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Abstract. This tutorial paper surveys the main fea-
tures of Uppaal SMC, a new branch of the Uppaal
family that allows us to reason on networks of complex
real-timed systems with a stochastic semantic. We ex-
pose the modeling features of the tool, and new verifica-
tion algorithms that are applied to potentially complex
case studies.

1 Introduction

Computer systems play a central role in modern soci-
eties and their errors can have dramatic consequences.
Proving the correctness of computer systems is there-
fore a highly relevant activity, on which both industry
and academics invest a considerable amount of effort.
Among such techniques, one finds (1) testing [BJK+05],
the traditional approach that detects bugs by exercising
the system with test cases, and (2) formal methods, e.g.,
model checking [CGP99], that are a more mathematical
approach that can guarantee the absence of bugs. Both
approaches have been largely deployed on complex case
studies

Originally, formal verification was devoted to hard-
ware and to software systems with discrete behaviors.
However, over the past years, one has observed that
real-time plays a central roles in systems, and that this
feature should be taken into account in the verification
process. Developping formal techniques for such systems
has thus been the subject of intensive studies. One of the
prominent results on the topic was the introduction of
model checking techniques for timed automata [AD94],
a natural model to capture real-time systems whose be-
haviors depends on clocks that can be reset. Among all
the tools that have been developped to implement the
timed automata theory, one finds Uppaal, which has
now become the leader in the area.

Uppaal is a toolbox for verification of real-time sys-
tems represented by (network of) timed automata ex-
tended with integer variables, structured date taypes,
and channel synchronization. The tool is jointly devel-
oped by Uppsala University and Aalborg University. It
has been applied successfully in case studies ranging
from communication protocols to multimedia applica-
tions (see [BDL04] and [BDL+11] for concrete exam-
ples). The first version of Uppaal was released in 1995 [LPY97].
Since then it has been in constant development. In the
same spirit as any other professional model checker such
as SPIN, Uppaal proposes efficient data structures [LLPY97],a
distributed version of Uppaal [BHV00,Beh05], guided
and minimal cost reachability [BFH+01a,LBB+01,BFH+01b],
work on UML Statecharts [DMY02], acceleration tech-
niques [HL02], and new data structures and memory re-
ductions [BLP+99,BDLY03].

Unfortunately, timed automata is not a panacea. In
fact, albeit powerful, the model is not expressive enough
to capture behaviors of complex cyper physical systems.
Indeed, the continuous time behaviors of those systems
often relies on rich and complex dynamics as well as on
stochastic behaviors. The model checking problem for
such systems is in fact undecidable, and the best one
could originally do in Uppaal was to approximate those
behaviors with timed automata.

In this paper, we introduce Uppaal SMC that pro-
poses an alternative to the above mentioned problem.
This new branch of Uppaal proposes to represent sys-
tems via networks of automata whose behaviors may
depend on both stochastic and non linear features. Con-
cretelly, in Uppaal SMC, each component of the system
is described with an automaton whose clocks can involve
with different rates. Such rates being specified with, e.g.,
ordinary differential equations.

To allow for the efficient analysis of probabilistic per-
formance properties Uppaal SMC proposes to work with
Statistical Model Checking (SMC) [You05,SVA04], an



approach that has been proposed as an alternative to
avoid an exhaustive exploration of the state-space of the
model. The core idea of SMC is to monitor some sim-
ulations of the system, and then use results from the
statistic area (including sequential hypothesis testing or
Monte Carlo simulation) in order to decide whether the
system satisfies the property with some degree of confi-
dence. By nature, SMC is a compromise between test-
ing and classical model checking techniques. Simulation-
based methods are known to be far less memory and
time intensive than exhaustive ones, and are oftentimes
the only option. SMC has been implemented in a se-
ries of tools that have been applied to a wide range of
case studies. Unlike more “academic” exhaustive tech-
niques, SMC gets widely accepted in various research ar-
eas such as systems biology [CFL+08,JCL+09,KNP04,
DDL+12,JLS13], energy-centric systems [DDL+13], au-
tomotive/avionics, or software engineering, in particular
for industrial applications . There are several reasons for
this success. First, it is very simple to implement, under-
stand and use (especially by industry, software engineers,
and generally all people that are not pure researchers but
customers for our results and tools) [BDL+12c,BCLS13,
?]. Second, it does not require extra modeling or spec-
ification effort, but simply an operational model of the
system that can be simulated and checked against state-
based properties. Third, it allows to model check prop-
erties that cannot be expressed in classical temporal log-
ics. Aside from this, the flexibility of SMC allows it to be
used in other areas than verification, including planing
and robotics.

This paper is a complete tutorial on Uppaal SMC.
We illustrate most of the modeling features of the tool,
the usage of the graphical interface and of the simu-
lation framework. We discuss the SMC algorithms that
are available, and introduce some techniques to deal with
dynamic systems. Finally, we present some modeling fea-
tures and tricks.

2 Modeling Formalism

The modeling formalism of Uppaal SMC is based on
a stochastic interpretation and extension of the timed
automata (TA) formalism [AD94] used in the classical
model-checking version of Uppaal [?]. For individual
TA components the stochastic interpretation refines the
non-deterministic choices between multiple enable tran-
sition by probabilistic choices (that may or may not
be user-defined). Similarly, the non-deterministic choices
of time-delays are refined by probability distributions,
which at the component level are given either by uni-
form distributions in cases of time-bounded delays or
by exponential distributions (with user-defined rates) in
cases of unbounded delays.

Consider the three TAs A1, A2 and A3 from Fig. 1.
Ignoring (intially) the weight annotations on locations

A1

A2

A3

Fig. 1: Three stochastic timed automata

and edges, the END-locations in the three automata are
easily seen to be reachable within the time-intervals [6, 12],
[4, 12] and [0,+∞[. Now the stochastic interpretation of
the three TAs provides a refinement of these intervals in
terms of distributions of the reachability time. For A1,
the delay of the three transitions will all be (automati-
cally) resolved by independent, uniform distributions on
[2, 4]. Thus the overall reachability time is given as the
sum of three uniform distributions as illustrated in Fig. 2
(a). For A2, the delay distributions determined by the
upper and lower path to the END-location are similarly
given by sums of uniform distributions. Subsequently the
distribution of the overall delay is obtained by a weighted
combination (1/6 to 5/6) of these as illustrated in Fig. 2
(b). Finally, in A3 – in the absence of invariants – delays
are choosen according to exponential distributions with
user-supplied rates (here 1/2, 2 and 1/4). In addition,
after the initial delay a discrete probabilistic choice (1/4
versus 3/4) is made. The resulting distribution of the
overall reachability time is given in Fig. 2 (c).

Importantly, the distributions provided by the stochas-
tic semantics are in agreement with the delay intervals
determined by the standard semantics of the underlying
timed automata. Thus, the distributions for A1 and A2

have finite support by the intervals [6, 12] and [4, 12],
respectively. Moreover, as indicated by A3, the notion
of stochastic timed automata encompasses both that of
DTMC and CTMC. In particular, the class of reachability-
time distributions obtained from the stochastic timed
automata (STA) of Uppaal SMC includes that of phase-
type distributions.

Networks As in Uppaal, a model in Uppaal SMC con-
sists of a network of interacting component STAs. Here it
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Fig. 2: Distributions of reachability time
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Fig. 3: An NPTA, (A|B|T ).

is assumed that these components are input-enabled, de-
termistic (with a probability measure defined on the sets
of successors), and non-zeno. The component STAs com-
municate via broadcast channels and shared variables
to generate Networks of Stochastic Timed Automata
(NSTA). The communication is restricted to be broad-
cast to keep a clean semantic of non-blocked components
that are racing against each other with the correspond-
ing distributions.
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Fig. 4: Cumulative probabilities for time and Cost-
bounded reachability of T3.

Fig. 3 provides an NSTA with three components A,
B, and T as specified using the Uppaal GUI. One can
easily see that the composite system (A|B|T ) has the
transition sequence:(
(A0, Bo, T0), [x = 0, y = 0, C = 0]

) 1−→ a!−→(
(A1, B0, T1), [x = 1, y = 1, C = 4]

) 1−→ b!−→(
(A1, B1, T2), [x = 2, y = 2, C = 6]

)
,

demonstrating that the final location T3 of T is reach-
able. In fact, location T3 is reachable within cost 0 to
6 and within total time 0 and 2 in (A|B|T ) depending
on when (and in which order) A and B choose to per-
form the output actions a! and b!. Given that the choice
of these time-delays is governed by probability distribu-
tions, a measure on sets of runs of NSTAs is induced,
according to which quantitative properties such as “the
probability of T3 being reached within a total cost-bound
of 4.3” become well-defined.

For components, as stated in the previous section,
Uppaal SMC applies uniform distributions for bounded
delays and exponential distributions for the case where a
component STA can remain indefinitely in a state. In a
network of STAs the components repeatedly race against
each other, i.e. they independently and stochastically de-
cide on their own how much to delay before outputting,
with the “winner” being the component that chooses the
minimum delay. For instance, in the NPTA of Fig. 3, A
wins the initial race over B with probability 0.75.

As observed in [DLL+11], though the stochastic se-
mantic of each individual STA in Uppaal SMC is rather
simple (but quite realistic), arbitrarily complex stochas-
tic behavior can be obtained by their composition when
mixing individual distributions through message pass-
ing. The beauty of our model is that these distributions
are naturally and automatically defined by the network
of STAs.

Train Crossing Example Uppaal SMC takes as input
NSTAss as described above. Additionally, there is sup-
port for all other features of the Uppaal model checker’s
input language such as integer variables, data structures
and user-defined functions, which greatly ease modeling.
Uppaal SMC allows the user to specify an arbitrary (in-
teger) rate for the clocks on any location. In addition, the
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automata support branching edges where weights can be
added to give a distribution on discrete transitions. It is
important to note that rates and weights may be gen-
eral expressions that depend on the states and not just
simple constants.

To illustrate the extended input language, we con-
sider a train-gate example. This example is available
in the distributed version of Uppaal SMC. A number
of trains are approaching a bridge on which there is
only one track. To avoid collisions, a controller stops the
trains. It restarts them when possible to make sure that
trains will eventually cross the bridge. There are timing
constraints for stopping the trains modeling the fact that
it is not possible to stop trains instantly. The interesting
point w.r.t. SMC is to define the arrival rates of these
trains. Figure 5(a) shows the template for a train. The
location Safe has no invariant and defines the rate of
the exponential distribution for delays. Trains delay ac-
cording to this distribution and then approach and syn-
chronize with appr[i]! with the gate controller. Here
we define the rational 1+id

N2 where id is the identifier of
the train and N the number of trains. Rates are given
by expressions that can depend on the current states.
Trains with higher id arrive faster. Taking transitions
from locations with invariants is given by a uniform dis-
tribution. This happens in Appr, Cross, and Start, e.g.,
it takes some time picked uniformly between 3 and 5
time units to cross the bridge. Figure 5(b) shows the
gate controller that keeps track of the trains with an
internal queue data-structure (not shown here). It uses
functions to queue trains (when a train is approaching
while the bridge is occupied in Occ) or dequeue them
when possible (when the bridge is free and some train is
queued).

3 Query Language

In addition to the standard model checking queries – i.e.
reachability, invariance, inevitability and leads-to, which
are still available – Uppaal SMC provides a number of
new queries related to the stochastic interpretation of
timed automata. Uppaal SMC allows the user to visu-
alize the values of expressions (evaluating to integers or
clocks) along runs. This gives insight to the user on the
behavior of the system so that more interesting prop-
erties can be asked to the model-checker. The concrete
syntax applied in Uppaal SMC is as follows:

simulate N [<=bound]E1,..,Ek

where N is a natural number indicating the number of
simulations to be performed, bound is the time bound
on the simulations, and E1, .., Ek are the k (state-based)
expressions that are to be monitored and visualized. To
demonstrate this on our previous train-gate example, we
can monitor when Train(0) and Train(5) are crossing
as well as the length of the queue. The query is

(1 + id) : N*N

stop[id]?

leave[id]!

x<= 15x<=20

x<=5

appr[id]!

go[id]?

x>=10

Start

x<=10

x>=3

x>=7

Safe

Appr

Stop

Cross

x=0

x=0x=0

x=0

(a) Train.

appr[e]?

leave[e]?

appr[e]?
dequeue()

enqueue(e)
stop[tail()]!

go[front()]!

Occ

Stopping

Free

e == front()

e:id_t

e : id_t

e : id_t

enqueue(e)

len == 0

len > 0

(b) Gate controller.

Fig. 5: Templates for the train-gate example.
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Fig. 6: Visualizing the gate length and when Train(0)

and Train(5) cross on one random run.

simulate 1 [<=300]

{Train(0).Cross, Train(5).Cross, Gate.len}

This gives us the plot of Figure 6. Interestingly Train(5)

crosses more often (since it has a higher arrival rate).
Secondly, it seems unlikely that the gate length drops
below 3 after some time (say 20), which is not an ob-
vious property from the model. We can confirm this by
asking Pr[<=300](<> Gate.len < 3 and t > 20) and
adding a clock t. The probability is in [0.102, 0.123].

For specifying properties of NSTAs, we use a weighted
extension of temporal logic MITL [AFH96] expressing
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properties over runs [BDL+12a], defined by the gram-
mar:

ϕ ::= ap | ¬ϕ |ϕ1 ∧ ϕ2 |Oϕ |ϕ1U
x
≤dϕ2

where ap is an atomic proposition, d is a natural num-
ber and x is a clock. Here, the logical operators are in-
terpreted as usual, and O is a next state operator. A
weighted MITL-formula ϕ1U

x
≤dϕ2 is satisfied by a run if

ϕ1 is satisfied on the run until ϕ2 is satisfied, and this
will happen before the value of the clock x exceeds d.
For an NSTA M we define PM (ψ) to be the probability
that a random run of M satisfies ψ.

The problem of checking PM (ψ) ≥ p (p ∈ [0, 1])
is undecidable in general 1. For the sub-logic of cost-
bounded reachability problems PM (3x≤Cϕ) ≥ p, where
ϕ is a state-predicate, x is a clock and C is bound, Up-
paal SMC approximates the answer using simulation-
based algorithms known under the name of statistical
model checking algorithms (SMC). We briefly recap sta-
tistical algorithms permitting to answer the following
three types of questions:

1. Probability evaluation:
What is the probability PM (3x≤Cϕ) for a given NSTA
M?

2. Hypothesis Testing:
Is the probability PM (3x≤Cϕ) for a given NSTA M
greater or equal to a certain threshold p ∈ [0, 1] ?

3. Probability comparison:
Is the probability PM (3x≤Cϕ2) greater than the prob-
ability PM (3y≤Dϕ2)?

From a conceptual point of view solving the above
questions using SMC is simple. First, each run of the
system is encoded as a Bernoulli random variable that
is true if the run satisfies the property and false other-
wise. Then a statistical algorithm groups the observa-
tions to answer the three questions. For the qualitative
questions (1 and 3), we shall use sequential hypothesis
testing, while for the quantitative question (2) we will
use an estimation algorithm that resemble the classical
Monte Carlo simulation. The two solutions are detailed
hereafter.

Probability Estimation This algorithm [HLMP04] com-
putes the number of runs needed in order to produce an
approximation interval [p− ε, p+ ε] for p = Pr(ψ) with
a confidence 1− α. The values of ε and α are chosen by
the user and the number of runs relies on the Chernoff-
Hoeffding bound. In Uppaal SMC we use the following
query:

Pr[bound](ϕ)

Example 1. Recall the Train Crossing example of the
previous section. The following queries estimates the prob-
abilities that Train(0) and Train(5) will be in the

1 Exceptions being stochastic TAs with 0 or 1 clocks and with
p being 0 or 1..

Fig. 7: The Verifier of Uppaal SMC

Fig. 8: The cumulative probability distribution of
Pr[<=T](<> Train(5).Cross).

crossing before 100 time-units:

Pr[ <= 100](<> Train(0).Cross)

Pr[ <= 100](<> Train(5).Cross)
(1)

Figure 7 shows how these (and other) queries are en-
tered in the “Query” field of the Verifier tap of Up-
paal SMC. In the “Overview” field the answers are pro-
vided: [0.502421, 0.602316] and [0.902606, 1] are the two
95% confidence intervals obtained from 383 and 36 runs,
respectively. This shows – as we would expect – that
the more eager Train(5) has a higher probability of
reaching the crossing than Train(0) within the given
time-limit. Right-clicking on the answers provide easy
access to more detialed information in terms of (cumula-
tive, confidence interval, frequency histogram) probabil-
ity distribution of the time-bounded reachability prop-
erty, e.g. Fig. 8.

Hypothesis Testing This approach reduces the qualita-
tive question to e test the null-hypothesis:

H : p = PM (3x≤Cϕ) ≥ θ
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against the alternative hypothesis:

K : p = PM (3x≤Cϕ) < θ

To bound the probability of making errors, we use strength
parameters α and β and we test the hypothesis H0 : p ≥
p0 and H1 : p ≤ p1 with p0 = θ + δ0 and p1 = θ − δ1.
The interval p0 − p1 defines an indifference region, and
p0 and p1 are used as thresholds in the algorithm. The
parameter α is the probability of accepting H0 when H1

holds (false positives) and the parameter β is the prob-
ability of accepting H1 when H0 holds (false negatives).
The above test can be solved by using Wald’s sequential
hypothesis testing [Wal45]. This test computes a propor-
tion r among those runs that satisfy the property. With
probability 1, the value of the proportion will eventually
cross log(β/(1−α) or log((1−β)/α) and one of the two
hypothesis will be selected. In Uppaal SMC we use the
following query:

Pr[bound](ϕ)>= p0

where bound defines how to bound the runs. The three
ways to bound them are 1) implicitly by time by speci-
fying <=M (where M is a positive integer), 2) explicitly
by cost with x<=M where x is a specific clock, or 3)
by number of discrete steps with #<=M . In the case of
hypothesis testing p0 is the probability to test for. The
formula ϕ is either <>q or []q where q is a state predi-
cate.

Example 2. Returning to the Train Crossing example,
we may not be directly interested in the actual proba-
bility of Train(0) crossing within 100 time-units, but
merely whether this unknown probability is above 0.2,
as reflected by the following query (see also Fig. 7):

Pr[<= 100](<> Train(0).Cross) >= 0.2

Within a number of runs significantly smaller that that
of estimating the same probability (383 runs), this prop-
erty may be confirmed. The number of runs needed by
Walds sequential hypothesis testing method varies, e.g.
posing the above query 5 times, the property was con-
firming within 66, 62, 65, 67, and 49 runs respectively
with 5% level of significance.

Probability Comparison This algorithm, which is detailed
in [DLL+11], exploits an extended Wald testing. In Up-
paal SMC, we use the following query:

Pr[bound1](ϕ1) >=Pr[bound2](ϕ2).

Example 3. In the Train Gate example, it might be suf-
ficient to confirm that the probability that Train(5)

reaches the crossing within 100 time-units is larger than
that of Train(0). Possing the query:

Pr[<=100](<>Train(5).Cross)

>= Pr[<=100](<>Train(0).Cross)}

Fig. 9: Frequency histogram of maximum number of
trains stopped within 20 time-untis.

confirms this belief within 120 (132, 144, 108, 174) runs
with 5% level of significance.

In addition to those three classical tests, Uppaal SMC
also supports the evaluation of expected values of min
or max of an expression that evaluates to a clock or an
integer value. The syntax is as follows:

E[bound;N ](min :expr)

or
E[bound;N ](max :expr)

where bound is as explained in this section, N gives the
number of runs explicitly, and expr is the expression to
evaluate. Also for these properties a confidence interval
is given.

Example 4. As an intersting property of the Train Cross-
ing example, we want to know the average of the maxi-
mum number of trains that are stopped within the first
20 time-units:

E[ <= 20; 20000]

(max: sum(i:id\_t) Train(i).Stop)

Using the explicitly required 20.000 runs, this average
is estimated to be in the confidence interval 3.64775
±0.0126354. Right-clicking gives easy access to more de-
tailed views, e.g. the frequency histogram in Fig. 9.

Full Weighted MITL Regarding implementation, we note
that both of the above statistical algorithms are triv-
ially implementable. To support the full logic of weighted
MITL is slightly more complex as our simulation engine
needs to rely on monitors for such logic. In [BDL+12b],
we proposed an extension of Uppaal SMC that can han-
dle arbitrary formulas of weighted MITL. Given a prop-
erty ϕ, our implementation first constructs determinis-
tic under- and over-approximation monitoring PTAs for
ϕ. Then it puts these monitors in parallel with a given
model M , and applies SMC-based algorithms to bound
the probability that ϕ is satisfied on M . More recently
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[BDL+12a], the exact evaluation of whether the gener-
ated run satisfies a given weighted MITL formula is done
on-line by constantly rewriting the formula during gen-
eration of the run.

The probability of satisfying an MITL property ψ
is estimated by Uppaal SMC using the query Pr(ψ),
where

ψ :: = BExpr

| ψ &&ψ | ψ ||ψ

| ψ U[a,b]ψ | ψ R[a,b]ψ

| <>[a,b]ψ | [][a,b]ψ

a, b ∈ N, a ≤ b and BExpr is a Boolean expression over
clocks, variables and locations.

Example 5. The following query:

Pr( <>[10,100] ([][0,5] Train(0).Stop) )

asks for the probability that Train(0) will stopped for
at least 5 consequtive time-units somewhere in the time-
interval [10,10]. Within 738 runs [0.880894,0.980894]
is returned as a 95%-confidence-interval indicating that
this happens with a very high probability.

4 Extension to Hybrid Systems

Uppaal SMC allows for statistical model checking of
stochastic hybrid system, i.e. extensions of (stochastic)
timed automata, where the rate of clocks may be given
by general expressions involving clocks, thus effectively
using ODEs.

To illustrate the various aspects of the (extended)
modeling formalism supported by Uppaal SMC, we con-
sider the case of two independent rooms that can be
heated by a single heater shared by the two rooms, i.e.,
at most one room can be heated at a time. Fig.10(a)
shows the automaton for the heater. It turns itself on
with a uniform distribution over time in-between [0, 4]
time units. With probability 1/4 room 0 is chosen and
with probability 3/4 room 1. The heater stays on for
some time given by an exponential distribution (rate 2
for room 0, rate 1 for the room 1). In summary, one
may say that the controller is more eager to initiate
the heating of room 1 than room 0, as well as less ea-
ger to stop heating room 1. The rooms are similar and
are modeled by the same template instantiated twice
as shown in Fig. 10(b-c). The room is initialized to its
initial temperature and then depending on whether the
heater is turned on or not, the evolution of the temper-
ature is given by T ′i = −Ti/10 +

∑
j=0,1Ai,j(Tj − Ti) or

T ′i = K − Ti/10 +
∑
j=0,1Ai,j(Tj − Ti) where i, j = 0, 1

are room identifiers. The sum expression corresponds to
an energy flow between rooms and matrix A encodes the
energy transfer coefficient between adjacent rooms. Fur-
thermore, when the heater is turned on, its heating is

[t]

T[1]
T[0]

time

va
lu
e

0

9

18

27

36

45

0 60 120 180 240 300 360 420 480 540 600

Fig. 11: Evolution of the temperatures of the two rooms.

not exact and is picked with a uniform distribution of
K ∈ [9, 12], realized by the update K=9+random(3).

This example illustrates the support for stochastic
hybrid systems in Uppaal SMC with extended arith-
metics on clocks and generalized clock rates.

Uppaal SMC takes as input networks of stochastic
hybrid automata as described above. In addition, the
automata support branching edges where weights can
be added to give a distribution on discrete transitions.
It is important to note that rates and weights may be
general expressions that depend on the states and not
just simple constants.

4.1 Floating-Point Support

The syntax has been extended to support a double preci-
sion floating-point type (double). This type can be used
mixed with clocks for computing or storing arithmetic
expressions. Its rate cannot be changed. When using
floating-point types or operations in a model, the model
is marked as being hybrid. For such models, model-checking
is disabled, unless the clocks are declared to be hybrid
clock and neither these clocks or the floating-point vari-
ables affect the control of the automata, i.e., such vari-
ables are inactive and used as costs.

4.2 Example

All the new queries of Uppaal SMC described in Sec-
tion 3 are available for stochastic hybrid systems. We
illustrate this on by a number of queries related to the
two-room example from the previous Section.

We can simulate and plot the temperatures of the
two rooms with the query

simulate 1 [<=600]{T[0],T[1]}

The query request the checker to provide one simulate
run over 600 time units and plot the temperatures of
Room(0) and Room(1). The heater in this example is
purely stochastic and is not intended to enforce any par-
ticular property. Yet, the simulation obtained from this
query in Fig. 11 shows that the heater is able to maintain
the temperatures within (mostly) distinct intervals.

We can evaluate on a shorter time scale the proba-
bility for the temperature of Room(0) to stay below 30
and the temperature of Room(1) to stay above 5 with
the queries

7



on[1]!

on[0]!

off[1]!

off[0]!

ON_1

ON_0

3
x<=4

1
OFF

1x=0

x=0 2

K’==0 &&
T[0]’==K - T[0]/10
  +sum(j:int[0,1]) 
     A[0][j]*(T[j]+-T[0])/s

on[0]?

off[0]?

ON

T[0]’==-T[0]/10
  +sum(j:int[0,1]) 
     A[0][j]*(T[j]+-T[0])/s

Init

OFF

K=9+random(3)T[0]=T0[0]

K’==0 &&
T[1]’==K - T[1]/10
  +sum(j:int[0,1]) 
     A[1][j]*(T[j]+-T[1])/s

on[1]?

off[1]?

ON

T[1]’==-T[1]/10
  +sum(j:int[0,1]) 
     A[1][j]*(T[j]+-T[1])/s

Init

OFF

K=9+random(3)T[1]=T0[1]

(a) stochastic heater. (b) room 0. (c) room 1.

Fig. 10: A simple two room example with an autonomous heater.

Pr[<=100]([] Room(0).Init || T[0] <= 20)

Pr[<=100]([] Room(1).Init || T[1] >= 7)}

The results are respectively in [0.45, 0.55] and [0.65, 0.75].
The precision and confidence of these so-called confi-
dence intervals are user-defined (see later) and influence
the number of runs needed to compute the probability.
In this example, for having the precision to be ±0.05
with a confidence of 95%, we need 738 runs. In fact if we
are only interested in knowing if the second probability
is above a threshold it may be more efficient to test the
hypothesis

Pr[<=100]([] Room(1).Init || T[1] >= 7)

>= 0.69

which is accepted in our case with 902 runs for a level of
significance of 95%. To obtain an answer at comparable
level of precision with probability evaluation, we would
need to use a precision of ±0.005, which would require
73778 runs instead.

We can test the hypothesis that the heater is better
at keeping the temperature of Room(1) above 8 than
keeping the temperature of Room(0) below 20 by the
following comparison query:

Pr[<=100]([] Room(1).Init || T[1] >= 7) >=

Pr[<=100]([] Room(0).Init || T[0] <= 20)}

which is accepted in this case with 95% level of signifi-
cance with just 258 runs.

5 Extension to Dynamic Creation of Processes

Computer systems are contrary to the assumption of net-
works of timed automata not statically encoded entities.
Instead they are composed of a number of threads/pro-
cesses that interact and capable of spawning other pro-
cesses/threads. Modeling such dynamic systems in stan-
dard Uppaal requires the modeler to model an underly-
ing resource manager. In addition, the model would con-
sist of a large number of components in an inactive state
would be available for the resource manager to “start”
whenever a spawn request was made in the model. A nec-
essary assumption for modeling this resource manager

(a) Server

(b) ServerChild

Fig. 12: Modelling a server with dynamic spawning

is that the maximum number of spawned threads dur-
ing any execution is known in advance (or can be safely
over-approximated). This does not only make modeling
tedious but also affects analysis time. Uppaal SMC sup-
ports instantiating dynamic processes out of the box.
Any automata in the system can spawn instances of tem-
plates of the model that has been declared to be spawn-
able. Dynamically created instances act within the sys-
tem as the static instances with the exception that they
at any time may terminate, and thus remove themselves
from the system.

A prototypical example of a system exhibiting spawn-
ing is that of a server system. A server system usually
consists of a main thread responsible of accepting con-
nections from clients. The actual processing of the clients
requests is handled by a thread spawned by the main
thread. In Fig. 12 we show how this is modeled in Up-
paal SMC.

In Fig. 12a is shown the automaton modeling the
server thread listening for connections. The function initPorts

is initialising an array used internally by the server. When
a connection is attempted by a client (template not shown)
the server immidiately checks if it has communication
channels available (using the aforementioned array). If
succesful a ServerChild (Fig. 12b) is spawned using the
Spawn ServerChild (..) construct. The port number this
client should use to communicate with the client is passed
by parameters to ServerChild (the openPort() function
returns the port number as an integer). The second pa-
rameter to the ServerChild is the id of the client. The
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�
dynamic ServerChi ld ( i n t port , i n t id ) ; 	� �

Fig. 13: Syntax for defining a spawnable template
ServerChild with integer parameter port and id.

server child then accepts the connection (using the global
variable connectID to identify the client) and awaits a
disconnect request from the client i.e. in the model we
abstract from the actual work requested by the client.
When the client disconnects the ServerChild terminates
with the exit () construct.

5.1 Syntax in Uppaal SMC

A template that will be dynamically spawned must be
declared as a dynamic template. This is done in the
global declaration of the Uppaal model using the dynamic

keyword.
In Fig. 13 the declaration for the ServerChild tem-

plate is shown. The template takes two parameters port

and id, where port is the port used for communcation
with the client identified by id. Parameters to spawnable
templates are restricted to be pass-by-value parameters
or a reference to a broadcast channel. The reasoning be-
hind this restriction is that templates may cease to exist
- invalidating any references to its local variables that it
could have passed on to spawned templates.

The actual behaviour of a spawnable template is de-
fined as usual in the editor. Note, however, that there
must be a correspondence between the parameters de-
fined in the dynamic declaration and the definition. In
the ServerChild example this means that the parame-
ters both in the dynamic declaration and the definition
must be int port , ind id.

Spawnable templates may be spawned by any tem-
plate during a transition using the spawn keyword. For
instance, adding spawn ServerChild (5,2) to the update ex-
pression of an edge will spawn an instance of the tem-
plate ServerChild with paramters 5 and 2. Obviously, there
must be parameter compatibility between the actual and
the formal parameters.

A spawnable template can tear itself down during a
transition. This is expressed by adding the exit () expres-
sion to the update of an edge.

5.2 Extensions for Queries

Having extended the modeling language of Uppaal SMC
to allow dynamically spawning templates, we also need
an extended specification formalism.

For the statically defined components specifications
are made as described in Section 3. For the dynamically
created components of the system have three additional

constructions are available:

forall(t : T)(q),

exists(t : T)(q) and

sum(t : T)(a),.

that may be used anywhere in a specification.
The forall(t : T)(q) assert that q is true for all the

dynamically created instances of T. The name t may
be used anywhere in q to refer to the variables of the
instances of T i.e. the name t is temporally bound to the
instances of T while evaluating q. The exists(t : T)(q)
construction is the dual of forall.

Example 6. Returning to the Server example from be-
fore, we may consider the probability that a ServerChild
is not released for 10 time units i.e. that it is working in
the Working location in 10 time units. In the extended
specification formalism this can be checked using the
query:

Pr(<> [0, 10](exists(s : ServerChild)(

([][0, 10]s.Working))))

sum(t : T)(a) is an expression that can be used in
arithmetic expressions and simply evaluates a for all the
instances of T. An interesting use of sum is to count the
number of active components of a template: this is easily
accomplished using sum(t : T)(1). An optimised version
of this is also available as numOf(T).

6 Graphical Interface

We focus in this section on the main features of the in-
terface related to SMC. For a more complete overview
of the interface the reader is refered to [?].

Overview. The graphical interface of Uppaal is divided
into an editor, two simulators, and a verifier. The editor
serves the purpose to define the automata and decla-
ration of variables and functions. The verifier is used
to specify and check different queries, and to get the
results. Then there are two simulators, one is the well-
known symbolic simulator that has been available in Up-
paal since the birth of this interface. The second sim-
ulator is a concrete simulator that was originally used
in Uppaal-tiga. This simulator allows the user to sim-
ulate a system with concrete values of clocks, which is
more intuitive than with the symbolic simulator. This
simulator is shown in Fig. 14. The choice of transition
is situated in the upper-left corner. The user chooses
with one click a transition (vertical choice) and a delay
(horizontal choice). The simulator shows the automata
and a message sequence chart on the right. On the lower
left corner is the trace corresponding to the current sim-
ulation. The central view shows the variables and the
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Fig. 14: The concrete simulator in Uppaal.

�
gantt {

gate :
Gate . Occ -> 0 ,
Gate . Free -> 1 ;

t r a i n ( i : i d t ) :
Train ( i ) . Appr -> 2 ,
Train ( i ) . Stop -> 1 ,
Train ( i ) . S ta r t -> 3 ,
Train ( i ) . Cross -> 0 ;

} 	� �
(a) Definition in System declarations.

(b) Trace visualization in Concrete Simulator.

Fig. 15: Gantt chart.

user can show and hide variables in different scopes. In
the example, only the clocks of Train(2) and Train(4) are
shown.

The concrete simulator also supports Gantt chart vi-
sualization of the interactive concrete trace. Figure 15
shows a sample use case of Gantt chart for the train-
gate example. The chart is defined in system declara-
tions (Fig. 15a), where each chart line is defined by
a statement separated by a semicolon. Each statement
consists of a line label (e.g. gate and train) and a comma-
separated list of predicates implying color-numbers. For
example, a line gate is painted in color #0 (red) when-
ever Gate.Occ is true and in color #1 (green) whenever
Gate.Free. The colors are mixed when the corresponding
predicates are true at the same time. It is also possible to
define a chart line for a whole range of discrete values at
once, like the parameterized definition of train ( i : id t ),
where the temporary variable i has a range of type id t.

For example, the first 32 colors can be rendered by the
following definition: gantt { C(i : int [0,31]) : true -> i ; }.

SMC Options. Under the menu Options the user can
choose Statistical parameters. This opens the window
shown in Fig. 16.

– −δ and +δ: When testing for hypothesis of the form
Pr(ϕ) ≥ θ, the algorithm behind tests for two hy-
pothesis. They are 1) H0 : Pr(ϕ) ≥ θ + δ+ and 2)
H1 : Pr(ϕ) ≤ θ − δ−. These parameters define the
region of indifference.

– α and β: α and β are used for hypothesis testing.
The probability of accepting H1 instead of H0 is α
and conversely for β. In the case of probability evalu-
ation, α is also used and it is then the probability to
be outside the result interval of probability. For prob-
ability comparison, the use of α and β is the same as
for hypothesis testing.

– ε is the uncertainty for probability evaluations. The
tool evaluate some probability µ and outputs the re-
sult [µ− ε, µ+ ε].

– u0 and u1 are the lower and upper bounds used in
probability comparison. Similarly to hypothesis test-

ing, the algorithm tests two hypothesis:H0 : Pr(ϕ1)
Pr(ϕ2)

≥
u1 and H1 : Pr(ϕ1)

Pr(ϕ2)
≤ u0. These parameters define

the region of indifference for comparing probabilities.
– Histogram parameters: If the bucket width is set to

a positive value, its value determines the width of
the bars in the histogram and the number of bars
depends on the range of the obtained results. Other-
wise if the bucket count is positive then the number
of bars is set to this value and the width of the bars
depends on the range of the obtained result. Other-
wise if both parameters are set to zero (default), the
number of bars in the histogram is set to the square
root of the number of runs used to obtain the graph.

– Trace resolution: When computing a simulation us-
ing the simulate query, the tool filters out the data
on-the-fly and retains points that are distinguishable
w.r.t. a certain resolution when plotted on a screen.
This parameter controls the maximum width of the
plot in pixels.

– Discretization step: This is used for integration when
ODEs are used in the model. We note that defining
rates as constants does not qualify as ODE, but hav-
ing x’==y does.

Plotting and Composing. Most of SMC queries also pro-
vide quick result visualization in a form of data plots
accessible in the Verifier by right-clicking on a selected
property and choosing one of the available plots from
a pop-up menu. Simulation queries display all the re-
quested trajectories in one plot with different colors as-
signed to various expressions. Statistical queries result
in a number of different histograms showing the data
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Fig. 16: The statistical parameters from the options
menu.

Fig. 17: Visual data comparison in the Plot Composer.

scattered along time, cost or discrete transitions hori-
zontal axis. The displayed plot elements (like title, leg-
end, transparency, comments and logarithmic scale) can
be customized by right-clicking on the plot and choosing
appropriate items from a pop-up menu. The plotted data
can be exported as either a picture or a text file by using
the same plot pop-up menu. The size of the exported plot
can be customized by resizing the plot window. Note that
larger window will result in smaller fonts when rescaled
for inclusion into a document, so smaller window will re-
sult in fewer details but clearer picture with larger fonts.
The dark-colored areas are printer-friendlier when the
plot is brightened by choosing Areas/Bright in the plot
pop-up menu.

The different data can also be contrasted and com-
pared in one plot by using the Plot Composer from
the Tools menu. Figure 17 shows a sample Plot Com-
poser window with data from several verifications al-
ready loaded. The data is organized in the tree on the
left. The root node controls the main attributes (the
title and the labels of both axis) of the resulting plot
which can be changed in the upper panel on the right.
The bottom panel on the right shows the resulting plot.
Each verification data is appended to the tree to its cor-
responding query. For example simulate query has been
checked four times and each result contains one plot with
two datasets. The data can be added to the composite
plot by ticking its check-box (E2 and E4 are ticked in
Fig 17) and its drawing properties can be customized in
the top-right panel when it is selected in the tree (E2 is
selected). It is also possible to compose several plots at

the same time by invoking Plot Composer several times
from the Tools menu.

7 Modeling Tricks

7.1 How to Convert Channel Synchronizations Into
Broadcast Synchronizations

Problem. It is common that a user wants to analyze
performance of a given model previously model-checked
with Uppaal. This model may contain ordinary channel
synchronizations that work by hand-shake. The problem
is that the SMC extension does not support them as
explained in Subsection 2. Here we present a translation
to convert these models so that they can be analyzed by
Uppaal SMC.

Translation. We distinguish three cases: the basic sim-
ple one-to-one synchronization, the one-to-any synchro-
nization, and a problematic case.

The common simple case is of one process synchroniz-
ing with exactly one other process on a channel as shown
in Fig. 18. The sender in state A may have an invariant
or not. The receiver in state Loc2 does not have an in-
variant. The synchronization may be guarded by, resp.
g1() and g2(), for resp. the sender and the receiver. To
convert this model, the user should redeclare the chan-
nel a as broadcast, move the guard of the receiver to
the sender2, and make the actual location visible from
the sender by using a simple encoding with the extra
integer variable recvLoc. Other encodings may be used,
e.g., with booleans, but the integer presents the advan-
tage to keep the translation of several synchronizations
simple. The integer allows the user to map each location
to a unique value that is used by the sender to allow
the synchronization only in the right state. The exam-
ple illustrates the update of this variable for some other
peripherical locations Loc0, Loc1, and Loc4.

The second more general case is of one process syn-
chronizing with one process out of several ones. There is
a choice of one-to-any synchronization shown in Fig. 19.
Here as well, the receiver is in a location without in-
variants. In this case, the same principle as the simple
case is used with in addition a renaming of the channel.
The initial transition in the sender has a copy with a
unique channel name for each possible synchronization
that is possible in the original model. Each copy uses
the right associated guard and looks up the state of the
right process. In the example, we illustrate with the use
of an array a generic encoding where there would be sev-
eral instances of the same template for the receiver. If
the guards g2() and g3() are generic or depend on some
id used to instantiate the receivers, the select construct

2 This may require moving local variables to the global scope to
make the state visible.
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⇓

Fig. 18: Basic case of a one-to-one channel synchroniza-
tion and its translation to a broadcast channel synchro-
nization.

can be used, in which case the original transition is not
copied and the channel a is renamed as a[id] with an
array.

The last case is the problematic one where a receiver
has an invariant as shown in Fig.20. Any translation of
this model will violate the so called independent progress
condition because here a receiver would force another
sender process to synchronize. Not synchronizing would
result in a deadlock. We note that if there is an output
from that location, i.e., some b! synchronization, then
there is no problem.

The last technical detail to take care of is to add
exponential rates to the locations without invariants and
that have output synchronizations (or tau transitions).
This is the rate of the exponential distribution used for
picking delays.

7.2 How to Encode Custom Distributions

Problem. Sometimes, the default uniform or exponen-
tial distributions available in Uppaal SMC are not enough.
The user needs a simple way to encode any distribution
into the model to generalize the ones illustrated in Fig. 2.

Encoding. The pattern for encoding general distribu-
tions is given in Fig. 22. The principle is that upon en-
try of a given location Wait where the actual custom
delay is to take place, the actual delay is computed and
stored into a clock delay. The function f() that computes

⇓

Fig. 19: Extended case of a one-to-any channel synchro-
nization (only two here) and its translation to a broad-
cast channel synchronization.

Fig. 20: Problematic case where the translation to broad-
cast channel is not possible.

this delay returns a floating-point value of type double.
The automaton will then delay for this amount and take
the transition. The location Wait has its invariant set
to x<=delay and delay’==0. The clock delay is used here
only for storage. This technique is similar to the one used
for computing stochastic simulations in Modest [Har10].

Implementation of f(). The function that computes the
delay may use the random(n) function with n being a
floating-point value. The function returns a number in
[0, n[ with a uniform distribution. This can then be trans-
formed to return a delay with another distribution. We
note that the function may keep a state as well, by stor-
ing what it wants into global variables (also of type dou-
ble), which allows the encoding of virtually any distribu-
tion. For example, to define generate random numbers
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Fig. 21: Result from modeling a Gaussian distribution.

Fig. 22: Pattern for custom delay distributions.

according to a normal distribution using the Box-Müller
method, we can use the following function:

const double PI = 3.14159265358979323846;
double f() {
return 10+sqrt(-2.0*ln(1.0-random(1.0))) *

cos(2.0*PI*random(1.0));
}

The distribution obtained is shown in Fig. 21 together
with the parameters used.

Remark. The reader may wonder why the pattern pro-
poses to use a clock for the variable delay instead of a
variable of type double. In fact it is possible to use dou-
ble, which saves the trouble of setting its rate to 0. How-
ever, the performance of the model-checker may drop. In
its current implementation, Uppaal SMC uses a fined-
grained discretization if guards or invariants contain a
“general” floating-point expression. The syntax analyzer
will not recognize that the discretization is not needed
in this case. Using clocks alleviates the problem.

7.3 How to Model Physics

Problem. The formalism of Uppaal SMC is stochastic
hybrid automata so modeling physics is a simple matter
of writing the ODEs in the model. However, only first
degree derivatives are allowed.

Modeling. To model an n-degree derivative, the user
should use a clock variable for every intermediate deriva-
tive. This is standard renaming technique used in other
tools, e.g., Matlab. For example, instead of modeling
y’’==-9.81 for a falling object, the user should declare
y’==v and v’==-9.81. Using different clocks or arithmetic

expressions mixing double typed variables is also sup-
ported.

7.4 How to Model Biochemistry

Problem. Cyber-physical systems may involve chemical
and even biological processes and hence there is a need
to evaluate the performance of control systems in such a
context. Suppose the reaction involves a mixed solution
of materials A and B and produce C and D with reaction
speed of γ:

A+ 2B
γ−→ C + 3D

Here we show how this reaction can be modeled as ei-
ther probabilistic or dynamical system. The containment
of reactions and other interactions can be modeled by
adding additional locations, edges and channel synchro-
nizations.

Stochastic model. Figure 23 shows a stochastic model
of the reaction and its behavior. The discrete quanti-
ties (molecules) of the materials involved are counted by
the corresponding integers A, B, C and D. The reaction
rate is represented by the double precision floating point
variable gamma. The automaton in Fig. 23b captures the
interaction between chemicals A and B in the following
way:

– The automaton takes a discrete transition when the
reaction happens.

– The reaction requires at least one molecule of A and
at least two molecules of B, hence the edge is guarded
by an expression A>0 && B>1.

– Each reaction consummes A and 2B and produces C
and 3D, hence the edge has the update A--, B-=2,

C++, D+=3.
– In a well mixed (homogeneous) compound the prob-

ability of a reaction is proportional to its speed γ
and the probability of meeting the required three
molecules (A, B and another B) in one place. The
probability of reaction remains the same as long as
the conditions (quantities and temperature) do not
change, hence the reaction is a Poisson process and
the delay until the next reaction follows an exponen-
tial distribution with the rate gamma∗A∗B∗B.

If there are more reactions, then they have to be modeled
by another parallel process. The trajectory of the quanti-
ties can be inspected by the following query: simulate 1

[<=5]{A,B,C,D}. The resulting plot is shown in Fig. 23c:
A and B are slowly decaying, replaced by C and D. We
notice that the trajectory is jittery and can be slightly
different with every new simulation due to probabilis-
tic nature of the stochastic process and relatively small
amounts of molecules. The trajectories are smoother when
quantities are much larger and approach the limit of the
continuous dynamics.
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�
i n t A=100 , B=200 , C=0, D=0;
double gamma=0.0001; 	� �

(a) Declarations.

(b) Automaton. (c) Simulation.

Fig. 23: Stochastic model and its behavior.

�
typede f i n t [ -(1<<31) ,(1<<31) - 1 ] i n t 3 2 t ;
const i n t s =1000; // scale by a thousand
i n t 3 2 t A=100∗s , B=200∗s , C=0, D=0;
double gamma=0.0001; 	� �

(a) Scaled declarations.

(b) Scaled rate. (c) Scaled trajectories.

Fig. 24: Scaled stochastic model and its scaled behavior.

Scaling. Usually chemical reactions involve huge num-
bers of molecules with different orders of magnitude and
thus some scaling of dimensions may be desired. Note
that if the quantities are scaled by 1000, then the ex-
ponential rate gamma∗A∗B∗B has to be scaled by 106

(while the dynamical coefficients are scaled by 109) and
thus it is very easy to overflow the default range of
int. Figure 24 shows the same model but with molecule
quantities scaled by 1000. The simulated trajectories
are divided by s back down to a comparable scale as
in previous and next example. The simulated behavior
is smoother and closer to the dynamical model (shown
next).

The default integer range is rather small (±216), thus
one may need to broaden it by defining a custom range.
Uppaal supports integer ranges up to 32 bits, hence the
type declaration typedef int [-(1<<31),(1<<31)-1] int32 t;

corresponds to a range of signed 32 bit integer. The range
can be expanded further to a double precision floating
point, but note that its precision is limited to 52 bits
(≈ 4.5 × 1012) and hence beyond that point minor in-

�
c l o ck A=100.0 , B=200.0 , C=0.0 , D=0.0;
double gamma=0.0001;
urgent broadcast chan ASAP; 	� �

(a) Declarations.

(b) Automaton. (c) Simulation.

Fig. 25: Dynamic model and behavior.

crements (like +1) will not affect the variable value any-
more.

Dynamical model. The same reaction can be rewritten
using a set of differential equations describing the rate
of change of the quantities:

d[A]

dt
= − γ · [A] · [B]2

d[B]

dt
= − γ · [A] · [B]2 · 2

d[C]

dt
= γ · [A] · [B]2

d[D]

dt
= γ · [A] · [B]2 · 3

The idea here is that the rate of change in quantities
is proportional to the speed of reaction and concentra-
tion of materials. The contribution to various materials
is then scaled by coefficients from the original reaction.
We have one equation per each material mentioned. If
there are more reactions then their contributions can be
added up to the same system of differential equations
either as separate extra terms or a separate equation for
each new chemical. Fig. 25 shows the dynamical model
and its behavior. The quantities are captured by dynam-
ical clock variables A, B, C and D and the same reaction
coefficient gamma. The differential equations are then
typeset as a single invariant of derivative expressions in
Lagrange’s prime notation (Fig.25b). We also added an
escape transition if/when the quantity of A reaches zero,
i.e. the reaction stops. The trajectories can be inspected
by the same simulation query as previously and the re-
sult is shown in Fig.25c. Notice that the trajectory is
smoother, very close to the scaled-up stochastic simula-
tion, and is the same every time (deterministic), because
ordinary differential equations have one fixed solution for
the same initial conditions. Some ODE systems might
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�
c l o ck E, t ;
double P; 	� �

(a) Model. (b) Trajectories of energy and power.

(c) Estimated energy probability distribution.

Fig. 26: Cost estimation in terms of energy.

require tuning the discrete integration step in the Sta-
tistical parameters from the Options menu: the smaller
the step the more precise simulation is, but it is also
more computationally expensive. Stiff systems may re-
quire smaller integration steps. A more complicated bio-
chemical model can be found in a study of a circadian
rhythm genetic oscillator [DLL+12,DDL+12].

7.5 How to Obtain Distributions Over Costs

When the user checks queries to evaluate probabilities,
e.g., Pr[<=100](<> Proc.Goal), Uppaal SMC keeps
track of when the runs satisfy the specified goal state
and uses this information to build a frequency histogram.
Specifically, what is counted is the number of runs that
were satisfied at a given “time” as defined by the bound
of the run. When no explicit variable is used, e.g., <=100,
the plot is the count of satisfied runs as a function of
time, discretized in the histogram bars (so in fact in func-
tion of time intervals). When a clock variable is used, the
plot is in function of this variable. Alternatively it can
be in function of discrete steps if a bound of the form
#<100 is used.

Now suppose that we want to estimate a cost ex-
pressed as some energy consumption. To illustrate this,
let us consider the example in Fig. 26a. In this model,
a random power level is choosen stochastically and the
corresponding energy consumption is integrated by Up-
paal SMC. The evolution of the energy is naturally ex-
pressed by the equation E’==P.

Figure 26b shows one stochastic simulation bounded
by two time units obtained with the query simulate 1

[<=2] {E,P}. Every run will have its own energy con-
sumption. The question is to know the mean of the en-
ergy consumption and its distribution over runs bounded
by two time units. To obtain this we check the query

Pr[E<=10](<> t==2). The trick is that first we bound
the actual energy by a high enough bound that covers the
reachable range for all runs. It could be E<=1000 if the
user is unsure. Second, the goal state is the time bound
that will be reached since time progresses3. The result
probability is one but this is not the point. The point is
the distribution generated by this query. Uppaal SMC
will record “when” (in function of the bound) the runs
reach the goal, here t==2. We obtain now a distribution
of energy consumption on runs bounded by two time
units as shown in Fig. 26c.

Remarks. If the suggested query is checked with the de-
fault settings the obtained histogram will have poor pre-
cision because Uppaal SMC does not need many runs
to conclude that the result probability is one. The user
should increase the precision by changing the SMC op-
tions as described in Section 6. Specifically, Fig. 26c was
obtained from 7598 runs using α = 0.001 and ε = 0.0005.

It is also possible to estimate discrete costs even
though the tool does not support integers as bounds.
Users can use clocks for this purpose by maintaining
their rates to zero and updating them manually. For ex-
ample, if c is a counter, then it is declared as a clock.
Then the user adds one process with one location and
no transition with the invariant c’==0. Finally, the in-
crement c = c + 1 is used wherever necessary and the
bound c<=100 can now be used.

7.6 How to Model Custom Discretizations

Problem. Sometimes users want to use a custom inte-
gration method or want to change the integration gran-
ularity at the level of locations. Uppaal SMC uses a
global time step when it detects that some integration
is needed. It may be better for performance or precision
to change this step depending on the locations and the
type of equation to integrate.

Modeling. The modeling trick consists of using a “high”
exponential rate on the locations where the manual dis-
cretization is needed. The tool will then take small delay
steps, albeit random according to an exponential dis-
tribution with high rate, which allows for custom dis-
cretization. Fig. 27 shows an example of the temper-
ature of a room that can have a heater turned on or
off4. The value of RATE controls the precision. The func-
tions for cooling and heating are depicted in Listing 27a.
The value of the clock dt is the time elapsed and is
used for the integration. KHEAT and KCOOL are con-
stants used in the model. The result of a simulation is
shown in Fig. 27. This manual encoding replaces, resp.,

3 Uppaal SMC detects zeno runs and rejects models producing
them.

4 The actual controller is not important for this example and is
not given here.
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�
c l o ck T = T0 [ i ] , dt ;
void coo l ( )
{

T = T - (T∗dt ) /KCOOL;
}
void heat ( )
{

coo l ( ) ;
T = T + KHEAT∗dt ;

} 	� �
(a) Variable and function declarations.

(b) The model. (c) Temperature trajectories.

Fig. 27: The temperature of a heated room with a man-
ual discretization using a high exponential rate RATE.

T’==-T/KCOOL and T’==KHEAT-T/KCOOL for, resp., cool-
ing and heating. The example also illustrates a recent
new feature of the language, namely initializers for clocks
with the declaration T = T0[i], where T0 is declared as
const double T0={70.0,60.0}.
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