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Abstract. In this paper we define and study the class of stopwatch au-
tomata which are timed automata augmented with stopwatches and un-
observable behaviour. In particular, we investigate the expressive power
of this class of automata, and show as a main result that any finite or
infinite timed language accepted by a linear hybrid automaton is also ac-
ceptable by a stopwatch automaton. The consequences of this result are
two-fold: firstly, it shows that the seemingly minor upgrade from timed
automata to stopwatch automata immediately yields the full expressive
power of linear hybrid automata. Secondly, reachability analysis of linear
hybrid automata may effectively be reduced to reachability analysis of
stopwatch automata. This, in turn, may be carried out using an easy
(over-approximating) extension of the efficient reachability analysis for
timed automata to stopwatch automata. We report on preliminary ex-
periments on analyzing translations of linear hybrid automata using a
stopwatch-extension of the real-time verification tool UPPAAL.

1 Introduction

Hybrid systems. Hybrid systems [ACH+95,AHH96,Hen96] are a strong extension
of timed automata [AD94] used to model systems which combine discrete and
continuous evolutions. The reachability and ω-language emptiness problems (RP
and LEP) are key problems for the verification of hybrid automata: these prob-
lems are decidable for timed automata (TA) [AD94] (and PSPACE-complete) but
not for linear hybrid automata (LHA) [ACH+95] for which the reachability prob-
lem is only semi-decidable. Decidability of RP and LEP have been extensively
studied for subclasses of hybrid automata [KPSY93,AR95,Cer92,JP94,AP94]
[HKPV98]. We investigate here a related issue which is the characterization
of the expressive power of various subclasses of hybrid automata.

Related work. Concerning expressiveness of timed automata as timed language
acceptors, it was proven in [AD94] that Timed Muller Automata (TMA) are as
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expressive as Timed Büchi Automata (TBA), which in turn are more expressive
than Deterministic TMA (DTMA), which are themselves more expressive than
Deterministic TBA (DTBA).
More recent results concern the expressiveness of clocks and the power of

(silent) τ -transitions:

– In [HKWT95], Henzinger and al. investigated the power of timing restrictions
on finite automata and showed that clock constraints together with time
divergence enables one to express Büchi, Muller, Streett, Rabin acceptance
and fairness conditions for finite automata; In [ACH94] Alur and al. studied a
variety of (un)timed equivalences for timed automata and the distinguishing
power of clocks as observers.

– there are also papers devoted to the expressive power of τ -transitions for
timed automata; in [BGP96] it is proven that τ -transitions strictly increase
the power of timed automata (as timed language acceptors) if they reset
clocks; moreover timed automata with τ -transitions are more robust than
timed automata without in the sense that any language recognized when the
time domain in N remains recognizable when the domain is R. The expressive
power of τ -transitions which reset clocks is settled in [DGP97]; [BDGP98] is
a synthesis of the two above mentioned papers.

– other relevant results [HK97,HK96] concern a subclass of hybrid automata:
rectangular hybrid automata (RHA); in [HKPV98] it is shown that initialized
RHA (IRHA) are equivalent to timed automata and thus RP and LEP are
decidable for this subclass. The initialization property states that whenever
a slope of a variable changes it must be reset. The authors showed that
relaxing either the rectangular or the initialization assumptions leads to
undecidability of RP and LEP, thus proving that IRHA are at the border or
decidability and undecidability.

Our contribution. We compare the expressive power of linear hybrid automata
(LHA) and certain of its subclasses. More precisely, we show that, in terms of
expressiveness, one important class is the one obtained by a simple addition of
stopwatches to the class of timed automata (TA)1: we refer to the resulting class
as the class of stopwatch automata (SWA).
Extending hybrid automata with unobservable timed transitions2, we prove

that SWA with unobservable delays are as expressive as LHA. That is, every (ω-)
language accepted by a LHA is also accepted by some SWA with unobservable
delays. We consider this result interesting for two reasons:

1. it indicates that undecidability of RP and LEP originates from the ability
to stop time, and

2. it has a practical application to verification of linear hybrid systems.

The application to verification is based on an easy extension of algorithms
for model-checking (safety properties of) TA to (over-approximating) algorithms
1 here TA refers to timed automata with simple constraints as defined in [AD94].
2 i.e. some durations are unobservable for this class of hybrid automata.
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for model-checking SWA. In particular, this extension may apply the full range
of efficient data-structures [LLPY97,ABK+97,BLP+99] currently applied in ver-
ification tools for timed automata [Yov97,LPY97]. Analysis of a LHA may now
be reduced to a similar analysis on the equivalent SWA, avoiding the need for
representing and manipulating general polyhedra.

Outline of the paper. In the next section 2 we give the definitions of LHA and
of the subclasses of hybrid automata we will be interested in and we define
unobservable delays. Section 3 states the main result: the fact that SWA have
the same expressive power as LHA. In Section 4 we focus on the practical interest
of this equivalence and give examples of LHA we are able to verify using our
translation and the SWA-extension of UPPAAL. Finally we conclude in section 5.

2 Linear Hybrid Automata

2.1 Preliminaries

For a given alphabet Σ, Σ∗ denotes the set of finite words and Σω the set of
infinite words over Σ. Also Σ∞ = Σ∗ ∪ Σω. We also use the set of booleans
B = {tt,ff}.
A valuation is an element of RV , where V is a finite set of variables. If |V | = n,

a valuation v can be interpreted as a vector v of R
n. If V ′ ⊆ V and ν ∈ R

V , we
denote by projV ′(ν) the valuation ν′ ∈ R

V ′
defined by ν′(x) = ν(x), ∀x ∈ V .

A linear expression φ(v) over V is of the form
∑
aivi with ai ∈ Z, vi ∈ V .

A linear constraint is a propositional formula using the connectives ∨,∧,¬ over
atomic formulæ of the form φ(x) �� c, where ��∈ {<,=, >}, φ(x) is a linear
expression and c ∈ N. LC(V ) is the set of linear constraints. If we restrict the
linear expressions to one of the simple forms v − v′ �� c or v �� c, v, v′ ∈ V we
obtain the set SC(V ) of simple constraints over V . A linear assignment over V
is of the form v := A.v + b where A is a n × n matrix with coefficients in Z

and b is a vector of Z
n. LA(V ) is the set of linear assignments over V . A simple

assignment is such that all entries of A are either 0 or 1, and every row of A has
at most one non-null coefficient.
Given a valuation v and a constraint γ, the boolean value γ(v) describes

whether γ is satisfied by v or not.
A continuous change of the variables is defined w.r.t. an element d of Z

V

corresponding to the first derivative of each variable: given t ∈ R≥0, the valuation
v + d.t is defined by (v + d.t)(x) = v(x) + d(x).t.

2.2 Hybrid Automata

Hybrid automata [ACH+95,AHH96,Hen96] are used to model systems which
combine discrete and continuous evolutions. For general hybrid systems the ac-
tivities can be any continuous functions. However, we restrict our attention to
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the subclass of linear hybrid systems3. Moreover we assume that the initial value
of each variable is 0 (the corresponding initial valuation is denoted v0).
Definition 1 (Linear hybrid automaton). A linear hybrid automaton (in
the sequel LHA) H is a 7-tuple (N, l0, V, A,E,Act, Inv) where:

– N is a finite set of locations,
– l0 ∈ N is the initial location, v0 is the initial valuation,
– V is a finite set of real-valued variables,
– A is a finite set of actions,
– E ⊆ N×LC(V )×A×LA(V )×N is a finite set of edges; e = 〈l, γ, a, α, l′〉 ∈ E

represents an edge from the location l to the location l′ with the linear guard
γ, the label a and the linear assignment α.

– Act ∈ (
(Z×Z)V

)N where Act(l)(x) = [u1, u2] means that the first derivative
of x in location l lies in the compact bounded interval [u1, u2] of Z.

– Inv ∈ LC(V )N assigns a linear invariant to any location.

To this standard definition we add the following features: the set of locations N
is partitioned into two subsets No ∪ Nu; No (resp. Nu) is the set of locations
where time-elapsing is observable (resp. unobservable). We also denote the un-
observable action τ and consider hybrid automata with τ moves. We denote Aτ

the set A ∪ {τ} and ∆τ the set R≥0 ∪ {τ(t), t ∈ R≥0} ✷

Example 1 (Water-level monitor [ACH+95]). As a running example, we consider
the water-level monitor described in [ACH+95] and illustrated 4 in Figure 1. The
aim is to control the water level in a tank with a monitor. A pump can be turned
on and off to control the level. When the pump is off (locations #2 and #3) the
water level falls by two cms per second; when the pump is on (locations #0 and
#1), the level rises by one cm per second. The delay to turn the pump on and
off is 2 time units (measured by the variable x). Time elapsing is observable in
each location of the water level monitor. ✷

2.3 Semantics
Definition 2. The semantics of a hybrid automaton H = (N, l0, V,Σ,E,Act,
Inv) is a timed transition system SH = (Q, q0, Σ,→) where Q = N × R

V ,
q0 = (l0, v0) is the initial state (v0(x) = 0, ∀x ∈ V ) and → is defined by:

〈l, v〉 a−−−→ 〈l′, v′〉 iff ∃ (l, γ, a, α, l′) ∈ E s.t.

{
γ(v) = tt, v′ = α(v) and
Inv(l′)(v′) = tt

〈l, v〉 e−−−→ 〈l′, v′〉 iff



e = d if l ∈ No, e = τ(d) if l ∈ Nu

l = l′ and ∃d ∈ Act(l) s.t. v′ = v + d.t and
∀ 0 ≤ d′ ≤ d, v + d′.t ∈ Inv(l)

τ(d) stands for an unobservable delay of duration d. ✷

3 The example of the thermostat in [ACH+95] is a hybrid automata which is not
linear.

4 automata designed with GasTeX (http://www.liafa.jussieu.fr/̃ gastin/gastex).
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y = 1
x = 0

�0

ẋ = ẏ = 1
y ≤ 10

�1

ẋ = ẏ = 1
x ≤ 2

�2

ẋ = 1, ẏ = −2
y ≥ 5

�3

ẋ = 1, ẏ = −2
x ≤ 2

y = 10
x := 0

x = 2
y = 5
x := 0

x = 2

Fig. 1. The water-level monitor

A run from a state s0 of a linear hybrid automaton H is a sequence of
alternating discrete and continuous transitions of SH:

ρ = s0
δ0−−−−→ s′0

a0−−−−→ . . . si
δi−−−−→ s′i

ai−−−−→ . . .

where ai ∈ Aτ and δi ∈ ∆τ . Intuitively time δi+1 elapses between the actions ai

and ai+1. We also introduce the following derived notations:

s
0=⇒ s′ iff ∃d ∈ R≥0 s.t. s

τ(d)−→ s′

s
ε=⇒ s′ iff s( τ−→ ∪ 0=⇒)∗s′

s
d=⇒ s′ iff s

ε=⇒ d1−→ ε=⇒ d2−→ · · · ε=⇒ dn−→ s′ with d =
∑

i di

s
a=⇒ s′ iff s

ε=⇒ a−→ s′

2.4 Timed Languages and Bisimulation for Hybrid Automata

The definition of hybrid automata may be extended with two sets of states:
F ⊆ N being a set of final states and R ⊆ N being the set of repeated states.
The finite (resp. infinite) run ρ is accepting if ρ ends in a final state (resp.

if there are infinitely many states from R in ρ). With every finite (resp. in-
finite) run we associate a finite (resp. infinite) τ-timed word : with every ac-
tion ai we associate a timestamp ti, which is the accumulated observable time
since the initial instant. Formally ti =

∑i
k=0{δk ∈ R≥0}. Thus the run ρ

accepts the τ -timed word (a0, t0) . . . (an, tn) . . . ∈ (Aτ × R≥0)∞ and since τ -
transitions are unobservable we remove all pairs (τ, t) to obtain a timed word
(ai0 , ti0) . . . (ain , tin) . . . ∈ (A× R≥0)∞

The timed language L(H) accepted by the hybrid automaton H is the set of
timed words which have accepting runs from the initial state of SH.
A symmetric relation B ⊆ Q × Q is a weak timed bisimulation if whenever

(s, t) ∈ B, the following holds: (1) s ∈ F ⇔ t ∈ F (resp. s ∈ R ⇔ t ∈ R), and
(2) whenever s d=⇒ a−→ s′ then t d=⇒ a−→ t′ for some t′ with (s′, t′) ∈ B. We say
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�

ẋ ∈ [1, 2]

m
x = 2; a

(a) Initial LHA: H

�

ẋ = 0
ṫ = 1

�′

ẋ = 1
ṫ = 0
y ≤ t

m′

ẋ = 1
ṫ = 0
y ≤ t

m
τ ; y := 0

y = t
τ ; y := 0 x = 2; a

(b) Corresponding SWA: H ′

Fig. 2. Two equivalent linear hybrid automata, H and H ′.

that s and t are weakly timed bisimilar (s ≈ t) provided (s, t) is contained in
some weak timed bisimulation B. It follows easily that our chosen definition of
weak timed bisimilarity between states s and t implies equality in terms of timed
words accepted.

Example 2. Consider the linear hybrid automaton H in Figure 2. Assuming
that m is final and both # and m are observable, the timed language accepted
by H is the set {(a, d) | 1 ≤ d ≤ 2}. For the linear hybrid automaton H ′ a typical
run is of the form5:

〈#, t = 0, x = 0, y = 0〉 d−→ τ−→ 〈#′, t = d, x = 0, y = 0〉
τ(d)−→ τ−→ 〈m′, t = d, x = d, y = 0〉

τ(d′)−→ 〈m′, t = d, x = 2, y = d′〉
a−→ 〈m, t = d, x = 2, y = d′〉

for d′ ≤ d and d′ + d = 2. Assuming again that m is accepting, and removing
the unobservable part of the above run, yields (a, d) as an accepted timed word.
In fact it is not hard to see, that the timed words of the form (a, d), where
1 ≤ d ≤ 2, are precisely the words accepted by H ′; hence that L(H) = L(H ′). ✷

Remark 1. Invariants are not useful when considering timed language acceptance
for hybrid automata: we may remove every invariant6, by translating every tran-
sition 〈l, γ, a, α, l′〉 into two consecutive transitions: 〈l, γ∧Inv(l), τ, α.[t := 0],m〉
〈m, t = 0 ∧ Inv(l′), a, Id, l′〉, where t is a fresh clock with ṫ = 1 in m. Leaving
the set of final (resp. repeated) states unchanged we obtain the same accepted
language. In the sequel we will not consider invariants anymore but assume that
this simple translation has already been done for any LHA. ✷

5 assuming that �, m are observable and �′, m′ are unobservable.
6 this works only for convex invariants as pointed out by an anonymous referee; for a
union of convex invariants in � we may add copies of � with convex invariants and
apply our translation schema.
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2.5 Subclasses of LHA

In the sequel we will consider the following subclasses of LHA (or extended
classes of TA)7:

TA: the class of timed automata is the one defined in [AD94]; that is, only simple
constraints are allowed, the derivatives of the variables (clocks) are all equal
to 1 and only linear assignments (A, b) with A = 0 and b ≥ 0 are allowed.

SWA: the class of TA extended with stopwatches; that is the derivative of a
variable in a location can be either 0 or 1.

LSWA: the class of LHA, where the derivative of a variable in a location can be
either 0 or 1. Alternatively, this class is the extension of SWA which allows
linear constraints and assignments.

The set of timed languages accepted by a class C of hybrid automata is
denoted TLC .

Remark 2. For SWA we can allow assignments of the form x := x′ + k as they
can be written as a shorthand for (1) reset x; (2) let an unobservable delay of
x′ + k elapse while stopping all the other variables. We will use this shorthand
in section 3.1. Notice that allowing this type of assignments in TA make RP and
LEP undecidable [BDFP00].
We also point out that stopwatches allow us to use unbounded integers: it

suffices to use a variable which is stopped in every location. ✷

3 From LHA to SWA

In this section we will show that every language accepted by a LHA is also
accepted by a SWA with unobservable delays.

Theorem 1 (Expressiveness of SWA). The classes LHA and SWA are
equally expressive in the sense that TLSWA = TLLHA. ✷

The proof of theorem 1 is implied by the following two proof steps: (1)
TLSWA = TLLSWA, and (2) TLLSWA = TLLHA. According to remark 1 we
will only consider LHA with tt invariant in every location.

3.1 From LSWA to SWA

Let L = (N, l0, V,Σ,E,Act, Inv) be a LSWA (with tt invariants). We show how
to translate the linear guards and linear assignments of L into simple guards
and simple assignments thus obtaining a SWA. However, to prepare these trans-
lations, we first transform L in order to ensure that no (stopwatch) variable will
ever obtain a negative value.
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�

ẋ = 1

�′
x := −3.x

(a) Initial LHA: L

�̃

ẋ+ = 1
ẋ− = 0

�̃′

−3.x+ + 3.x− ≥ 0
x+ := −3.x+ + 3.x−;x− := 0

−3.x+ + 3.x− < 0
x+ := 0; x− := 3.x+ − 3.x−

(b) Corresponding SWA: L̃

Fig. 3. Translating assignments to avoid negative values

Avoiding negative values. As L is a LSWA, the stopwatch variables are guar-
anteed never to decrease in any location. However, variables may obviously be
assigned negative values when transitions are taken (a simple example is given in
Figure 3). First, any transition 〈#, a, g, x := φ(x), #′〉8 is split into two transitions
〈#̃, a, g ∧ φ(x) ≥ 0, x := φ(x), #̃′〉 and 〈#̃, a, g ∧ φ(x) < 0, x := φ(x), #̃′〉. Obviously,
this translation does not alter the behavior of L but provides the knowledge of
the sign of the value assigned to x. Now for each variable x we introduce two
new (stopwatch) variables x+ and x− intending that x = x+ − x− and x+ ≥ 0
and x− ≥ 0 will hold invariantly. To ensure this, we do the following:

1. in each location l of L where ẋ = 1 we set (ẋ+, ẋ−) = (1, 0); if ẋ = 0 we set
(ẋ+, ẋ−) = (0, 0);

2. we add the (obvious) assignments
– (x+, x−) := (φ(x), 0) for transitions where φ(x) ≥ 0 is in the guard, and
– (x+, x−) := (0,−φ(x)) for transitions with guard φ(x) < 0.

Finally, we may completely remove the old variable x by replacing it with x+−
x− in all terms (in guards or assignments). Figure 3 shows an example of the
transformation.

Translating linear guards. Now we focus on transforming linear guards in transi-
tions into simple ones. Thus consider a general transition 〈l, a, φ(x) �� c, α, l′〉: a
is the label, and α the linear assignment; the guard φ(x) �� c is a linear constraint
over V with ��∈ {<,=, >}. Notice that it is possible to rewrite this guard in the
form

∑n
i=1 aixi−

∑2n
i=n+1 aixi �� c

′ with c′ ∈ N and Z � ai ≥ 0. We demonstrate
how to compute these two sums with two new fresh variables u and v. After this
it only remains to replace the guard by the simple u− v �� c′.
The translation9 works as follows (see Figure 410):

7 the notion of unobservable delay is included in all of those classes.
8 For simplicity we only consider transitions with a single assignment.
9 V̇ = 0 means ∀v ∈ V, v̇ = 0.

10 when no label is written on a transition this is a silent τ -transition.
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1. we introduce the new stopwatch variables u and v to sum up the terms
aixi, i ∈ [1 . . . n] and aixi, i ∈ [n+ 1 . . . 2n] respectively,

2. between the locations l̃ and l̃′ we introduce new locations l̃i where time
elapsing is unobservable to perform the computations of u and v.

Note that this translation only works because we (by over previous prepara-
tion step) may assume that xi will not have non-negative values: in particular
in location l̃i we let time xi elapse which is possible only if xi ≥ 0.
Let Ṽ = V ∪ {u, v, t} and ν, ν′ ∈ R

V , ν̃, ν̃′ ∈ R
Ṽ s.t. projV (ν̃) = ν; we

then have the following: 〈l̃, ν̃〉 d=⇒ a−→ 〈l̃′, ν̃′〉 iff 〈l, ν〉 d=⇒ a−→ 〈l′, ν′〉 whenever
projV (ν̃′) = ν′; thus 〈l̃, ν̃〉 and 〈l, ν〉 are weakly timed bisimilar and consequently
accept the same timed words.

l̃ l̃1

V̇ = v̇ = 0
ṫ = u̇ = 1

· · · l̃i

V̇ = v̇ = 0
ṫ = u̇ = 1

l̃n+1l̃′ l̃2n

u := 0
k := a1

t := 0

k = t = 0
k := a2

t := 0

k = t = 0
k := ai

t := 0

k = t = 0
k := ai+1

t := 0

k = t = 0
k := an+1

t := 0
v := 0

k = t = 0 ∧ u − v �� c′; a;α

t = x1 ∧ k ≥ 1
k := k − 1

t := 0

t = xi ∧ k ≥ 1
k := k − 1

t := 0

Ci, i ≤ n

V(u̇ = 0)

Fig. 4. Computation of u and v before evaluating the guard u− v �� c′

Linear assignments. For translating linear assignments we apply the exact same
technique as above when dealing with linear guards. Let A = (aij) and b = (bi)
with i, j ∈ [1..n]. We introduce n new fresh variables ui to compute

∑
j≤n aijxj .

At the end we perform the assignments xi := ui + bi (this is possible according
to remark 2). Notice we need n new fresh variables as for two simultaneous
assignments x := y and z := x we have to keep track of the old value of x
needed in z := x. For a general transition with a guard and an assignment we
perform the computation of the guard described previously and after the last
unobservable state we update the variables according to the assignment using
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new unobservable states. Time elapsing is unobservable in all the intermediate
locations. Thus we have the following theorem:

Theorem 2. The classes LSWA and SWA are equally expressive in the sense
that TLLSWA = TLSWA. ✷

Complexity. We do not consider the addition of integer variables. For a LSWA L
with n states, m transitions and k stopwatches, the resulting SWA has at most
3k + 3 stopwatches at most n+ 4m(3k + 3) states.

3.2 From LHA to LSWA

Let H = (N, l0, V,Σ,E,Act, Inv) be a LHA (with true invariants). In the fol-
lowing we show how to transform H into a LSWA accepting the same timed
language.

Integer slopes. We first deal with integer positive slopes: l ∈ N is a location of H
and x a variable of V s.t. Act(l)(x) = u1 ∈ N. We translate location l as follows:

1. we introduce a fresh variable t which is reset when entering l̃1 and will
measure the time the automaton stays in l̃1,

2. an auxiliary variable v used to update x,
3. 2 locations l̃i where time elapsing is unobservable.

The translation is given in Figure 5 within the dashed rectangle (automaton S).
Note that if we enter l̃2 with the value x0 for x and t0 for t we reach l̃

with x = x0 + u1.t
0. So we can easily prove the following: if ν, ν′ ∈ R

V and
ν̃, ν̃′ ∈ R

V ∪{t,v} s.t. projV (ν̃) = ν and d ∈ R≥0 then

〈l̃, ν̃〉 d=⇒ 〈l̃′, ν̃′〉 iff 〈l, ν〉 d=⇒ 〈l′, ν′〉 (1)

Then it suffices to replace location l in H by the sequence described by the
automaton S on Figure 5 to obtain an automaton which accepts the same timed
language as H.
To allow for negative slope, we introduce11 two new variables x+ and x−: for

locations where the slope of x is u ≥ 0, we set ẋ+ = u and ẋ− = 0. When the
slope of x is u < 0 we use the slopes ẋ+ = 0 and ẋ− = u. Then the actual value
of x is x+ − x−. It remains to replace any occurrence of x in H by x+ − x− to
obtain a LHA with only positive slopes.

Interval slopes. We now upgrade the previous construction to deal with slopes
belonging to closed integer intervals. We assume Act(l)(x) ∈ [u1, u2], u1, u2 ∈
Z≥0 (for the case one of the value is negative we split the interval into a pos-
itive part and negative part and apply the translation of x in x+ − x−.) The
construction is given on Figure 5 (ignore the dashed transition).
Statement (1) also holds in this case. Finally we obtain the following theorem:

11 very similar to the handling of negative values.
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l̃1

ẋ = 0
ṫ = 1

l̃2

ṫ = 0
v̇ = ẋ = 1

l̃3
ṫ = 0
v̇ = ẋ = 1

l̃

ṫ = ẋ = 0
v̇ = 0

t := 0

v := 0, k := u1

k = 0 ∧ v = 0
k := u2 − u1

v := 0

k ≥ 1 ∧ v ≤ t
v := 0

k = v = 0

k = v = 0

t = v ∧ k ≥ 1
k := k − 1, v := 0

t = v ∧ k ≥ 1
k := k − 1, v := 0

S

Fig. 5. Translating positive integer slopes

Theorem 3. The classes LHA and LSWA are equally expressive in the sense
that TLLHA = TLLSWA. ✷

This ends the proof of theorem 1.

Complexity. The translation from LHA to LSWA does not require any new
variables as we may use those introduced in the translation from LSWA to
SWA. We only need to add two states per variable in each location. Then for
a LHA with n states, m transitions and k variables the resulting SWA has at
most 3k + 3 variables and at most 2(3k + 3).(n + 4m(3k + 3) + 1) states. The
translation is then in O(k) for the number of variables and in O(n.m.k2) for the
number of states.

4 Application to Symbolic Analysis of Hybrid Automata

Theorem 1 suggests a potential practical application as reachability analysis
for a LHA L may effectively be transformed into a reachability analysis on the
corresponding SWA L̃. Indeed, it follows from our translation12 that for any
w ∈ (Σ ∪ R≥0)∗

〈l0, ν0〉 w=⇒∗ 〈l, ν〉 iff 〈l̃0, ν̃0〉 w=⇒∗ 〈l̃, ν̃〉 (2)

whenever projV (ν̃0) = ν0 and projV (ν̃) = ν[V/(V + − V −)] where ν[V/(V + −
V −)] stands for ν with all the variables x ∈ V replaced by x+ − x−. Thus
reachability properties of L and L̃ are in a one-to-one correspondence.
12 =⇒∗ stands for the transitive closure of =⇒.
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4.1 Termination of Symbolic Analysis

Despite the close correspondence in (2), the usual forward reachability algo-
rithm [AHH96]13 may behave differently on L̃ and L with respect to termination.
Ideally, we want the algorithm to terminate on L̃ whenever it terminates on L.
This is not always the case with the rough translation we have given.
A solution14 is to ensure that every variable has a single representative

(x+, x−) in each location.

4.2 Approximate Analysis – Preliminary Experiments

We have successfully analyzed a number of LHA using a stopwatch-extended
version of the tool UPPAAL. The extension offers an approximate reachability
algorithm for SWA obtained as a rather immediate extension of the existing
reachability algorithm for TA. In particular, the existing efficient data-structures
of UPPAAL have been reused.
When analyzing SWA using difference bounded matrices (DBMs [LLPY97]),

the only operation applied during (symbolic) state-space exploration requiring
redefinition is that of computing the future of a DBM.
The DBM-based algorithm for SWA yields an over-approximation of the

reachable state-space as DBMs only allow to encode the difference between 2
variables. In general, an exact characterization of the reachable state-space of a
SWA may require constraints involving several variables. Nevertheless, we have
implemented a DBM-based, stopwatch-extension of UPPAAL. Combined with
our translation from LHA to SWA we have successfully analyzed a number of
examples demonstrating that the prize of over-approximation is not too high.
The examples include the water-level monitor [ACH+95] of Figure 1 for which

the SWA is depicted in Figure 6. Another example is the parameterized ver-
sion of Fischer’s protocol [ACH+95]. Other successfully investigated examples
include the gas burner [ACH+95] and the scheduler of [AHH96]. Also, we are
currently investigating the tools applicability to case studies such as the ABR
protocol [BF99] and the water-tank case study [KLPW] of the VHS project.

5 Conclusion and Future Work

In this paper we have extended hybrid automata with the notion of unobserv-
able delays. We have proved that stopwatch automata (SWA) with unobservable
delays (timed automata extended with stopwatches) are as expressive as linear
hybrid automata (LHA) in the sense that every language accepted by a LHA is
also accepted by a SWA. A practical application of this result is that reachabil-
ity analysis for LHA may be reduced to reachability analysis for SWA. We have
extended the real-time verification tool UPPAAL to SWA reusing its efficient
data-structures, allowing for rather large SWA to be analyzed. Combined with
13 as used in HyTech
14 we cannot develop the proof in this paper.
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S0

yp<=ym+10,
ym’==0

S1
x<=2,ym’==0

S2
yp’==0

S3
x’==0,yp’==0,t’==0

S4

ym<=yp-5,
x’==0,yp’==0,ym’==0

S5

x<=2,yp’==0

S6

x<=2,x’==0,
yp’==0,t’==0

S7
x<=2,
x’==0,yp’==0,
ym’==0,t’==0

S8

x<=0

yp==ym+10

x:=0,yp:=10,ym:=0
x==2

t:=0

v:=0

v==t

yp==ym+5

x:=0,t:=0,ym:=0,yp:=5
v:=0

v==t

ym:=0,yp:=1,x:=0

x==2

Fig. 6. The SWA water level monitor with UPPAAL

our translation result this offers a completely new method for analyzing LHA.
However, the analysis is based on an over-approximation which for some cases
may be too coarse to settle a given reachability property.

The translation given in this paper demonstrates that SWA equals LHA in ex-
pressive power. However, several alternative translations might have been given
and from a practical point of view there are good reasons for looking at such
alternative translations as they may be superior in various ways: (1) the transla-
tion may well have an impact on the accuracy of our tool’s approximate analysis
on the resulting SWA; (2) from a performance point of view it is important to
limit the complexity of the translated stopwatch version of a LHA; in partic-
ular, translations introducing few additional variables are to be preferred; (3)
we want our translation of LHA to SWA to preserve termination when applying
non-approximating verification tools such as HyTech.
Our future investigations include: (1) rather than performing an approximate

reachability analysis on the SWA (resulting from a translation), it might be
possible (and performance-wise superior) to extend the DBM’s data-structures
to encode exactly the region of a SWA automaton and to perform an exact
reachability analysis; (2) as a theoretical aspects we are currently studying the
expressive power of unobservable delays for LHA and trying to extend our result
to more general classes of hybrid automata (e.g. linear derivatives).
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