Let F_i be the set of dependencies in F^+ that include only attributes in R_i (Notation: $F_i = \pi_{R_i}(F^+)$)
 - Test to see if $(F_1 \cup F_2)^+ = F^+$
 - When a relation is modified, no other relations need to be checked to preserve dependencies.
 - 3. No redundancy

Example

- R = (A, B, C)
- $F = \{A \rightarrow B, B \rightarrow C\}$
- $R_1 = (A, B), R_2 = (B, C)$
 - Lossless-join decomposition?
 - $R_1 \cap R_2 = \{B\}$ and $B \to BC \in F^+$
 - Dependency preserving?

F⁺ = {A → B, A → C, A → AB, A → BC, A → AC, A → ABC, AB → C, AB → AC, AB → BC, AB → ABC, AC → BC, AC → B, B → C, B → BC} ∪ {many trivial dependencies}
F₁ = {A → B, A → AB} ∪ {many trivial dependencies}
F₂ = {B → C, B → BC} ∪ {many trivial dependencies}
(F₁ ∪ F₂)⁺ = F⁺

Another Example

- R = (A, B, C)
- $F = \{A \rightarrow B, B \rightarrow C\}$
- $R_1 = (A, B), R_2 = (A, C)$
 - Lossless-join decomposition: yes
 - $R_1 \cap R_2 = \{A\}$ and $A \to AB$
 - Dependency preserving: no

- $F_2 = \{A \rightarrow C, A \rightarrow AC\} \cup \{many \ trivial \ dependencies\}$
- $\bullet \ (F_1 \cup F_2)^+ \neq F^+$
- Cannot check $B \to C$ without computing $R_1 \bowtie R_2$

Impact of Non-Dependency Preservation

 r_2 : <u>A</u> C <u>1</u> 109 <u>2</u> 231 Solution: using Norm Forms to guide decomposition!

- r_1 satisfies $\{A \rightarrow B\}$.
- r_2 satisfies $\{A \rightarrow C\}$.
- The programmer must maintain $\{B \rightarrow C\}$ manually, which is difficult.

Logical Database Design

- Motivation
- Logical Design
- Normal Forms
 - Boyce-Codd Normal Form (BCNF)
 - 3th Normal Form (3NF)

Normal Forms

- First Normal Form (1NF)
 - Domains of all attributes of relation schema are atomic.
- Second Normal Form (2NF)
 - Of historical interest only.
- Boyce-Codd Normal Form (BCNF)
- Third Normal Form (3NF)
- Fourth Normal Form (4NF)
 - Multivalued Dependencies (MVDs)
- Fifth Normal Form (5NF)
 - Join Dependencies (JDs)

Boyce-Codd Normal Form

- A relation schema *R* is in *Boyce-Codd Normal Form* (BCNF) if for all *X* → *A* ∈ *F*⁺, at least one of the following holds:
 - $X \rightarrow A$ is *trivial* (i.e., $A \subseteq X$), or
 - X is a superkey for R.
- Note that *A* is a single attribute.

Example

- R = (A, B, C)
 - $F = \{A \rightarrow B, B \rightarrow C\}$
 - Key = $\{A\}$
- Is *R* is in BCNF?
 - NO. Why?
- Decomposition: $R_1 = (\underline{A}, B), R_2 = (\underline{B}, C)$
 - R_1 and R_2 are in BCNF.
 - Decomposition is a lossless-join decomposition.
 - Resulting schema is dependency preserving.

BCNF Decomposition Algorithm

- Algorithm to decompose a relation schema R into a set of relation schemas $\{R_1, R_2, ..., R_n\}$ such that:
 - each relation schema R_i is in BCNF, and
 - get a lossless-join decomposition.

 $result := \{R\}$

done := false

```
while (not done) do
```

if (there is a schema R_i in result not in BCNF) **then** let $X \to A$ be a BCNF violating FD, that is, a nontrivial functional dependency that holds on R_i such that $X \to R_i \notin F^+$ and $X \cap A = \emptyset$ result := (result - R_i) $\cup \{(R_i - A)\} \cup \{(X, A)\}$ **else** done := true Combine R_i and R_j if: R_i was obtained by using $X_i \to A_i$ R_j was obtained by using $X_i \to A_j$

Decompose Bad Schema Rents(r)

- R={CustomerID, Title, Price, Kind, ResDate}
 - Identify FDs.
 - Identify candidate key(s).
 - Which FD(s) violates the BCNF?

CustomerID	Title	Price	Kind	ResDate
0001	True Lies	3.25	D	2006-04-19
0002	True Lies	3.25	D	2006-04-21
0001	The Lion King	3.25	C	2006-04-19
0003	The Lion King	3.25	С	2006-04-19
0001	Henry V	1.75	D	2006-04-18

Dependency Preservation

- It is not always possible to get a BCNF decomposition that is dependency preserving.
- R = (C, S, Z) (*City*, *State*, and *Zip code*)
- $F = \{CS \rightarrow Z, Z \rightarrow S\}$
- There are two candidate keys: *CS* and *CZ*.
- *R* is not in BCNF.
- Any decomposition of *R* will fail to preserve $CS \rightarrow Z$.
- It is not always possible to achieve both BCNF and dependency preservation.
 - Consider a weaker normal form 3NF.

Third Normal Form

- A relation schema *R* is in *third normal form* (3NF) if for all *X* → *A* ∈ *F*⁺ at least one of the following holds:
 - $X \to A$ is trivial (i.e., $A \subseteq X$),
 - X is a superkey for R, or
 - *A* is contained in a candidate key.
- Note that *A* is a single attribute.
- If a relation is in BCNF it is in 3NF.

Example, Cont.

- R = (C, S, Z) (*City*, *State*, and *Zip code*)
- $F = \{CS \rightarrow Z, Z \rightarrow S\}$
- There are two candidates keys: *CS* and *CZ*.
- *R* is in 3NF.
 - $CS \rightarrow Z$ (CS is a superkey.)
 - $Z \rightarrow S$ (*S* is contained in a key.)
- 3NF admits some redundancy

С	S	Ζ
Tucson	Arizona	85718
Marana	?	85718

- ? =Arizona by $Z \rightarrow S$.
- Thus, all redundancy is not eliminated.

3NF Decomposition Algorithm

- Algorithm to decompose a relation schema R into a set of relation schemas $\{R_1, R_2, \dots, R_n\}$ such that:
 - each relation schema R_i is in 3NF,
 - lossless-join decomposition, and
 - decomposition is dependency preserving.

```
Let F_C be the minimal cover of F

m := 0

for each functional dependency X \rightarrow A \in F_C do

m := m + 1

R_m := XA

if none of the schemas R_j 1 \le j \le m contains a candidate key for R then

m := m + 1

R_m := any candidate key for R

Combine R_i and R_j if:

R_i was obtained by using X_i \rightarrow A_i

R_j was obtained by using X_i \rightarrow A_j
```

An Exercise on 3NF

- $R = \{A, B, C, D, E\}$
- $F={A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A}$
- Give a lossless, dependency preserving decomposition into 3NF of schema R.

What Can Be Achieved?

- It is always possible to decompose a relation into relations in 3NF such that
 - the decomposition is lossless, and
 - dependencies are preserved.
- It is always possible to decompose a relation into relations in BCNF such that
 - the decomposition is lossless.
- It may not be possible to preserve dependencies and BCNF.

Summary

- Properties of a "good" relational design
 - No redundancy
 - Ability to represent all the information
- Functional dependencies (FDs)
 - The single most important concept in relational database design.
 - Armstrong's axioms to determine closure
 - Minimal covers
 - FDs are a tool to ensure a "good" relational design.
- Normal Forms
 - BCNF: Lossless but not always dependency preserving
 - 3NF: Lossless and dependency preserving