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Abstract. Model checking of timed automata is a widely used
technique. But in order to take advantage of modern hardware, the al-
gorithms need to be parallelized. We present a multi-core reachability
algorithm for the more general class of well-structured transition sys-
tems, and an implementation for timed automata.

Our implementation extends the opaal tool to generate a timed au-
tomaton successor generator in c++, that is efficient enough to compete
with the uppaal model checker, and can be used by the discrete model
checker LTSmin, whose parallel reachability algorithms are now extended
to handle subsumption of semi-symbolic states. The reuse of efficient
lockless data structures guarantees high scalability and efficient mem-
ory use.

With experiments we show that opaal+LTSmin can outperform the
current state-of-the-art, uppaal. The added parallelism is shown to re-
duce verification times from minutes to mere seconds with speedups of
up to 40 on a 48-core machine. Finally, strict BFS and (surprisingly) par-
allel DFS search order are shown to reduce the state count, and improve
speedups.

1 Introduction

In industries developing safety-critical real-time systems, a number of safety
requirements must be fulfilled. Model checking is a well-known method to achieve
this and is critical for ensuring correct behaviour along all paths of execution of
a system. One popular formalism for real-time systems is timed automata [3],
where the time is modelled as a number of resettable clocks. Good tool support
for timed automata exists [9].

However, as the desire to model check ever larger and more complex models
arises, there is a need for more effective techniques. One option for handling
large models has always been to buy a bigger machine. This provided great im-
provements; while early model checkers handled thousands of states, now we can
handle billions. However, in recent years processor speed has stopped increasing,
and instead more cores are added. These cores cannot be taken advantage of by
the normal sequential algorithms for model checking.
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The goal of this work is to develop scaling multi-core reachability for timed
automata [3] as a first step towards full multi-core LTL model checking. A review
of the history of discrete model checkers shows that indeed multi-core reachabil-
ity is a crucial ingredient for efficient parallel LTL model checking (see Sec. 2).
To attain our goal, we extended and combined several existing software tools:

LTSmin is a language-independent model checking framework, comprising,
inter alia, an explicit-state multi-core backend [23,13].

opaal is a model checker designed for rapid prototype implementation of new
model checking concepts. It supports a generalised formof timedautomata [17],
and uses the uppaal input format.

The UPPAAL DBM library is an efficient library for representing timed au-
tomata zones and operations thereon, used in the uppaal model checker [9].

Contributions: We describe a multi-core reachability algorithm for timed au-
tomata, which is generalizable to all models where a well-quasi-ordering on the
behaviour of states exist [19]. The algorithm has been implemented for timed
automata, and we report on the structure and performance of this prototype.

Before we move on to a description of our solution and its evaluation, we first
review related work, and then briefly introduce the modelling formalism.

2 Related Work

One efficient model checker for timed automata is the uppaal tool [9,7]. Our
work is closely related to UPPAAL in that we share the same input format and
reuse its editor to create input models. In addition, we reused the open source
uppaal dbm library for the internal symbolic representation of time zones.

Distributed model checking algorithms for timed automata were introduced in
[11,6]. These algorithms exhibited almost linear scalability (50–90% efficiency)
on a 14-node cluster of that time. However, analysis also shows that static par-
titioning used for distribution has some inherent limitations [15]. Furthermore,
in the field of explicit-state model checking, the DiVinE tool showed that static
partitioning can be reused in a shared-memory setting [5]. While the problem
of parallelisation is considerably simpler in this setting, this tool nonetheless
featured suboptimal performance with less than 40% efficiency on 16-core ma-
chines [22]. It was soon demonstrated that shared-memory systems are exploited
better by combining local search stacks with a lockless hash table as shared
passed set and an off-the-shelf load balancing algorithm for workload distribu-
tion [22]. Especially in recent experiments on newer 48-core machines [18, Sec. 5],
the latter solution was clearly shown to have the edge with 50–90% efficiency.

Linear-time, on-the-fly liveness verification algorithms are based on depth-
first search (DFS) order [20]. Next to the additional scalability, the shared hash
table solution also provides more freedom for the search algorithm, which can
be pseudo DFS and pseudo breadth-first search (BFS) order [22], but also strict
BFS (see Sec. 6.2). This freedom has already been exploited by parallel NDFS
algorithms for LTL model checking [20,18] that are linear in the size of the
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input graph (unlike their BFS-based counterparts). While these algorithms are
heuristic in nature, their scalability has been shown to be superior to their BFS-
based counterparts.

3 Preliminaries

We will now define the general formalism of well-structured transition sys-
tems [19,1], and specifically networks of timed automata under the zone ab-
straction [16].

Definition 1 (Well-quasi-ordering). A well-quasi-ordering � is a reflexive
and transitive relation over a set X, s.t. for any infinite sequence x0, x1, . . .
eventually for some i < j it will hold that xi � xj.

In other words, in any infinite sequence eventually an element exists which is
“larger” than some earlier element.

Definition 2 (Well-structured transition system). A well-structured tran-
sition system is a 3-tuple (S,→,�), where S is the set of states, →: S × S is
the (computable) transition relation and � is a well-quasi-ordering over S, s.t.
if s → t then ∀s′.s � s′ there ∃t′.s′ → t′ ∧ t � t′.1

We thus require � to be a monotonic ordering on the behaviour of states, i.e.,
if s � t then t has at least the behaviour of s (and possibly more), and we say
that t subsumes or covers s.

One instance of well-structured transition systems arise from the symbolic
semantics of timed automata. Timed automata are finite state machines with
a finite set of real-valued, resettable clocks. Transitions between states can be
guarded by constraints on clocks, denoted G(C).

Definition 3 (Timed automaton). An extended timed automaton is a 7-tuple
A = (L,C,Act, s0,→, IC) where

– L is a finite set of locations, typically denoted by �
– C is a finite set of clocks, typically denoted by c
– Act is a finite set of actions
– s0 ∈ L is the initial location
– →⊆ L×G(C)×Act× 2C ×L is the (non-deterministic) transition relation.

We normally write �
g,a,r−−−→ �′ for a transition, where � is the source location,

g is the guard over the clocks, a is the action, and r is the set of clocks reset.
– IC : L → G(C) is a function mapping locations to downwards closed clock

invariants.

Using the definition of extended timed automata we can now define networks of
timed automata, as modelled by uppaal, see [9] for details. A network of timed
automata is a parallel composition of extended timed automata that enables
synchronisation over a finite set of channel names Chan. We let ch! and ch?
denote the output and input action on a channel ch ∈ Chan.

1 With strong compatibility, see [19].
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Definition 4 (Network of timed automata). Let Act = {ch!, ch?|ch ∈
Chan} ∪ {τ} be a finite set of actions, and let C be a finite set of clocks. Then
the parallel composition of extended timed automata Ai = (Li, C,Act, s

i
0,→i, I

i
C)

for all 1 ≤ i ≤ n, where n ∈ N, is a network of timed automata, denoted
A = A1||A2|| . . . ||An.

The concrete semantics of timed automata [9] gives rise to a possibly uncountable
state space. To model check it a finite abstraction of the state space is needed;
the abstraction used by most model checkers is the zone abstraction [14]. Zones
are sets of clock constraints that can be efficiently represented by Difference
Bounded Matrices (DBMs) [12]. The fundamental operations of DBMs are:

– D ↑ modifying the constraints such that the DBM represents all the clock
valuations that can result from delay from the current constraint set

– D ∩D′ adding additional constraints to the DBM, e.g. because a transition
is taken that imposes a clock constraint (guard clock constraints can also be
represented as a DBM, and we will do so) 2. The additional constraints might
also make the DBM empty, meaning that no clock valuations can satisfy the
constraints.

– D[r] where r ⊆ C is a clock reset of the clocks in r.
– D/B doing maximal bounds extrapolation, where B : C → N0 is the maxi-

mal bounds needed to be tracked for each clock. Extrapolation with respect
to maximal bounds [8] is needed to make the number of DBMs finite. Basi-
cally, it is a mapping for each clock indicating the maximal possible constant
the clock can be compared to in the future. It is used in such a way that
if the value of a clock has passed its maximal constant, the clock’s value is
indistinguishable for the model.

– D ⊆ D′ for checking if the constraints of D′ imply the constraints of D, i.e.
D′ is a more relaxed DBM. D′ has the behaviour of D and possibly more.

Lemma 1. Timed automata under the zone abstraction are well-structured tran-
sition systems: (S,⇒DBM , Act,�) s.t.

1. S consists of pairs (�,D) where � ∈ L, and D is a DBM.
2. ⇒DBM is the symbolic transition function using DBMs, and Act is as before
3. �: S → S is defined as (�,D) � (�′, D′) iff � = �′, and D ⊆ D′.

Remark that part of the ordering � is compared using discrete equality (the
location vector), while only a subpart is compared using a well-quasi-ordering.
Without loss of generality, and as done in [17], we can split the state into an
explicit part S, and a symbolic part Σ, s.t. the well-structured transition system
is defined over S ×Σ. We denote the explicit part as s, t, r ∈ S and the symbolic
part of states by σ, τ, ρ, π, υ ∈ Σ, and a state as a pair (s, σ).

Model checking of safety properties is done by proving or disproving the reach-
ability of a certain concrete goal location sg.

2 The DBM might need to be put into normal form after more constraints have been
added [14].
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Definition 5 ((Safety) Model checking of a well-structured transition
system). Given a well-structured transition system (S × Σ,→,�), an initial
state (s0, σ0) ∈ S ×Σ, and a goal location sg does a path exist (s0, σ0) → · · · →
(sg, σ

′
g).

In practice, the transition system is constructed on-the-fly starting from (s0, σ0)
and recursively applying → to discover new states. To facilitate this, we extend
the next-state interface of pins with subsumption:

Definition 6. A next-state interface with subsumption has three functions:
initial-state() = (s0, σ0),
next-state((s, σ)) = {(s1, σ1), . . . , (sn, σn)} returning all successors of (s, σ),
(s, σ) → (si, σi), and
covers(σ′, σ) = σ � σ′ returning whether the symbolic part σ′ subsumes σ.

4 A Multi-core Timed Reachability Tool

For the construction of our real-time multi-core model checker, we made an effort
to reuse and combine existing components, while extending their functionality
where necessary. For the specification models, we use the uppaal XML format.
This enables the use of its extensive real-time modelling language through an ex-
cellent user interface. To implement the model’s semantics (in the form of a next-
state interface) we rely on opaal and the uppaal dbm library.3 Finally, LTSmin
is used as a model checking backend, because of its language-independent design.

Fig. 1. Reachability with subsumption [17]

Fig. 1 gives an overview
of the new toolchain. It
shows how the XML in-
put file is read by opaal
which generates c++
code. The c++ file im-
plements the pins inter-
face with subsumption
specifically for the input
model. Hence, after compilation (c++ compiler), LTSmin can load the object
file to perform the model checking.

Previously, the opaal tool was used to generate Python code [17], but im-
portant parts of its infrastructure, e.g., analysing the model to find max clock
constants [8], can be reused. In Sec. 5, we describe how opaal implements the
semantics of timed automata, and the structure of the generated c++ code.

The pins interface of the LTSmin tool [13] has been shown to enable efficient,
yet language-independent, model checking algorithms of different flavours, inter
alia: distributed [13], symbolic [13] and multi-core reachability [22,24], and LTL
model checking [20,21]. We extended the pins interface to distinguish the new
symbolic states of the opaal successor generator according to Def. 6. In Sec. 6,
we describe our new multi-core reachability algorithms with subsumption.

3 http://people.cs.aau.dk/~adavid/UDBM/

http://people.cs.aau.dk/~adavid/UDBM/
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5 Successor Generation Using Opaal

The opaal tool was designed to rapidly prototype new model checking features
and as such was designed to be extended with other successor generators. It al-
ready implements a substantial part of the uppaal features. For an explanation
of the uppaal features see [9, p. 4-7]. The new c++ opaal successor generator
supports the following features: templates, constants, bounded integer variables,
arrays, selects, guards, updates, invariants on both variables and clocks, com-
mitted and urgent locations, binary synchronisation, broadcast channels, urgent
synchronisation, selects, and much of the C-like language that uppaal uses to
express guards and variable updates.

A state in the symbolic transition system using DBMs, is a location vector and
a DBM. To represent a state in the c++ code we use a struct with a number of
components: one integer for each location, and a pointer to a DBM object from
the uppaal DBM library. Therefore a state is a tuple: (�1, . . . , �n, D).

The initial-state function is rather straightforward: it returns a state struct
initialised to the initial location vector, and a DBM representing the initial
zone (delayed, and with invariants applied as necessary). The structure of the
next-state function is more involved, because it needs to consider the syntactic
structure of the model, as can be seen in Alg. 1.

Alg. 1. Overall structure of the successor generator

1 proc next-state(sin = (�1, . . . , �n, D))
2 out states := ∅
3 for �i ∈ �1, . . . , �n

4 for all �i
g,a,r−−−→ �′i

5 D′ := D ∩ g
6 if D′ �= ∅ �is the guard satisfied?
7 if a = τ �this is not a synchronising transition
8 D′ := D′[r] ↑ �clock reset, delay

9 D′ := D′ ∩ IiC(�
′
i) ∩

⋂
k �=i I

k
C(�k) �apply clock invariants

10 if D′ �= ∅
11 D′ := D′/B(�1, . . . , �

′
i . . . , �n)

12 out states := out states ∪ {(�1, . . . , �′i, . . . , �n, D′)}
13 else if a = ch! �binary sync. sender
14 for �j ∈ �1, . . . , �n, j �= i

15 for all �j
gj ,ch?,rj−−−−−−→ �′j �find receivers

16 if D′′ := D′ ∩ gj �= ∅ �receiver guard satisfied?
17 D′′ := D′′[r][rj ] ↑ �clock resets, delay

18 D′′ := D′′ ∩ IiC(�
′
i) ∩ IjC(�

′
j) ∩

⋂
k �∈{i,j} I

k
C(�k) �apply clock invariants

19 if D′′ �= ∅
20 D′′ := D′′/B(�1, . . . , �

′
i, . . . , �

′
j . . . , �n)

21 out states := out states ∪ {(l1, . . . , l′i, . . . , l′j , . . . , ln, D′′)}
22 return out states
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At l. 4, we consider all outgoing transitions for the current location of each
process (l. 3). If the transition is internal, we can evaluate it right away, and
possibly generate a successor at l. 12. If it is a sending synchronisation (ch!), we
need to find possible synchronisation partners (l. 15). So again we iterate over
all processes and the transitions of their current locations (l. 14–21).

In the generated c++ code a few optimisations have been made, compared to
Alg. 1: The loops on line l. 3 and l. 14 have been unrolled, since the number of
processes they iterate over is known beforehand. In that manner the transitions
to consider can be efficiently found. As an optimisation, before starting the code
generation, we compute the set of all possible receivers for all channels, for the
unrolling of l. 14. In practice there are usually many receivers but few senders
for each channel, resulting in the unrolling being an acceptable trade-off.

When doing the max bounds extrapolation (/) in Alg. 1, we obtain the bounds
from a location-dependent function B : L1×· · ·×Ln → (C → N0). This function
is pre-computed in opaal using the method described in [8].

Some features are not formalised in this work, but have been implemented for
ease of modelling. We support integer variables, urgency that can be modelled
using urgent/committed locations and urgent channels, but also channel arrays
with dynamically computed senders, broadcast channels, and process priorities.
These are all implemented as simple extensions of Alg. 1. Other features are
supported in the form of a syntactic expansion, namely: selects, and templates.

To make the next-state function thread-safe, we had to make the uppaal
DBM library thread-safe. Therefore, we replaced its internal allocator with a
concurrent memory allocator (see Sec. 7). We also replaced the internal hash
table, used to filter duplicate DBM allocations, with a concurrent hash table.

6 Well-Structured Transition Systems in LTSmin

Alg. 2. Reachability with subsumption [17]

1 proc reachability(sg)
2 W := { initial-state() }; P := ∅
3 while W �= ∅
4 W := W \ (s, σ) for some (s, σ) ∈ W
5 P := P ∪ {(s, σ)}
6 for (t, τ ) ∈ next-state((s, σ)) do
7 if t = sg then report & exit
8 if � ∃ρ : (t, ρ) ∈ W ∪ P ∧ covers(ρ, τ )
9 W := W \ {(t, ρ) | covers(τ, ρ)} ∪ (t, τ )

The current section presents
the parallel reachability algo-
rithm that was implemented
in LTSmin to handle well-
structured transition systems.
According to Def. 6, we can
split up states into a dis-
crete part, which is always
compared using equality (for
timed automata this consists
of the locations and vari-
ables), and a part that is com-
pared using a well-quasi-ordering (for timed automata this is the DBM).

We recall the sequential algorithm from [17] (Alg. 2) and adapt it to use the
next-state interface with subsumption. At its basis, this algorithm is a search
with a waiting set (W ), containing the states to be explored, and a passed set
(P ), containing the states that are already explored.
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New successors (t, τ) are added to W (l. 9), but only if they are not subsumed
by previous states (l. 8). Additionally, states in the waiting set W that are sub-
sumed by the new state are discarded (l. 9), avoiding redundant explorations.

6.1 A Parallel Reachability Algorithm with Subsumption

In the parallel setting, we localize all work sets (Qp, for each worker p) and
create a shared data structure L storing both W and P . We attach a status
flag passed or waiting to each state in L to create a global view of the passed
and waiting set and avoid unnecessary reexplorations. L can be represented as
a multimap, saving multiple symbolic state parts with each explicit state part
L : S → Σ∗. To make L thread-safe, we protect its operations with a fine-
grained locking mechanism that locks only the part of the map associated with
an explicit state part s: lock(L(s)), similar to the spinlocks in [22]. An off-the-
shelf load balancer takes care of distributing work at the startup and when some
Qp runs empty prematurely. This design corresponds to the shared hash table
approach discussed in Sec. 2 and avoids a static partitioning of the state space.

Alg. 3 presents the discussed design. The algorithm is initialised by calling
reachability with the desired number of threads P and a discrete goal location sg.
This method initialises the shared data structure L and gets the initial state using
the initial-state function from the next-state interface with subsumption. The
initial state is then added to L and the worker threads are initialised at l. 6.
Worker thread 1 explores the initial state; work load is propagated later.

The while loop on l. 20 corresponds closely to the sequential algorithm, in a
quick overview: a state (s, σ) is taken from the work set at l. 21, its flag is set to
passed by grab if it were not already, and then the successors (t, τ) of (s, σ) are
checked against the passed and the waiting set by update. We now discuss the
operations on L (update, grab) and the load balancing in more detail.

To implement the subsumption check (line l. 8–9 in Alg. 2) for successors
(t, τ) and to update the waiting set concurrently, update is called. It first locks

Alg. 3. Reachability with cover update of the waiting set

1 global L : S → (Σ × {waiting, passed})∗
2 proc reachability(P, sg)
3 L := S → ∅
4 (s0, σ0) := s := initial-state()
5 L(s0) := (σ0,waiting)
6 search(s, sg , 1)|| . . . ||search(s, sg , P )

7 proc update(t, τ)
8 lock(L(t))
9 for (ρ, f) ∈ L(t) do

10 if covers(ρ, τ)
11 unlock(L(t))
12 return true
13 else if f = waiting ∧ covers(τ, ρ)
14 L(t) := L(t) \ (ρ,waiting)
15 L(t) := L(t) ∪ (τ,waiting)
16 unlock(L(t))
17 return false

18 proc search((s0, σ0), sg , p)
19 Qp := if p = 1 then {(s0, σ0)} else ∅
20 while Qp 
= ∅ ∨ balance(Qp)
21 Qp := Qp \ (s, σ) for some (s, σ) ∈ Qp

22 if ¬grab(s, σ) then continue
23 for (t, τ) ∈ next-state((s, σ)) do
24 if t = sg then report & exit
25 if ¬update(t, τ)
26 Qp := Qp ∪ (t, τ)

27 proc grab(s, σ)
28 lock(L(s))
29 if σ 
∈ L(s) ∨ passed = L(s, σ)
30 unlock(L(s))
31 return false
32 L(s, σ) := passed
33 unlock(L(s))
34 return true
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L on t. Now, for all symbolic parts and status flag ρ, f associated with t, the
method checks if τ is already covered by ρ. In that case (t, τ) will not be ex-
plored. Alternatively, all ρ with status flag waiting that are covered by τ are
removed from L(t) and τ is added. The update algorithm maintains the invari-
ant that a state in the waiting set is never subsumed by any other state in L:
∀s ∀(ρ, f), (ρ′, f ′) ∈ L(s) : f = waiting∧ρ �= ρ′ ⇒ ρ �� ρ′ (Inv. 1). Hence, similar
to Alg. 2 l. 8–9, it can never happen that (t, τ) first discards some (t, ρ) from
L(s) (l. 14) and is discarded itself in turn by some (t, ρ′) in L(s) (l. 10), since
then we would have ρ � τ � ρ′; by transitivity of � and the invariant, ρ and ρ′

cannot be both in L(t). Finally, notice that update unlocks L(t) on all paths.
The task of the method grab is to check if a state (s, σ) still needs to be

explored, as it might have been explored by another thread in the meantime. It
first locks L(s). If σ is no longer in L(s) or it is no longer globally flagged waiting
(l. 29), it is discarded (l. 22). Otherwise, it is “grabbed” by setting its status flag
to passed. Notice again that on all paths through grab, L(s) is unlocked.

Finally, the method balance handles termination detection and load balancing.
It has the side-effect of adding work to Qp. We use a standard solution [25].

6.2 Exploration Order

The shared hash table approach gives us the freedom to allow for a DFS or BFS
exploration order depending on the implementation of Qp. Note, however, that
only pseudo-DFS/BFS is obtained, due to randomness introduced by parallelism.

Alg. 4. Strict parallel BFS

1 proc search(s0, σ0, p)
2 Cp := if p = 1 then {(s0, σ0)} else ∅
3 do
4 while Cp �= ∅ ∨ balance(Cp)
5 Cp := Cp \ (s, σ) for some (s, σ) ∈ Cp

6 . . .
7 Np := Np ∪ (t, τ )
8 load := reduce(sum, |Np|, P )
9 Cp, Np := Np, ∅

10 while load �= 0

It has been shown for timed au-
tomata that the number of gener-
ated states is quite sensitive to the
exploration order and that in most
cases strict BFS shows the best re-
sults [11]. Fortunately, we can ob-
tain strict BFS by synchronising
workers between the different BFS
levels. To this end, we first split
Qp into two separate sets that hold
the current BFS level (Cp) and the
next BFS level (Np) [2]. The order
within these sets does not matter,
as long as the current is explored before the next set. Load balancing will only be
performed on Cp, hence a level terminates once Cp = ∅ for all p. At this point, if
Np = ∅ for all p, the algorithm can terminate because the next BFS level is empty.

The synchronising reduce method counts
∑P

i=1 |Ni| (similar to mpi reduce).
Alg. 4 shows a parallel strict-BFS implementation. An extra outer loop iter-

ates over the levels, while the inner loop (l. 4–7) is the same as in Alg. 3. Except
for the lines that add and remove states to and from the work set, which now
operate on Np and Cp. The (pointers to) the work sets are swapped, after the
reduce call at l. 8 calculates the load of the next level.
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6.3 A Data Structure for Semi-symbolic States

In [22], we introduced a lockless hash table, which we reuse here to design a data
structure for L that supports the operations used in Alg. 3. To allow for massive
parallelism on modern multi-core machines with steep memory hierarchies, it is
crucial to keep a low memory footprint [22, Sec. II]. To this end, lookups in the
large table of state data are filtered through a separate smaller table of hashes.
The table assigns a unique number (the hash location) to each explicit state
stored in it: D : S → N. In finite reality, we have: D : S → {1, . . . , N}.

We now reuse the state numbering of D to create a multimap structure for L.
The first component of the new data structure is an array I[N ] used for indexing
on the explicit state parts. To associate a set of symbolic states (pointers to
DBMs) with our explicit state stored in D[x], we are going to attach a linked list
structure to I[x]. Creating a standard linked list would cause a single cache line
access per element, increasing the memory footprint, and would introduce costly
synchronisations for each modification. Therefore, we allocate multi-buckets, i.e.,
an array of pointers as one linked list element. To save memory, we store lists of
just one element directly in I and completely fill the last multi-bucket.

N

L

σD(s)

D(t)

I

τ ρ υ

L.add(s, π)

L′

τ ρ υ

σ π

L′.del(t, τ )

L′′

ρ υ

σ π

Fig. 2. Data structure for L, and operations

Fig. 2 shows three instances of the discussed data structure: L,L′ and L′′.
Each multimap is a pointer (arrow) to an array I shown as a vertical bucket
array. L contains {(s, σ), (t, τ), (t, ρ), (t, υ)}. We see how a multi-bucket with
(fixed) length 3 is created for t, while the single symbolic state attached to s is
kept directly in I. The figure shows how σ is moved when (s, π) is added by the
add operation (dashed arrow), yielding L′. Adding π to t would have moved υ
to a new linked multi-bucket together with π.

Removing elements from the waiting list is implemented by marking bucket
entries as tombstone, so they can later be reused (see L′′). This avoids memory
fragmentation and expensive communication to reuse multi-buckets. For highest
scalability, we allocate multi-buckets of size 8, equal to a cache line. Other values
can reduce memory usage, but we found this sufficiently efficient (see Sec. 7).

We still need to deal with locking of explicit states, and storing of the various
flags for symbolic states (waiting/passed). Internally, the algorithms also need to
distinguish between the different buckets: empty, tomb stone, linked list pointers
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struct link or dbm {
bit pointer[60]
bit flag ∈ {waiting , passed}
bit lock ∈ {locked , unlocked}
bit status[2] ∈ {empty , tomb,

dbm ptr , list ptr}
}
Fig. 3. Bit layout of word-
sized bucket

and symbolic state pointers. To this end, we can
bitcram additional bits into the pointers in the
buckets, as is shown in Fig. 3. Now lock(L(s))
can be implemented as a spinlock using the
atomic compare-and-swap (CAS) instruction on
I[s] [22]. Since all operations on L(s) are done af-
ter lock(L(s)), the corresponding bits of the buck-
ets can be updated and read with normal load and
store instructions.

6.4 Improving Scalability through a Non-blocking Implementation

The size of the critical regions in Alg. 3 depends crucially on the |Σ|/|S| ratio; a
higher ratio means that more states in L(t) have to be considered in the method
update(t, τ), affecting scalability negatively. A similar limitation is reported for
distributed reachability [15]. Therefore, we implemented a non-blocking version:
instead of first deleting all subsumed symbolic states with a waiting flag, we
atomically replace them with the larger state using CAS. For a failed CAS, we
retry the subsumption check after a reread. L can be atomically extended using
the well-known read-copy-update technique. However, workers might miss up-
dates by others, as Inv. 1 no longer holds. This could cause |Σ| to increase again.

7 Experiments

To investigate the performance of the generated code, we compare full reach-
ability in opaal+LTSmin with the current state-of-the-art (uppaal).4 To in-
vestigate scalability, we benchmarked on a 48-core machine (a four-way AMD
OpteronTM 6168) with a varying number of threads. Statistics on memory usage
were gathered and compared against uppaal. Experiments were repeated 5 times.

We consider three models from the uppaal demos: viking (one discrete vari-
able, but many synchronisations), train-gate (relatively large amount of code,
several variables), and fischer (very small discrete part). Additionally, we
experiment with a generatedmodel, train-crossing,which has a different struc-
ture from most hand-made models. For some models, we created multiple num-
bered instances, the numbers represent the number of processes in the model.

For uppaal, we ran the experiments with BFS and disabled space optimisa-
tion. The opaal ltsmin script in opaal was used to generate and compile models.
In LTSmin we used a fixed hash table (--state=table) size of 226 states (-s26),
waiting set updates as in Alg. 3 (-u1) and multi-buckets of size 8 (-l8).

Performance & Scalability. Table 1 shows the reachability runtimes of the differ-
ent models in uppaal and opaal+LTSmin with strict BFS (--strategy=sbfs).
Except for fischer6, we see that both tools compete with each other on the

4 opaal is available at
https://code.launchpad.net/~opaal-developers/opaal/opaal-ltsmin-succgen,
LTSmin at http://fmt.cs.utwente.nl/tools/ltsmin/

https://code.launchpad.net/~opaal-developers/opaal/opaal-ltsmin-succgen
http://fmt.cs.utwente.nl/tools/ltsmin/
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Table 1. S , |Σ| ( |Σ|
|S| ) and runtimes (sec) in uppaal and opaal+LTSmin (strict BFS)

|S| uppaal opaal+LTSmin (cores)
T |Σ| |Σ1| |Σ48| T1 T2 T8 T16 T32 T48

train-gate-N10 7e+07 837.4 1.0 1.0 1.0 573.3 297.8 76.7 39.4 21.1 14.4
viking17 1e+07 207.8 1.0 1.5 1.5 331.5 172.5 44.2 22.7 11.9 8.6
train-gate-N9 7e+06 76.8 1.0 1.0 1.0 52.4 28.5 7.7 4.1 2.4 2.0
viking15 3e+06 38.0 1.0 1.5 1.5 67.0 34.8 9.7 5.1 3.0 2.3
train-crossing 3e+04 48.3 20.8 16.1 17.3 24.5 37.2 5.8 2.7 2.0 2.1
fischer6 1e+04 0.1 0.3 50.1 50.1 219.2 129.2 46.4 36.1 32.9 31.8

sequential runtimes, with 2 threads however opaal+LTSmin is faster than up-
paal. With the massive parallelism of 48 cores, we see how verification tasks of
minutes are reduced to mere seconds. The outlier, fischer6, is likely due to the
use of more efficient clock extrapolations in uppaal, and other optimisations,
as witnessed by the evolution of the runtime of this model in [10,4].

We noticed that the 48-core runtimes of the smaller models were dominated
by the small BFS levels at the beginning and the end of the exploration due
to synchronisation in the load balancer and the reduce function. This over-
head takes consistently 0.5–1 second, while it handles less than thousand states.
Hence to obtain useful scalability measurements for small models, we excluded
this time in the speedup calculations (Fig. 4–7). The runtimes in Table 1–2 still
include this overhead. Fig. 4 plots the speedups of strict BFS with the standard
deviation drawn as vertical lines (mostly negligible, hence invisible). Most models
show almost linear scalability with a speedup of up to 40, e.g. train-gate-N10.
As expected, we see that a high |Σ|/|S| ratio causes low scalability (see fischer
and train-crossing and Table 1). Therefore, we tried the non-blocking variant
(Sec. 6.3) of our algorithm (-n). As expected, the speedups in Fig. 5 improve
and the runtimes even show a threefold improvement for fischer.6 (Table 2).
The efficiency on 48 cores remains closely dependent to the |Σ|/|S| ratio of the
model (or the average length of the lists in the multimap), but the scalability is
now at least sub-linear and not stagnant anymore.

We further investigated different search orders. Fig. 6 shows results with
pseudo BFS order (--strategy=bfs). While speedups become higher due
to the lacking level synchronisations, the loose search order tends to reach
“large” states later and therefore generates more states for two of the models
(|Σ1| vs |Σ48| in Table 2). This demonstrates that our strict BFS implementation
indeed pays off.

Finally, we also experimented with randomized DFS search order (-prr
--strategy=dfs). Table 2 shows that DFS causes again more states to be gener-
ated. But, surprisingly, the number of states actually reduces with the parallelism
for the fischer6 model, even below the state count of strict BFS from Table 1!
This causes a super-linear speedup in Fig. 7 and threefold runtime improvement
over strict BFS. We do not consider this behaviour as an exception (even though
train-crossing does not show it), since it is compatible with our observation
that parallel DFS finds shorter counter examples than parallel BFS [18, Sec. 4.3].
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Fig. 5. Speedup non-blocking strict BFS

Design decisions. Some design decisions presented here were motivated by earlier
work that has proven successful for multi-core model checking [22,18]. In par-
ticular, we reused the shared hash table and a synchronous load balancer [25].
Even though we observed load distributions close to ideal, a modern work steal-
ing solution might still improve our results, since the work granularity for timed
reachability is higher than for untimed reachability. The main bottlenecks, how-
ever, have proven to be the increase in state count by parallelism and the cost
of the spinlocks due to a high |Σ|/|S| ratio. The latter we partly solved with a
non-blocking algorithm. Strict BFS orders have proven to aid the former problem
and randomized DFS orders could aid both problems.

Memory usage. Table 3 shows the memory consumption of uppaal (U-S0) and
sequential opaal+LTSmin (O+L1) with strict BFS. From it, we conclude that
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Table 2. |Σ| ( |Σ|
|S| ) and runtimes (sec) with non-blocking SBFS, DFS and BFS

NB SBFS DFS BFS
|Σ1| |Σ48| T1 T48 |Σ1| |Σ48| T1 T48 |Σ1| |Σ48| T1 T48

train-gate-N10 1.0 1.0 547.9 14.5 1.0 1.0 647.8 15.6 1.0 1.0 559.3 13.1
viking17 1.5 1.5 320.1 9.2 1.6 1.6 386.5 9.1 1.5 1.5 325.6 7.8
train-gate-N9 1.0 1.0 52.1 2.1 1.0 1.0 61.7 1.7 1.0 1.0 51.9 1.6
viking15 1.5 1.5 64.8 2.5 1.6 1.6 80.2 3.1 1.5 1.5 66.0 2.3
train-crossing 16.1 16.1 24.1 1.8 169.8 179.0 3371.0 297.4 16.1 37.1 24.5 157.5
fischer6 50.1 50.1 201.3 12.0 54.4 39.4 405.1 10.6 50.1 58.1 206.0 32.3

Table 3. Memory usage (MB) of both uppaal (U-S0 and U-S2) and opaal+LTSmin

T D L L2 Q dbm O+L1 O+L48 O+LT
1 O+LT

48 U-S0 U-S2

train-gate-N10 777 5989 499 499 249 1363 8101 8241 2790 3028 6091 3348
viking17 156 1040 536 214 40 87 1704 1931 828 1047 1579 722
train-gate-N9 81 549 50 50 24 61 684 815 214 347 607 332
viking15 32 190 112 44 8 55 364 581 203 423 333 162
train-crossing 0 2 5 7 0 419 426 623 425 622 48 64
fischer6 0 0 5 9 1 176 429 512 290 429 0 4

our memory usage is within 25% of uppaal’s for the larger models (where these
measurements are precise enough). Furthermore, we extensively experimented
with different concurrent allocators and found that TBB malloc (used in this
paper) yields the best performance for our algorithms.5 Its overhead (O+L1 vs
O+L48 in Table 3) appears to be limited to a moderate fixed amount of 250MB
more than the sequential runs, for which we used the normal glibc allocator.

We also counted the memory usage inside the different data structures: the
multimap L (including partly-filled multi-buckets), the hash table D, the com-
bined local work sets (Q), and the DBM duplicate table (dbm). As we expected
the overhead of the 8-sized multi-buckets is little compared to the size of D and
the DBMs. We may however replace D with the compressed, parallel tree table
(T) from [24]. The resulting total memory usage (O+LT ), can now be dominated
by L, .i.e., for viking17. But if we reduce L to a linked list (-l2), its size shrinks
by 60% to 214MB for this model (L2). Just a modest gain compared to the total.

For completeness, we included the results of uppaal’s state space optimisation
(U-S2). As expected, it also yields great reductions, which is the more interesting
since the two techniques are orthogonal and could be combined.

8 Conclusions

We presented novel algorithms and data structures for multi-core reachability
on well-structured transition systems and an efficient implementation for timed
automata in particular. Experiments show good speedups, up to 40 times on a 48-
core machine and also identify current bottlenecks. In particular, we see speedups

5 cf. http://fmt.cs.utwente.nl/tools/ltsmin/formats-2012/ for additional data.

http://fmt.cs.utwente.nl/tools/ltsmin/formats-2012/
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of 58 times compared to uppaal. Memory usage is limited to an acceptable
maximum of 25% more than uppaal.

Our experiments demonstrate the flexibility of the search order that our par-
allel approach allows for. BFS-like order is shown to be occasionally slightly
faster than strict BFS but is substantially slower on other models, as previously
observed in the distributed setting. A new surprising result is that parallel ran-
domized (pseudo) DFS order sometimes reduces the state count below that of
strict BFS, yielding a substantial speedup in those cases.

Previous work has shown that better parallel reachability [22,24] crucially
enables new and better solutions to parallel model checking of liveness proper-
ties [20,18]. Therefore, our natural next step is to port multi-core nested depth-
first search solutions to the timed automata setting.

Because of our use of generic toolsets, more possibilities are open to be
explored. The opaal support for the uppaal language can be extended and
support for optimisations like symmetry reduction and partial order reduction
could be added, enabling easier modeling and better scalability. Additionally,
lattice-based languages [17] can be included in the c++ code generator. On the
backend side, the distributed [13] and symbolic [13] algorithms in LTSmin can
be extended to support subsumption, enabling other powerful means of veri-
fication. We also plan to add a join operator to the pins interface, to enable
abstraction/refinement-based approaches [17].
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