
Memory Efficient Data Structures

for Explicit Verification of Timed Systems

Peter Gjøl Jensen, Kim Guldstrand Larsen, Jǐŕı Srba,
Mathias Grund Sørensen, and Jakob Haar Taankvist

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

Abstract. Timed analysis of real-time systems can be performed us-
ing continuous (symbolic) or discrete (explicit) techniques. The explicit
state-space exploration can be considerably faster for models with mod-
erately small constants, however, at the expense of high memory con-
sumption. In the setting of timed-arc Petri nets, we explore new data
structures for lowering the used memory: PTries for efficient storing of
configurations and time darts for semi-symbolic description of the state-
space. Both methods are implemented as a part of the tool TAPAAL and
the experiments document at least one order of magnitude of memory
savings while preserving comparable verification times.

1 Introduction

Semantics of real-time systems can be defined via real-valued time delays (con-
tinuous semantics) or integral time delays (discrete semantics). It is a folklore
knowledge (see e.g. [2]) that both semantics coincide up to reachability as long
as the formal model uses only closed (non-strict) clock guards. Continuous state-
spaces are usually explored via zone-based abstractions (using the DBM data
structure [8]), giving us a finite approximation of the model behaviour. Alterna-
tively, we can explore the discrete state-space in an explicit manner, assuming a
suitable extrapolation operator that guarantees termination of the search.

Explicit model checking is less studied even though it can successfully com-
pete with zone-based methods on models without too large constants [3,12,10,1].
One of the main criticisms of explicit model checking is a high memory usage.
We shall study possible solutions for saving memory in explicit model checking
using BDDs [4], time darts data structure [10] and a new data-structure PTrie.
We provide a realistic comparison of their performance on several case-studies
from the literature. We base our study on the formal model of timed-arc Petri
nets (TAPN) and the associated model checker TAPAAL [7] where the above
mentioned techniques were implemented and made publicly available.

An example of a timed-arc Petri net, describing a researcher submitting papers
for peer-reviewed conferences, is given in Figure 1. The net consists of places
(circles), transitions (rectangles) and arcs (arrows). Places contain tokens, each
with a real-time age, forming a marking of the net. In our example the initial

J.M. Badger and K.Y. Rozier (Eds.): NFM 2014, LNCS 8430, pp. 307–312, 2014.
c© Springer International Publishing Switzerland 2014



308 P.G. Jensen et al.

researching

inv: ≤ 3 0

decision

inv: ≤ 1

writing

inv: ≤ 4

peer review

inv: ≤ 3

idea ready deadline missed

continue research

submit

accept reject

write paper

[1, 3]

[0,∞)

[2, 4]

[0,∞) [0,∞)

[4, 4]

[1,∞)

Fig. 1. A timed-arc Petri net describing a publication process

marking contains just one token of age 0 in the place researching. The place
researching contains the age invariant ≤ 3, meaning that the token in this place
cannot be older than 3. The net can so delay up to 3 time units (months) and
once the age of the token is at least 1, the transition idea ready gets enabled as
the token’s age fits into the interval [1,3]. The transition can now fire, consuming
the token from the place researching and adding a new token of age 0 to the place
decision. Now a decision whether to continue the research or write a paper must
be taken within one month. If the researcher decides to write a paper, the token
of age 1 is moved from the place decision to the place writing while preserving
its age 1 due to the use of transport arcs (with diamond-shaped arrow-tips).
Hence the time of the decision counts into the total number of months used for
writing the paper. After writing for at least 1 month, the researcher can submit
the paper while producing two new tokens of age 0 into the places researching
and peer review. By repeating the process, it is possible to have two publications
under peer-review at the same time, though the timing constraints imply that
having submitted three publications concurrently is impossible. As the net is
bounded, this can be verified using the model checker TAPAAL [7] that supports
also other primitives like weights, inhibitor arcs, urgent transitions, constants
and components with interfaces.

2 PTries and Time Darts

The basic reachability algorithm based on explicit state-space search is given in
Figure 2 where ϕ is a propositional formula over the number of tokens in the

places of the net, and M
t→ M ′ and M

1→ M ′ represent transition firing resp.
a delay of one time unit. The function cut is an extrapolation of token ages
that exceed their maximum relevant bounds, yielding a canonical representative
for each marking. This guarantees finiteness of the state-space for bounded nets
(see [1]). A fragment of the state-space for our running example is shown in
Figure 2; here e.g. (r, 0) stands for a token of age 0 in place researching.

The algorithm utilizes two data structures, the passed and waiting sets that
store the discovered state-space. The size of these sets (in particular the passed



Memory Efficient Data Structures for Explicit Verification of Timed Systems 309

Input: A closed TAPN N with initial marking M0, proposition ϕ and a bound k.
Output: True if M0 →∗ M via k-bounded markings and M |= ϕ, False otherwise.

Passed := ∅; Waiting := ∅;
AddToPW(M0);
while Waiting �= ∅ do

Remove M from Waiting;
Passed := Passed ∪ {M};
foreach M

t→ M ′ or M 1→ M ′

do AddToPW(cut(M ′))
return False;

AddToPW(M): begin
if M /∈ Passed ∪Waiting ∧
size(M) ≤ k then

if M |= ϕ then
return True and exit;

Waiting := Waiting ∪ {M};

{(r,0)}
100000000

{(r,1)}
100001000

{(r,2)}
100000100

{(r,3)}
100001100

{(d,0)}
100100000

{(d,1)}
100101000

{(w,1)}
100011000

{(w,2)}
100010100

{(w,3)}
100011100

{(w,4)}
100010010

{(r,0), (p,0)}
100000000100110000

{(r,1), (p,1)}
100001000100111000

{(r,2), (p,2)}
100000100100110100

{(r,3), (p,3)}
100001100100111100

. . .

. . .

. . .

x0

BDD representation

x1 x2 x3 x4

x4

x5 x6

x6 x7

x7 x8 tt

ε

PTrie representation

1 0 0

1 {00000, 01000}

0

1 {1000, 0100, 1100, 0010}

0 {1000, 0100, 1100, 0000}

Fig. 2. Explicit reachability algorithm and the initial fragment of the state-space for
the net from Figure 1. Places are abbreviated by their first letters and the full state-
space contains 29 markings. The markings include their binary encodings and the first
three columns of the state-space are stored using BDD and PTrie.

one) can be large and we need an efficient way to store them. For this purpose,
we represent each marking as a binary string (in an arbitrary but fixed manner)
as shown in Figure 2. An obvious way to store the binary encodings of markings
is using BDDs. However, the repeated additions to the sets make this approach
inefficient as BDDs are normalized after each insertion. We suggest instead a new
data structure Partial Trie or PTrie (based on Trie [9]) that stores the binary
values in the path through the decision tree rather than in the nodes. As the cost
of storing a single node in the PTrie exceeds one bit, using a fully unfolded tree
may not necessarily preserve any memory. For this purpose we introduce buckets
at different levels of the tree that contain suffixes of the binary encodings after the
initial prefix that is encoded in the path leading to the bucket, as demonstrated



310 P.G. Jensen et al.

({(r,0)}, 0, 4) ({(d,0)}, 0, 2) ({(w,0)}, 1, 5) ({(r,0), (p,0)}, 0, 4)

({(d,0), (p,1)}, 0, 2)({(w,0), (p,1)}, 1, 3)({(r,0), (p,0), (p,3)}, 0, 1)

({(r,0), (p,3)}, 0, 1) ({(r,0), (p,1)}, 0, 3) ({(d,0), (p,2)}, 0, 2)

({(r,0), (p,2)}, 0, 2)({(d,0), (p,3)}, 0, 1)({(w,0), (p,2)}, 1, 2)

Fig. 3. The state-space of the net from Figure 1 represented with time darts

in Figure 2. As soon as the number of strings with the same most-significant bit
in a bucket exceeds a predefined constant (3 in our example), the node splits.

In the explicit state-space in Figure 2 we can notice that the markings in each
column are simply delays of the top most marking. The time dart data structure,
first suggested in [10] for timed automata, exploits this fact by representing all
such markings in a single dart. A base marking contains at least one token of

age 0. For any marking M ′ there is a unique base marking M s.t. M
d→ M ′ for

some d ≥ 0. A time dart is a triple (M,w, p) where M is a base marking, w ∈ N0

is a waiting distance and p ∈ N
∞
0 is a passed distance such that w ≤ p. The dart

simultaneously represents the set of waiting markings M ′ such that M
d→ M ′

where w ≤ d < p, and the set of passed markings M ′ such that M
d→ M ′ where

d ≥ p. Figure 3 depicts the full state-space of time darts for our running example.
It contains only 13 darts compared to 29 markings in the explicit state-space.

3 Experiments

We report on four case studies of Alternating Bit Protocol [13] (ABP), Business
Activity with Participant Completion [11] (BAwPC), Patient Monitoring Sys-
tem [6] (PMS) and MPEG-2 video encoder [14]. The reachability queries for all
models require a complete state-space search. All TAPAAL models are available
at http://www.tapaal.net and the experimental data can be reproduced by
using TAPAAL 2.4.1. The experiments (run on a Macbook Pro 2.7GHz Intel
Core i7) were terminated once the memory usage exceeded 6GB (OOM) or the
verification took longer than one hour (�); for the BDD-based engine we allowed
a two-hour timeout. The TAPAAL column refers to the verification performed
by the DBM-based continuous engine of TAPAAL, while the UPPAAL column
reports on the best automatic translation [5] from TAPAAL to UPPAAL timed
automata. The remaining columns deal with explicit state-space exploration us-
ing BDDs, combination of time-darts with PTries, time darts and PTries sepa-
rately, and no memory optimization (Basic); all efficiently implemented in C++.

The aim of this paper is not to compare the zone-based vs. explicit methods
as this largely depends on the concrete models (see e.g. [2,3,12])—we see that
while the explicit methods are faster on the first three models, the zone-based

http://www.tapaal.net


Memory Efficient Data Structures for Explicit Verification of Timed Systems 311

Zone-based Explicit

Scale TAPAAL UPPAAL BDD Darts+PTries Darts PTries Basic

Alternating Bit Protocol (ABP), scaled by the number of messages

15
116.8 s
278 MB

4.0 s
32 MB

2701.2 s
8 MB

3.1 s
6 MB

2.4 s
23 MB

7.6 s
12 MB

5.4 s
77 MB

16
328.4 s
501 MB

5.6 s
34 MB

4057.7 s
9 MB

3.9 s
7 MB

3.1 s
34 MB

9.7 s
15 MB

7.1 s
105 MB

17
1233.7 s
979 MB

7.6 s
41 MB

5929.2 s
10 MB

5.0 s
8 MB

3.9 s
34 MB

12.4 s
18 MB

9.0 s
132 MB

30 � 182.2 s
288 MB

� 46.3 s
53 MB

38.8 s
377 MB

120.2 s
139 MB

91.0 s
1107 MB

40 � 1063.0 s
920 MB

� 151.2 s
155 MB

120.8 s
1088 MB

390.3 s
410 MB

288.6 s
3465 MB

50 � � � 378.2 s
362 MB

298.3 s
2593 MB

1018.4 s
962 MB

OOM

Business Activity Protocol (BAwPC), scaled by the number of messages

2
2.9 s

30 MB
7.8 s
9 MB

635.0 s
23 MB

4.4 s
35 MB

6.8 s
50 MB

8.3 s
10 MB

7.5 s
66 MB

3
14.3 s

114 MB
19.6 s
55 MB

4529.6 s
57 MB

25.0 s
23 MB

22.2 s
162 MB

26.2 s
25 MB

24.1 s
197 MB

4
60.4 s

392 MB
84.0 s
116 MB

� 66.7 s
52 MB

62.9 s
415 MB

71.5 s
55 MB

67.5 s
502 MB

8 OOM � � 861.9 s
501 MB

770.8 s
4934 MB

918.3 s
490 MB

846.5 s
5198 MB

Patient Monitoring System (PMS), scaled by the sampling frequency

18
22.2 s
52 MB

� 158.0 s
5 MB

0.9 s
3 MB

0.6 s
18 MB

0.8 s
4 MB

0.4 s
19 MB

12
399.6 s
215 MB

� 578.5 s
9 MB

3.0 s
8 MB

2.0 s
51 MB

2.5 s
7 MB

1.4 s
54 MB

10
2315.3 s
635 MB

� 1537.8 s
17 MB

7.4 s
15 MB

5.0 s
122 MB

6.4 s
16 MB

3.6 s
112 MB

6 � � � 94.4 s
149 MB

68.0 s
1482 MB

82.5 s
154 MB

51.6 s
1665 MB

5 � � � 671.9 s
826 MB

OOM
575.6 s
815 MB

OOM

MPEG2 Encoder (MPEG2), scaled by the number of B frames

3
0.1 s
2 MB

0.1 s
10 MB

� 0.6 s
4 MB

0.3 s
13 MB

19.9 s
117 MB

19.7 s
665 MB

4
0.1 s
2 MB

0.2 s
14 MB

� 5.2 s
22 MB

3.7 s
95 MB

156.7 s
880 MB

165.3 s
4811 MB

5
0.1 s
3 MB

0.2 s
18 MB

� 46.7 s
147 MB

40.4 s
870 MB

1104.8 s
5162 MB

OOM

methods will eventually outperform any explicit search on models with large
enough constants as demonstrated on MPEG2 (the constants here are in thou-
sands of nanoseconds). We instead aim at comparing the memory performance
of the different data structures. The first observation is that the BDD encoding,
while memory efficient, has an unacceptable runtime performance. On the other
hand PTries cause only 20-30% slowdown compared to the basic algorithm and
still provide similar memory savings as BDDs. The time dart method usually
provides both time and memory improvements; this is most visible on models
with large constants like in MPEG2. The combination of PTries and time darts
gives the largest memory savings with a very acceptable performance.



312 P.G. Jensen et al.

4 Conclusion

The general data structure PTrie provides significant memory savings at marginal
runtime overhead and can be directly employed by any explicit model checker.
The semi-symbolic method of time darts requires a more substantial adapta-
tion but it gives in general both time and memory improvements, especially
for models with larger constants. Both data structures have been implemented
within an open source, publicly available tool TAPAAL, and show promissing
experimential results.

References

1. Andersen, M., Gatten Larsen, H., Srba, J., Grund Sørensen, M., Haahr Taankvist,
J.: Verification of liveness properties on closed timed-arc Petri nets. In: Kučera, A.,
Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.) MEMICS 2012. LNCS,
vol. 7721, pp. 69–81. Springer, Heidelberg (2013)

2. Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata
and digital circuits. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS,
vol. 1466, pp. 470–484. Springer, Heidelberg (1998)

3. Bozga, M., Maler, O., Tripakis, S.: Efficient verification of timed automata using
dense and discrete time semantics. In: Pierre, L., Kropf, T. (eds.) CHARME 1999.
LNCS, vol. 1703, pp. 125–141. Springer, Heidelberg (1999)

4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

5. Byg, J., Jacobsen, M., Jacobsen, L., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TCTL-preserving translations from timed-arc Petri nets to networks of timed au-
tomata. In: TCS (2013), http://dx.doi.org/10.1016/j.tcs.2013.07.011

6. Cicirelli, F., Furfaro, A., Nigro, L.: Model checking time-dependent system spec-
ifications using time stream Petri nets and UPPAAL. Applied Mathematics and
Computation 218(16), 8160–8186 (2012)

7. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012)

8. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In:
Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)

9. Fredkin, E.: Trie memory. Communications of the ACM 3(9), 490–499 (1960)
10. Jørgensen, K.Y., Larsen, K.G., Srba, J.: Time-darts: A data structure for verifica-

tion of closed timed automata. In: SSV 2012. EPTCS, vol. 102, pp. 141–155. Open
Publishing Association (2012)

11. Marques Jr., A.P., Ravn, A.P., Srba, J., Vighio, S.: Model-checking web services
business activity protocols. International Journal on Software Tools for Technology
Transfer (STTT) 15(2), 125–147 (2013)

12. Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)

13. Lynch, W.C.: Computer systems: Reliable full-duplex file transmission over half-
duplex telephone line. Communications of the ACM 11, 407–410 (1968)

14. Pelayo, F.L., Cuartero, F., Valero, V., Macia, H., Pelayo, M.L.: Applying timed-
arc Petri nets to improve the performance of the MPEG-2 encoding algorithm. In:
MMM 2004, pp. 49–56. IEEE Computer Society (2004)

http://dx.doi.org/10.1016/j.tcs.2013.07.011

	Memory Efficient Data Structures
for Explicit Verification of Timed Systems

	1 Introduction
	2 PTriesandTimeDarts
	3 Experiments
	4 Conclusion
	References




