
Chapter 1
More Features in UPPAAL

Alexandre David, Kim G. Larsen

Abstract Following the introduction to the model checking tool UPPAAL of the
previous chapter, this chapter presents a number of additional modeling and veri-
fication features offered by the tool. These features include in particular a C-like
imperative language with user-defined types and functions, allowing for readable
and compact models with reusable updates of discrete variables. Using an example
of a Train Gate, we demonstrate the use(fulness) of these features. Also, the chapter
presents the full query language of UPPAAL covering both safety, liveness and time-
bounded liveness properties, again illustrated using the Train Gate example. Finally,
directions are given on modelling choices and use of verification options that may
improve time- and/or space-performance of the UPPAAL verifier

1.1 The Train Gate

In the previous chapter the basic modelling formalism of UPPAAL was presented:
automata interacting over channels and extended with (integer) variables and clocks.
For the ease of modeling, the full formalism of UPPAAL allows for structured vari-
ables (arrays and records) together with a C-like imperative language for their up-
dates. To present and illustrate the use(fulness) of these features we use an example
of a Train Gate. This example was originally presented in [27] as a number of trains
running on seperate tracks, but – for economical reasons – having to cross a com-
mong bridge. The challenge is to model the timing behaviour of the trains, as well as
to design (and verify) a controller that will stop and (re)start trains in an appropriate
manner, e.g. to avoid trains colliding on the common bridge.
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Fig. 1.1 The train gate problem. Trains run on their own tracks except on the bridge. Trains may
be stopped before 10 time units, after which they must proceed to the bridge. If stopped a train will
take some time to reach the bridge (7–15 time units). Crossing takes some time (3–5 time units).

A Simple Railway Control System [27]: We consider a railway control system
to automatically control trains passing a critical point such as a bridge. The
idea is to use a computer to guide trains from several tracks crossing a single
bridge instead of building many bridges. Obviously, a safety property of such
a system is to avoid the situation where more than one train are crossing the
bridge at the same time.

Figure 1.1 depicts the problem of trains (here only 4) crossing a bridge. Initially
trains are far enough from the bridge and are in a Safe state. At some point a train
is approaching the bridge (state Approaching). The gate controller has then 10 time
units to stop it. After this time the train has too much inertia to be stopped safely
and must proceed to the bridge. It will take 20 time units to reach the bridge. If the
train is stopped (state Stop) then it will be restarted again eventually (state Start) and
it will take between 7 and 15 time units to reach the bridge. A train can be stopped
at any time before 10 time units and so we model this non-determinism. When a
train crosses the bridge it takes between 3 and 5 time units and we want as a safety
property that only one train at a time has access to the bridge. After crossing, a train
will go to its safe state again.

From the modelling point-of-view, this cyclic behaviour models different trains
arriving on the same track. In addition, the behaviour of all the trains is the same
and we only need a way to distinguish them, typically with a unique identifier. The
model will then consist of a number of train instances derived from the same tem-
plate and a gate controller.
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1.2 User-Defined Types

In programming languages types allow for static checks to be performed, for
ensuring that variables and expressions are used in a manner that will not lead
to domain incompatibility in the sense that an operation is applied to a value
that is not in its domain of arguments. The ability to define new types allow the
user to identify and name value domains that are not primitive of the language
being used, say “stacks” of characters equipped with operations for clearing,
pushing, and popping a stack, selecting the top component, and testing for
emptiness. For the modelling formalisms of UPPAAL a similar design decision
has been taken.

The gate controller will typically need a queue to keep track of stopped trains and
restart them. Trains are distinguished with a unique identifier whose range is defined
by the total number of trains. It is natural and safe from a modelling point-of-view
to declare a type for this identifier being a bounded integer. Furthermore we can
structure the queue into one type that contains an array and a length. User-defined
types are declared with the syntax

typedef type name;

where the type can be a bounded integer (int[min,max]) or a structure declared as

struct { type1; type2; . . .}
In our example, the global declaration contains the following:

const int N = 6;
typedef int[0,N-1] id_t;

chan appr[N], stop[N], leave[N];
urgent chan go[N];

Here id t is the type for identifiers that is used as argument for the template of
trains. In addition, arrays of channels are declared for the communication between
the gate and every train. Furthermore, the template of the gate has its own local
declarations:

typedef struct {
id_t list[N];
int[0,N] len;

} queue_t;

queue_t q;

The type queue t defines the domain of queues as records consisting of an array
of identifiers and an associated length. The variable q over this type constitutes the
actual queue to be used by the gate. Being declared locally, both queue t and q
are only visible within the gate template.

Figure 1.2 shows the templates used for the trains (a) and the gate (b). The train
template has the argument const id t id that defines its identifier. Its states
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Fig. 1.2 Template for the trains (a) and the gate (b).

correspond to the states in Fig. 1.1. The communication with the gate is done
with the channels with this identifier. When trains are approaching, the gate con-
troller is notified with appr[id]! and when they leave the bridge they notify with
leave[id]!. The gate controller can stop a train and then restart it. Trains listen
on stop[id]? and go[id]? for this purpose. The different timing constraints of
Fig. 1.1 are modelled with invariants on states and guards. Trains have a local clock
x for this purpose (the purpose of the additional clock z will be explained later).

The gate controller uses and manipulates its queue structure in the automaton.
When trains are approaching the controller enqueues their identifiers and dequeues
them when they leave the bridge. If trains are approaching when the bridge is oc-
cupied (state Occ) they are stopped and their identifiers enqueued. The model is
made more compact by using the so-called select statement e: id t to unfold the
corresponding edge with e ranging over the type id t. More details on this useful
feature will be given in section 1.4. To keep the template readable, queueing and
dequeuing are performed with the help of user-defined functions, as will be detailed
in the next section 1.3.

We note that one location of the gate is marked with “C” indicating that it is Com-
mitted. If a location is Committed then this means that time can not elapse within
this location, similar to the condition for Urgent locations (see section ??). However,
for Committed locations transitions are in addition restricted only to those leaving
committed locations. This removes interleaving between processes and allows the
user to model atomic sequences of actions to do, e.g., a multicast 1.

1 Broadcast channels are supported and are declared by prefixing the channel declaration by broad-
cast.
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1.3 User-defined functions

As a recommendation to the programmer, in its formulation by Benjamin C.
Pierce [24], the Abstraction Principle reads: “Each significant piece of func-
tionality in a program should be implemented in just one place in the source
code. Where similar functions are carried out by distinct pieces of code, it is
generally beneficial to combine them into one by abstracting out the varying
parts”.

With the availability of discrete variables (integer, boolean and even structured vari-
ables as well as variables over user-defined types), their updates quickly become
more involved, e.g., inserting an element into a sorted array. Updates of discrete
variables take place on transitions as sequences of simple assignments. Instead of
using complex automata to encode an update (even using committed states for that
purpose), it is far more convenient, compact, and efficient to use a function that
can pack complex control flow constructs such as nested conditional statements and
loops. Thus, concerning the imperative part of a model UPPAAL provides support
for the principle of abstraction.

For managing the queue of train identifiers of the gate controller we use functions
to queue, dequeue, and access the tail and front of the queue. The declaration is
shown in figure 1.3. C-like syntax is used with the extension of references (like in
C++) and without pointers. Enqueuing adds an element at the end of the queue and
increases the length of the queue. Dequeuing removes the front element and shifts
all the elements. Here we point out the final reset of the last element to zero. From
a programming point of view this reset seems completely superfluos as this element
is no longer part of the queue and will have no effect on the subsequent behaviour.
In fact an optimizing compiler would most likely remove the reset. However, in a
model checker this reset to a default value is key to limit the state-space explosion
problem. If we were not reseting here, the queue would remember the last element
that was there, even though it is no longer in the queue and has no relevance for the
future behaviour of the system. Thus states that are behaviourally equivalent, would
be different, thus impacting the performance of the model-checker (you may want
to check the validity of this claim yourself!). The functions for reading the front and
tail elements of the queue are straight-forward.

While writing these functions in C is simple, implementing the same functional-
ity in “pure” timed automata with simple updates is complex and error prone (but
possible).
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// Put an element at the end of the queue
void enqueue(id_t element)
{

q.list[q.len++] = element;
}

// Remove the front element of the queue
void dequeue()
{

int i = 0;
q.len -= 1;
while (i < q.len)
{

q.list[i] = q.list[i + 1];
i++;

}
q.list[i] = 0;

}

// Returns the front element of the queue
id_t front()
{

return q.list[0];
}

// Returns the last element of the queue
id_t tail()
{

return q.list[q.len - 1];
}

Fig. 1.3 Declaration of the functions used locally by the gate controller.

1.4 Select label

The gate controller of figure 1.2.(b) is using a select statement. This statement has
the effect of duplicating the edge into several instances with the variable(s) used in
the select taking values over the specified range(s), which in fact could be any type
(here id t). This construct is useful for models with a parameterised number of
processes having to synchronise. Arrays of channels can be used for that purpose,
e.g. allowing in our example the controller to know with which train it is synchro-
nising and subsequently store its identifier in its queue. This can also be interpreted
as message passing using (here) the appr channel that carries the identifier of the
approaching train. Fig. 1.4 shows the window used to edit that edge. The variable e
declared in the select label has its scope on all the labels of that edge, here it is used
in both the guard and synchronisation labels.
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Fig. 1.4 Window for editing edges showing the different editable labels.

1.5 The Simulator Revisited

Having now completed the modeling of the Train Gate example, the first thing to ex-
amine the behaviour using the simulator of UPPAAL. Figure 1.5 shows a screenshot
of the simulator, while simulating an instance of the Train Gate with six trains. From
the simulation of the Jobshop example of the previous chapter, we recognize vari-
ous parts of the simulator tab. The left part allows the user to control the simulation
by choosing transitions and playing traces. The right part shows the automata with
the active locations and the transitions that are taken, and below them a message
sequence chart that shows the synchronisations between the automata.

However, whereas the center part of the simulator tab was completely empty for
the Jobshop example, it now contains quite some information. In fact the center part
provides information about the current value of variables and clocks. The user may
select which information (s)he wants to pay attention to during a given simulation,
by hiding (or viewing) processes and variables using the View menu.

Turning to the information offered for clocks, we see that the simulator does not
exhibit concrete (real) values for the clocks but rather a collection of constraints
on individual clocks, e.g. x ≤ 4, or constraints on clock differences, e.g. x− y < 10.
This reflects the fact, the model checking engine of UPPAAL does not perform state-
space exploration based on concrete states with concrete values of clocks (which
would be impossible due to the uncountably many such values) but rather based on
sets of clock values described by such simple constraints. Sets of clock valuations
described by constraints on clocks and clock differences are called zones, and may
be represented in a canonical manner by so-called difference bound matrices (DBM),
where entries bi, j describe the upper bound on a clock difference x i−x j. In the View
menu, the amount of information presented for clocks in the center part may be
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Fig. 1.5 Screenshot of the simulator running of the train-gate example.

affected. When the option Full DBM is selected, the all constraints present in the
DBM will be shown. When the option is not selected, a reduced (but semantically
equivalent) list of constraint is shown.

Thus, the model checking engine as well as the simulator of UPPAAL operates
on symbolic states being tuples of the form (L,Z,V ), where L is the location vector
(active locations for all automata), Z is a zone, and V is the variable vector (values of
all the integers). Figure 1.6 illustrates the sequence of symbolic states encountered
during simulation of a simple timed automaton with two clocks x and y. As indicated
in (a) simulation starts from the initial state where both x and y has the value 0.

• (a) From the intial state it is possible to delay and reach all states that respect the
invariant of the initial location (i.e. x ≤ 4). As the two clocks x and y increase in
perfect synchrony, the resulting zone may be describe by the constraints: x = y
and x ∈ [0,4].

• (b) Taking the transition that resets the clock y results in the zone described by
y = 0 and x ∈ [0,4]

• (c) From each of these clock values (or points) delaying is again possible (except
for x = 4,y = 0), which gives the zone described by the constraints y ≥ 0 and
y ≤ x and x ∈ [0,4].

• (d) Finally, taking the transition guarded by y >= 2 adds this constraint resulting
in the zone described by y ≥ 0 and y ≤ x and x ∈ [2,4].

Internally in the tool, these logical constraints are represented as a matrix with
one extra special reference clock used for lower and upper bounds on individual
clocks, e.g., x ∈ [0,4]. This representation also explains the limitation on the syntax
for guards, namely they must be a conjunction of constraints of the form x i−x j ≤ bi j
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Fig. 1.6 Exploration of symbolic states. Starting from the origin (0,0), (a) shows all the states
reachable by delaying, (b) depicts the reset on the clock y, (c) shows a subsequent delay, and (d)
shows the states that can take a transition guarded by y ≥ 2.

(or a strict inequality). Within the simulator of UPPAAL, when selecting a transition,
the variable view is updated to the symbolic state that can take that transition and
the constraints change. When a transition is taken, the constraints are updated to
reflect the resets and the delay that follows.

1.6 Queries Revisited

In the previous chapter, we considered basic UPPAAL queries of the types A[] φ
and E<> φ for specifying safety and reachability properties of the job-shop example.
As stated, these notations come from the field of temporal logic:

In a temporal logic we can then express statements like ”I am always hungry”,
”I will eventually be hungry”, or ”I will be hungry until I eat something”.

Temporal logic has found an important application in formal verification,
where it is used to state requirements of hardware or software systems. For
instance, one may wish to say that whenever a request is made, access to a
resource is eventually granted, but it is never granted to two requestors simul-
taneously.

Two early contenders in formal verifications were Linear Temporal Logic, LTL
(Amir Pnueli and Zohar Manna) and Computation Tree Logic, CTL (Edmund
Clarke and E. Allen Emerson). In this section we will detail the full query language
of UPPAAL, which is in fact a subset of CTL. Figure 1.7 illustrates the five formula-
types supported by UPPAAL: A[]φ , E<>φ , A<>φ , E[]φ and (φ � ψ). The main
restriction compared to full CTL is that UPPAAL does not allow nesting of formula,
i.e. in the above ψ or φ must be state predicates refering only to locations, clocks
and variables.
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Fig. 1.7 The different types of logic formulas supported by UPPAAL.

1.6.1 Reachability

Reachability properties are of the form E<> φ and mean there exists some path
on which φ holds at some state (Fig. 1.7.(b)). Reachability properties are useful
for checking that models proposed at early design stages possess expected basic
behaviours and to ask for diagnostic traces to confirm and study this more closely.
For the Train Gate example such sanity properties could be:

E<> Gate.Occ
E<> Train(0).Cross
E<> Train(1).Cross
E<> Train(0).Cross and Train(1).Stop
E<> Train(0).Cross and (forall(i:id_t) i!=0 imply Train(i).Stop)

serving to check that the gate can be occupied, that trains 0 or 1 can cross, that train 0
can cross while train 1 is stopped, and that train 0 can cross while all other trains are
stopped. In the last property – expected but maybe difficult to exhibit using manual
or random simulation – forall is used over a range of indices.

1.6.2 Safety

Safety properties are of the form A[] φ and mean that for all paths and for all
states on those paths φ holds (Fig. 1.7.(a)). We note that E<> ¬φ = ¬ A[] φ ,
which means that E<> ¬φ gives a counter example in terms of a trace to a state that
does not satisfy φ . For the Train Gate example expected safety properties are:

A[] forall (i:id_t) forall (j:id_t) \
Train(i).Cross && Train(j).Cross imply i==j
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A[] not deadlock

Here the first safety property expresses that the gate controller correctly implements
mutual exclusion of the bridge, in that no two different trains can be in the crossing
simultaneously. The nested usage of the forall construct ranging over id t, ensures
that the formula correctly (and conviniently) expresses mutual exclusion regardless
of the number of trains.

Other properties that also fall within the category of safety properties are of the
form E[] φ , that means there exists a path on which φ always holds (Fig. 1.7.(e)).

1.6.3 Liveness

Whereas safety properties are usefull for expressing “that something bad will never
happen”, they are not sufficient for ensuring that a designed system is adequate.
Given the Train Gate example it is utterly simple to obtain a safe system guarantee-
ing no crashes on the bridge: simply use a gate controller that will stop all trains!
Clearly, this is not satisfactory.

What is needed is the additional ability to express liveness properties of a system
in the sense “that something good is guaranteed to eventually happen”. The first
liveness property has the form A<> φ expressing that for all paths φ eventually
holds (Fig. 1.7.(d)). We note that E[] ¬φ = ¬ A<> φ , which means that E[] ¬φ
gives a counter example to the liveness property A<> φ in the form of an infinite
path (witnessed as a loop) or a path that ends on a deadlock on which φ does not
hold.

The second, and particularly useful, liveness property has the form φ --> ψ and
should be read as φ leads to ψ . In fact this property is equivalent to (and a short-
hand for) the formula A[](φ imply A<> ψ), and means that whenever φ holds
for a state, then ψ will always hold eventually for all paths starting from that state
(Fig. 1.7.(c)). More interestingly is its usage as a time bounded liveness property
with the help of an observer as shown in Fig. 1.16.(a) of Section 1.9.

In our Train Gate example, we may want to ensure that whenever a train is ap-
proaching it eventually will be at crossing. This will clearly rule out the inadequate
solution of a controller which (purposely) stops all train, or wrongly implemented
controllers under which some trains might get stuck in the queue.

Train(0).App --> Train(0).Cross
Train(1).App --> Train(1).Cross
Train(2).App --> Train(2).Cross
...

1.6.4 Bounded Liveness and Performance Evaluation

Having studied the correctness of the model, we may be interested in its perfor-
mance. Though it is essential to know that trains approaching will eventually reach
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the crossing, we may additionally want to obtain lower and upper bounds on the time
between trains being in the Appr and Cross locations. For this, we add a clock z to
the model as shown in Fig. 1.2. The clock is reset whenever a train is approaching2.
To determine the relevant time-bounds we perform a binary search using properties
of the type

A[] Train(0).Cross imply Train(0).z <= UP
A[] Train(0).Cross imply Train(0).z >= LOW

with UP and LOW being constants used in the binary search, e.g., 1000, 500, 250,
125, . . . Adding an extra clock to the model that is reset when we want to mea-
sure some time and asking a safety or reachability property on a specific state is a
technique used for bounded liveness. We note that this is cheaper than liveness.

As an attractive alternative to performing the (manual) binary search, we may use
the queries inf{Pr}:exp and sup{Pr}:exp, which returns the infimum (supre-
mum) of the expression exp over all reachable states satisfying the state predicate
Pr. For the Train Gate example the queries

inf{Train(0).Cross}: Train(0).z
sup{Train(0).Cross}: Train(0).z

will give us the desired time-bounds directly for this clock in the state Train(0).Cross.
The state predicate is optional and not putting the brackets at all is the same as hav-
ing true as the predicate. The bounds are here 7 ≤ z ≤ 125 for 6 trains.

We could also have used a stop-watch, which is sometimes simpler, i.e., by
adding the invariant z’==0 to the state Safe to stop the clock and reseting it when
entering this state. Then we would ask sup: Train(0).z, which gives the same
upper bound. We note that using stop-watches makes the reachability problem unde-
cidable but UPPAAL uses an over-approximation technique so the result is reliable.
In this example, the bound is exact but it could have been looser.

1.7 Verification Options

The model checking technology comes with the curse of state space explosion, i.e.
the number of states to be explored tend to grow exponentially with the number of
components (automata, clocks, variables, etc.) of the model. Development of tech-
niques for state-space representation and exploration for making model checking
efficient in practice is an extremely active area. Benefitting from (and contributing
to) this research, UPPAAL offers a number of verification options to affect the repre-
sentation and exploration of the verirication engine. These are available in the GUI
under the Options menu.

2 The reset to Safe is to reduce the state-space and has an impact because as the clock is used in
the property, it is always active.

12



1.7.1 Search Order

Fig. 1.8 Search order options.

The classical search ordering depth-
first and breadth-first search are sup-
ported, as well as random depth-first
(Fig. 1.8). In scheduling models where
one solution is wanted, depth-first (or
random depth-first) will typically be
the most efficient option. There is an-
other option available in the 4.1.x ver-
sions, closest to target first. This is an
experimental heuristic used to guide
the search.

1.7.2 State Space Reduction

Fig. 1.9 State space reduction options.

These options are used to reduce the size
of the stored state-space (Fig. 1.9). No op-
timisation can be chosen (none), commit-
ted states may not be stored unless they
start a loop (conservative), only states start-
ing loops will be stored (aggressive), or no
state at all will be stored (extreme). The
last option should be used with caution and
is useful only when the model guarantees
progress or is acyclic.

1.7.3 State Space Representation

These options specify how to store individual state (Fig. 1.10.(a)). The option DBM
uses the canonical matrix representation of constraints known as difference bound
matrix. The option Compact Data Structure computes a reduced set of necessary
constraints to store, which costs time but reduces memory footprint. The option
Under approximation activate the bit-state hashing technique where every state is
stored as one bit in a big hash table whose size is specified in the Hash table size
option (Fig. 1.10.(b)). Finally the option Over approximation merges states together
internally using an over-approximation technique (known as convex-hull), which
reduces the number of states.
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Fig. 1.10 State space representation (a) and hash table size (b) options.

1.7.4 Diagnostic Trace

Fig. 1.11 Diagnostic trace options.

To obtain a trace, a different option than
“none” should be selected. When this is done,
only one property at a time may be checked.
Some trace may be obtained, or the shortest
possible trace w.r.t. the number of steps, or
the fastest w.r.t. time.

1.7.5 Extrapolation

Fig. 1.12 Extrapolation options.

Our verifier is using a symbolic technique
to explore the state-space: rther than operat-
ing on concrete states with concrete values
of clocks, the symbolic technique operates
on sets of clock values (so-called zones)
represented by constraints on clocks, x ≤ c,
and constraints on clock differences ,x −
y ≤ c. When analysing a particular timed
automaton, static analysis will reveal that
for each clock x there is a threshold value
cx above which the exact value of x is irrelevant for the behaviour of the timed au-
tomaton. This observation is crucial for abstractions (widening) of zones to obtain
a finite symbolic state-space. This is in essence what the extrapolation does. It turns
out there are different proposals for exptrapolation, that will be either exact or an
over-approximation depending on the type of constraints used in the model. It is rec-
ommended to leave that option to automatic. The other settings are none (may pre-
vent termination), difference (a more expensive operation useful when constraints of
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the form x− y ≤ c are used), local (the default), and lower/upper (an optimisation
applicable for certain models).

1.7.6 Reuse

When checking consecutive reachability or safety properties, the model-checker
may reuse the generated states if that option is selected. We note that alternating
reachability and liveness property will cancel the benefit of that option.

1.7.7 Impact

Table 1.1 shows the impact of some of these options on a few examples that can be
found on http://www.uppaal.org under examples/benchmarks. The example csma is
a collision detection protocol, here with 10 nodes. Then we experiment with Fis-
cher’s protocol, a mutual exclusion protocol with 10 nodes here. Finally we use a
token ring FDDI (fiber distributed data interface) protocol with 25 nodes. The prop-
erties checked here are safety properties and the depth-first search option makes
the search a lot slower. This is explained by inclusion of symbolic states that will
not be effective with that order. However, in other cases where a simple schedule
is wanted, this order will work well. Deactivating compact data-structures will in-
cur a small speed improvement and a large loss in memory compared to the default
setting. The aggressive state-space representation stores fewer states and can some-
times (in these cases) give speed improvements. This is explained by the inclusion
check that is done on fewer states.

def dfs S2 -C
csma-10 5.8s 115s 5.6s 5.1s

15.4M 16.5M 15.4M 24.6M
fischer-10 24.7s 111s 21.2s 20.6s

23.9M 21.2M 15M 30.6M
fddi-25 4.4s * 2.5s 3.8s

13.7M * 10.9M 29M

Table 1.1 Performance comparison with different options. The option def corresponds to the de-
fault setting, which is breadth-first search, compact data structure, and conservative state-space
representation. The option dfs only changes the search order to depth-first. The option S2 is the
default setting changed with aggressive state-space representation. Finally the option -C is the de-
fault setting without the compact data-structure. We show results in seconds and MBytes obtained
on a PentiumD running at 2.8GHz. The entries ’*’ mark an experiment that was stopped because
it was taking more than 3 minutes.
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1.8 Gossipping Girls: A Case-Study for Efficient Modelling

In this section we iterate over different versions of models to solve the gossipping
girls problem (mentioned in the previous chapter), a notoriously difficult combi-
natorial problem. The goal is to expose the inherent limits of the model-checking
technique, known as state-space explosion, and see how to change a model to im-
prove performance.

The gossiping girls problem. Let n girls have each a private secret they wish to
share with each other. Every girl can call another girl and after a conversation,
both girls know mutually all their secrets. The problem is to find out how many
calls are necessary so that all the girls know all the secrets. A variant of the
problem is to add time to conversations and ask how much time is necessary
to exchange all the secrets, allowing concurrent calls.

The basic formulation of the problem is not timed and is typically a com-
binatorial problem with a string of n bits that may take (at most) 2 n values for
every girl. That means we have in total a string of n2 bits taking 2n2

values (in
product with other states of the system).

1.8.1 Modelling in UPPAAL

We face choices regarding the representation of the secrets and where to store them.
Every girl keeps track of her known secrets. The natural encoding would be to use an
array of booleans. One could think of using a more compact encoding by choosing to
use one integer to do so and to manage the bits manually as booleans. This limits the
model to the number of bits available but as we have seen from the complexity, the
state-space explodes too quickly for this to be a limiting factor. We will explore both
encodings to see that the “optimized” version using integers is in fact not convenient
at all for further refinements of the model. The second choice is where to store the
messages, in one shared table or locally with every girl. The models described here
can be found at http://www.cs.aau.dk/˜adavid/GossippingGirls/.

In the following sub-sections we present different versions of the model. They
will all use these common global declarations:

const int GIRLS = 4;
typedef int[0,GIRLS-1] girl_t;
chan phone[girl_t], reply[girl_t];

The declaration of the constant GIRLS allows us to scale the model easily. Notice
that it is possible to declare that arrays of channels are indexed by a given type,
which implicitly gives them the right size. This is useful for an optimization seen
later.
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The girl template is named Girl and has girl t id as parameter. A first version of
the the template is shown in figure 1.13. Every girl has a different ID. The system
declaration is simply: system Girl;. This makes use of the auto-instantiation fea-
ture of UPPAAL. All instances of the template Girl ranging over its parameters are
generated. The number of instances is controlled by the constant GIRLS.

Reply Listen

Ringing

reply[g]?
listen()

reply[g]!
talk()

j : girl_t

phone[j]?
listen(),
g = j

j : girl_t
id != j
phone[j]!
g = j,
talk()

start()

Fig. 1.13 First attempt for modelling the gossipping girls. The model consists in different instances
of the same template with different identifiers to differentiate the girls. This is the template of a
girl, taking as argument an identifier of type girl t.

The template of a girl uses functions on its transitions to handle communica-
tion. It is good practice to use such function to improve readability of the model
and to make it more flexible. We will change the internal data-structures and imple-
mentation of these functions but still keep the same automaton. Since the identifier
parameter is a template argument, its scope is the whole template, which means it
can be used directly in any local function. Here the start() function will initialize the
girl with her unique secret (which depends on her identifier). The functions talk()
and listen() aure used to send and receive secrets to and from other girls. The syn-
chronization is done with the channels corresponding to other girls. We note that for
replying, a girls needs to remember who she talked to so the model keeps track of
that with a local variable girl t g.

1.8.2 Representing Secrets With Boolean Arrays

We need to encode message passing between different processes, which is not di-
rectly supported by UPPAAL. To do so, the standard way is to declare a temporary
shared variable. In addition, this variable is prefixed with the keyword meta, which
means that it is a special temporary variable that will not be part of the states. This
means that users should never refer to it between two states. Its value is only reliable
on one given transition (possibly involving several edges in case of a synchroniza-
tion).
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We add to the global declarations meta bool tmp[girl t]; to encode message pass-
ing. The functions mentioned previously are implemented as follows:

bool secrets[girl_t];
void start() { secrets[id] = true; }
void talk() { tmp = secrets; }
void listen() { for(i:girl_t) secrets[i] |= tmp[i]; }

In this version we use assignment between arrays for talk(). The function listen()
uses an iterator. The template automaton is given in figure 1.13 and is common
for both versions gossip1 (boolean encoding) and gossip0 (integer encoding). This
first attempt captures the fact that we want the model to be symmetric with respect
to sending and receiving and is quite natural with symmetric uses of talk() and
listen().

Initialisation is done by setting secret id to true. The initial committed location
ensures all girls are initialised before they start to exchange secrets. Then we have
a standard message passing using a shared variable with the receiver merging the
secrets sent with her own (logical or).

1.8.3 Representing Secretes With Integers

This time we add meta int tmp; to pass integer messages between the girls.
The functions are now implemented as follows to manage the integers’ bits:

int secrets;
void start() { secrets = 1 << id; }
void talk() { tmp = secrets; }
void listen() { secrets |= tmp; }

Initialisation is done here by setting bit id to one. The other functions are similar to
the boolean encoding but manipulating all bits at once this time.

1.8.4 Basic Improvements

Basic optimisations of a model.

1. Avoid useless interleavings by using committed locations.
2. Make sure to model exactly what you need and not more.
3. Use active variable reduction, which is to reset a variable to a fixed known

value, whenever its value is not relevant to the current state.

Let us now apply and illustrate the above basic optimization rules using the Gossip-
ing Girls example:
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1. The intermediate state Listen should be made committed otherwise all interleav-
ing of half-started and complete calls will occur.

2. One select statement is enough because we are modelling something else here,
namely girl id selects a channel indexed by j and any other girl that selects the
same channel index can communicate with girl id.

3. The local variable g contributes badly to the state-space when its value is not
relevant, i.e., the previous communication does not need to be kept. We can set it
in a symmetric manner upon the start and reset it after communication to id.

The updated model is shown in Fig. 1.14. This update is for both boolean (gos-
sip3) and integer (gossip2) encodings. The template keeps as an invariant that the
variable g is always equal to id whenever it is not sending. In addition, when a
channel j is selected, then it corresponds to exactly girl j. Only one committed
location is enough but it is a good practice to mark them both. It is more explicit
when we read the model. The previous versions could only be checked up to 4 girls,
now we can check 5 within roughly the same time. This is a very good improvement
considering the exponential complexity of the problem.

Reply Listen

Ringing

reply[g]?
listen(),
g = id

reply[id]!
talk()

phone[id]?
listen()

j : girl_t
id != j
phone[j]!
g = j,
talk()

start(),
g = id

Fig. 1.14 Improved model of the gossipping girls.

1.8.5 Abstracting The Communication Protocol

We can abstract which communication line is used by declaring only one channel
chan call. Since the semantics says that any pair of enabled edges (call!,call?) can
be taken, we do not need to make an extra select. In addition, processes cannot
synchronise with themselves so we do not need this check either. The downside is
that we lose the information on the receiver from the sender point of view. We do
not need this in our case. We can get rid of the local variable g as well. We can also
simplify the communication protocol by merging the sequence listen()-talk() into
one function and simplify listen() to a simple assignment since we know that the
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message already contains the sent secrets. The global declaration is updated with
only chan call; for the channel. The updated automaton is depicted in Fig. 1.15.

Listen

Ringing

listen()

call?
exchange()

call!
talk()

start()

Fig. 1.15 Abstract model of the gossipping girls.

The integer version of the model (gossip4.xml) has the following local functions:

int secrets;
void start() { secrets = 1 << id; }
void talk() { tmp = secrets; }
void exchange() { secrets = (tmp |= secrets); }
void listen() { secrets = tmp; }

The boolean version of the model (gossip5.xml) is changed with the functions:

bool secrets[girl_t];
void start() { secrets[id] = true; }
void talk() { tmp = secrets; }
void exchange() { for(i:girl_t) tmp[i] |= secrets[i];

secrets = tmp; }
void listen() { secrets = tmp; }

The exchange function could have been written as follows:

void exchange() {
for(i:girl_t) secrets[i] = (tmp[i] |= secrets[i]);

}

which is almost the same. The difference is that the number of interpreted instruc-
tions is lower in the first case. It is possible to further optimise the model by having
one parameterised shared table and avoid message passing all-together. We leave
this as an exercise for the reader but we notice that this change destroys the nice
design with the local secrets to each process.

1.8.6 Verification

We check the reachability property that all girls will eventually know all secrets. For
the integer version of the model, the property is:
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E<> forall(i:girl_t) forall(j:girl_t)
(Girl(i).secrets & (1 << j))

We can write a shorter but less obvious equivalent formula that takes advantage of
the fact that 2GIRLS − 1 generates a bit mask with the first GIRLS bits set to one:

E<> forall(i:girl_t)
Girl(i).secrets == ((1 << GIRLS)-1)

The formula for the boolean version is:

E<> forall(i:girl_t) forall(j:girl_t)
Girl(i).secrets[j]

The formulas use the for-all construct, which gives compact formulas that automat-
ically scale with the number of girls in the model. The version with the integers
checks with a bit mask that the bits are set.

Table 1.2 shows the resource consumption for the different models with different
number of girls. Experiments are run on an AMD Opteron 2.2GHz with UPPAAL

rev. 2842. The results show how important it is to be careful with the model and to
optimise the model to reduce the state-space whenever possible. We notice that the
model is not even using clocks. The model with integers is faster due to its simplicity
but consumes marginally less memory. The two last models (gossip6 and gossip7)
are discussed in the next paragraph.

Girls 4 5 6 7
gossip0 0.6s/24M 498s/3071M - -
gossip1 1.0s/24M 809s/3153M - -
gossip2 0.1s/1.3M 0.3s/22M 71s/591M -
gossip3 0.1s/1.3M 0.5s/22M 106s/607M -
gossip4 0.1s/1.3M 0.2s/22M 37s/364M -
gossip5 0.1s/1.3M 0.3s/22M 63s/381M -
gossip6 0.1s/1.3M 0.1s/1.3M 3.4s/29M 399s/1115M
gossip7 0.1s/1.3M 0.1s/1.3M 0.3s/21M 29s/108M

Table 1.2 Resource consumption for the different models with different number of girls. Results
are in seconds/M-bytes.

1.8.7 Improving Verification with Symmetry and Progress
Measures

UPPAAL features two major techniques to improve verification. These techniques
concern directly verification and are orthogonal to model optimisation. The first is
symmetry reduction. Since we designed our model to be symmetric from the start,
taking advantage of this feature is done by using a scalar set for the type girl t. The
second feature is the generalised sweep-line method. We need to define a progress
measure to help the search. Furthermore, only the model with booleans is eligible
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for symmetry reduction since we cannot access individual bits in an integers in a
symmetric manner (using scalars).

Symmetry reduction. This technique exploits the structure of states in order
to identify symmetries that occur during verification, in order to minimize
the states-space that needs to be considered. The intuition behind symmetry
reduction is that the order in which state components (automata, variables,
clocks, etc) are stored in a state-vector does not influence the future behaviour
of the system. Ideally, the reduced state-space will have only one state repre-
senting each symmetry equivalence class. As an example consider a protocol
with n functionally identical nodes to implement a mutual exclusion. The only
difference between the nodes is their respective identifier. It is not relevant to
distinguish configurations where node 1 is in state A, node 2 in state B, and
node 3 in state C from configurations where node 2 is in state A, node 3 in
state B, and node 1 in state C. What matter is the number of nodes being in
state A, state B and state C (respectively). This technique has the potential of
giving an exponential gain in both time and memory.

In UPPAAL [17] symmtry reduction is activated whenever a scalar set is
declared. A scalar set is a set of different scalar values that can only be com-
pared for equality. A variable of a given scalar set type can only be set to
another variable of the same scalar set type. Arithmetic operations that would
break symmetry are not supported.

Sweep line method [11]. In models where it is possible to define some progress
in the exploration, UPPAAL can save memory by “forgetting” past states if
it knows it is progressing forward in the exploration. The technique works
by declaring some progress measures that are used by the model-checker to
delete states and save memory when it knows that it is making progress.

The only change required to take advantage of symmetry reduction is for the
definition of the type girl t. We use a scalar set for the new model (gossip6):

typedef scalar[GIRLS] girl_t;

To activate the sweep-line optimisation, we need to define a progress measure
that is cheap to compute and relevant to help the search. It is important that it is
cheap to compute since it will be evaluated for every state. To do so, we add int m;
to the global declarations, we add the progress measure definition after the system
declaration:

progress { m; }

Finally, we compute m in the exchange function as follows:

void exchange() {
m = 0;
for(i:girl_t) {
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m += tmp[i] ˆ secrets[i];
tmp[i] |= secrets[i];

}
}

This measure counts the number of new messages exchanged per communication.
The two last experiments in table 1.2 show that these features give gains with an-
other order of magnitude both in speed and memory. The model still explodes ex-
ponentially, which we cannot avoid given its nature.

1.9 Modelling Tips

In this last section we summarize some of the modelling patterns that we have been
using in our examples as well as present some additional ones.

1.9.1 Active variables

When the value of a variable is not important for the model, one should alwaysreset
it to a default value, e.g., 0. This is what list[i] = 0; does in the dequeue
function of the Train Gate example. If this statement is not here the model still works
but states will keep memory of the last train that was in the queue, thus increasing
the state-space needlessly. The same principle should be applied to all integers.

1.9.2 Value passing

Sometimes it is useful to have one process send a value to another. There are two
ways to do that. The first is to use a meta variable. Such a variable is not part of the
state and can be used only as a temporary place-holder on one transition. Its value is
not reliable between two states. Typically the sender process synchronises with a c!
and writes on a meta variable. Then the receiver process reads it when synchronising
with a c?. Here c is a channel. In practice the instructions are executed first on the
c! side, which explains why this trick works. A variant of this is to write directly
the value into the destination variable on the sender or receiver side if the variables
are shared. The drawback is that this makes for less modular modelling. The second
way to encode value passing is to use arrays of channels. This is recommended for
small ranges. One would declare chan c[5]; and then send i with c[i]!. The
trick is on the receiver where select is used with i : int[0,4]. The receiver can
then receive with c[i]?.
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1.9.3 Multi-cast

In cases when we want to synchronise from one process to several processes ei-
ther from one central sender or in a chain, the following pattern should be used.
Every step of the synchronisation should use a different channel and every interme-
diate location should be committed. Committed locations forbid interleaving with
other non-committed locations. In a given committed state (i.e., a location vector,
a variable vector, and a zone), only the transitions from its committed locations are
allowed. In case of synchronisation, leaving one committed location (as part of the
synchronisation) is enough.

1.9.4 Urgent transitions

The only way to model urgent transitions in UPPAAL is to use urgent channels. The
question remains how to model a simple transition that we want to be urgent by
itself? Simply add a dummy process with a self loop synchronising with go! on an
urgent channel. The transition we want to be urgent synchronises with go?. We note
that if the guard on that transition evaluates to false then delay is allowed (unless the
state itself is urgent or committed).

1.9.5 Model Decoration and Monitors

Sometime the temporal formulas supported by the query language of UPPAAL are
too limited. In such cases, an automaton acting as a monitor with an accepting or
error state can help checking more complex properties involving causality between
values and variables and time.

Using model decoration and monitor is a general technique that consists in
adding to the original model variables or a whole automaton to monitor the
state of the system. This can be used in different ways to measure delays or to
detect error states with some complex causality relationship.

As an example, let us suppose that we want to check a bounded liveness property
of the form φ �≤t ψ , i.e., whenever φ holds for a state then ψ will eventually hold
on all paths starting from that state within t time units. It is not possible to check
this property directly using only the formulas supported. Instead we use a monitor
automaton following the pattern shown in figure 1.16.(a). The states marked φ are
those for which φ should hold, similarly for ψ . The booleanb is set to true or false in
the monitor. Not shown in the automaton are the guards to go between the states that
should monitor the conditions φ and ψ . Those transitions should be made urgent.
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The bottom (dark) states are the states for which the check is active (b is true). The
property to check is then A[](b imply z<= t).

A model can also be checked for non-zenoness with the help of an observer. In
timed automata, it is allowed to have behaviours that will let an infinite amount
of transitions to be fired (take actions) within a finite amount of time. This can be
done by looping or blocking time with invariants and not using resets. Unless proper
guards are used, this may happen but it is seldom a desirable property of the model.
By using the observer of figure 1.16.(b) (let us call it Obs) in parallel with the reset
of the model, one can check the property Obs.A --> Obs.B. In the automaton
C is a constant set to a good value w.r.t. the rest of the model. The value itself is not
very important as long as it is strictly positive.

A model is zeno if it allows an infinite number of discrete transitions to take
place in a finite amount of time. In other words, it contains a loop where time
does not diverge. This is an undesirable behaviour for a real system but it is
very easy to obtain with timed automata. It is sometimes useful to check that
a model does not allow such behaviours.

b=true
z=0

b=false b=false

¬φ

φ ¬ψ

ψ
x==C
x=0

x<=C

A B
C

(a) (b)

Fig. 1.16 Patterns for checking bounded liveness (a) and non-zeno behaviours (b).

1.10 Extensions of the Formalism

The UPPAAL tool suite has been specialised to different application domains. Here
we mention its different variants.

CORA is a specialised version of UPPAAL that implements guided and minimal
cost reachability algorithms [4, 5, 21]. It is suitable in particular for solving cost-
optimal schedulability problems [2, 6]. The extension consists in adding a special
cost variable to the model. The variable is put on location in conjunction with
existing invariants in a cost rate expression of the form cost’ == expr where
expr is an expression that evaluates to a non-negative integer. In addition transition
updates may have discrete cost increases with expressions of the form cost +=
expr with the same kind of expression.
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TRON [20, 22] is a testing tool suited for black-box conformance testing [25, 19]
of timed systems. It is mainly targeted for embedded software commonly found in
various controllers. Testing is done online in the sense that that tests are derived,
executed, and checked while maintaining the connection to the system in real-time.

TIGA [3] is a specialisation of UPPAAL designed to verify systems modelled as
timed game automata where a controller plays against an environment. The tool
synthesises code represented as a strategy to meet control objectives [14, 1, 23, 26].
The control objectives are specified as until or weak-until properties that are the
more general forms of reachability and safety. The tool is based on an on-the-fly
algorithm [9] and has be applied to industrial case studies [18, 10]. The tool can
also handle timed games with partial observability [8] and has been extended [7] to
check for simulation of timed automata and timed game automata.

PORT [15] is a version targeted to component-based modelling and verification.
Its interface is developed as an Eclipse plug-in. The tool supports graphical mod-
elling of internal component behaviour as timed automata and hierarchical compo-
sition of components. It is able to exploit the structure of such systems and apply
partial order reduction techniques successfully [16].

ECDAR [13, 12] is a specialisation of TIGA that implements a recent specifica-
tion theory that combines notions of specifications with a satisfaction relation, a
refinement relation and a set of operators supporting stepwise design. The operators
supported are composition, conjunction, and quotient. Specifications and implemen-
tations are given as timed I/O automata.
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16. John Håkansson and Paul Pettersson. Partial Order Reduction for Verification of Real-Time
Components. In Proc. of the 5th Int. Conf. on FORMATS, LNCS, pages 211–226. Springer-
Verlag, 2007.

17. Martijn Hendriks, Gerd Behrmann, Kim Guldstrand Larsen, Peter Niebert, and Frits W.
Vaandrager. Adding symmetry reduction to uppaal. In Kim Guldstrand Larsen and Peter
Niebert, editors, FORMATS, volume 2791 of Lecture Notes in Computer Science, pages 46–
59. Springer, 2003.

18. Jan Jakob Jessen, Jacob Illum Rasmussen, Kim G. Larsen, and Alexandre David. Guided
controller synthesis for climate controller using UPPAAL-TIGA. In Proceedings of the 19th
International Conference on Formal Modeling and Analysis of Timed Systems, number 4763
in LNCS, pages 227–240. Springer, 2007.

19. Moez Krichen and Stavros Tripakis. Model Checking Software, volume 2989 of LNCS, chapter
Black-Box Conformance Testing for Real-Time Systems, pages 109–126. Springer-Verlag,
2004.
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