
Checking and Distributing Statistical Model
Checking�

Peter Bulychev1, Alexandre David1, Kim G. Larsen1, Axel Legay1,2,
Marius Mikučionis1, and Danny Bøgsted Poulsen1

1 Computer Science, Aalborg University, Denmark
2 INRIA/IRISA, Rennes Cedex, France

Abstract. In this paper we propose a general framework for distributed
statistical model checking of networks of priced timed automata. The
first contribution is a new algorithm to distribute sequential hypothesis
testing without introducing bias in the results. The second contribution is
an implementation of this algorithm in Uppaal. The major contribution
is an experimental and analytical evaluation of the approach through
case studies, including an analysis of the SMC algorithm itself.

1 Introduction

Statistical Model Checking techniques (SMC) [8,12,17], can be seen as a trade-
off between testing and formal verification. The core idea of the approach is to
conduct some simulations of the system and verify if they satisfy some given
property. The results are then used together with statistical algorithms in or-
der to decide whether the system satisfies the property with some probability.
Statistical model checking techniques can also be used to estimate the proba-
bility that a system satisfies a given property [8,6]. Of course, in contrast to an
exhaustive approach, a simulation-based solution does not guarantee a correct
result with 100% confidence. However, it is possible to bound the probability
of making an error. SMC is getting widely accepted in various research areas
and applied to problems that are beyond the scope of classical formal tech-
niques [1,2,10,11,13,19,20].
Unfortunately, extremely huge sized problems and a demand of extremely high

confidence may require generation of a large number of simulation runs, each
of which may itself be extremely time consuming. To address this confidence-
explosion problem, we suggest in this paper to take advantage of PC-clusters
and GRID computers. In fact, it is well-known that statistical solutions methods
that use samples of independent observations are often trivially parallelizable.
As observed in [18], SMC algorithms can be distributed through the help of a
master/slave architecture where multiple computers are used to generate the
simulations. The idea is as follows: one or more slave processes register their

� Work partially supported by VKR Centre of Excellence – MT-LAB, an “Action de
Recherche Collaborative” ARC (TP)I and the IDEA4CPS center established on a
grant from Danish National Research Foundation.

A. Goodloe and S. Person (Eds.): NFM 2012, LNCS 7226, pp. 449–463, 2012.
� Springer-Verlag Berlin Heidelberg 2012

450 P. Bulychev et al.

ability to generate simulation with a single master process that is used to collect
those simulations and perform the statistical test.
However, this process may become complex when considering sequential hy-

pothesis testing (when the number of simulations is not known in advance). The
problem is that there might exist a correlation between a time needed to generate
a random simulation and the fact that a property is satisfied by this simulation.
Thus it is important to guarantee that the technique will not introduce a bias
towards the results that are generated by shorter simulations.
In a series of recent works [4], we have extended Uppaal with SMC algo-

rithms applied to Networks of Priced Timed Automata – hence leading to the
first implementation of SMC for real-timed stochastic systems. The objective
of this paper is to go one step further and propose the first complete study of
distributed SMC, in general, and in the framework of Uppaal in particular. Our
contributions are:

1. A distributed implementation of the estimation algorithm proposed in [8].
Building on classical Monte Carlo techniques [7], an estimation algorithm
precomputes the number of simulations needed to estimate the probability
to satisfy a property with a given confidence. Such an algorithm which is triv-
ially parallelizable amounts to equally distribute the number of simulations
to perform between the slave computers.

2. A new distributed algorithm for sequential hypothesis testing where simu-
lations are computed on the fly until a threshold is passed and a decision is
taken. Here, it is important to avoid introducing bias in the results, which
may be potentially complex and eventually decrease the benefit of using sev-
eral processors. To counter this, [18] proposed a round-Robin solution where
the runs are counted in rounds. We generalise the solution in [18] by intro-
ducing batches and buffers. The batch is used to reduce communication by
sending an aggregate result of predefined size (instead of individual results).
The buffer is used to improve concurrency since the nodes are more loosely
synchronized.

3. A thorough evaluation of our implementation through new applications of
SMC algorithms. In particular, we apply the distributed SMC engine to
an analysis of an instance of the LMAC protocol of unprecedented size.
Additionally, a thorough evaluation of the distributed SMC framework itself
is made aiming at identifying optimal settings of the parameters for the
framework. The evaluation is carried out both experimentally (using the
implementation) as well as analytically (using SMC) based on a model of the
distributed SMC algorithm itself, and with high consistency in identifications
made by the two approaches.

2 Statistical Model-Checking in Uppaal

This section introduces the formalisms used in Uppaal for modeling systems
and and specifying properties. Then, we briefly survey existing Statistical Model
Checking (SMC) algorithms. Finally, a novel application of SMC is presented.

Checking and Distributing Statistical Model Checking 451

2.1 Networks of Priced Timed Automata

The new SMC engine of Uppaal [3] supports the analysis of Priced Timed
Automata (PTAs) that are timed automata whose clocks can evolve with dif-
ferent rates, and with no restrictions in guards and invariants. Additionally, we
support other features of the Uppaal model checker’s input language such as
integer variables, data structures and user-defined functions. We also assume
PTAs are input-enabled, deterministic (with a probability measure defined on
the sets of successors), and non-zeno. PTAs communicate via broadcast channels
and shared variables to generate Networks of Price Timed Automata (NPTA).

A1

A0
x<=1

a!

B1

B0
y<=2

b!
T1

T3

T0

C’==2

C’==4
a?

b?

A B T

Fig. 1. An NPTA, (A|B|T)

Fig. 1 provides an NPTA with three compo-
nents A, B, and T as specified using the Up-
paal GUI. One can easily see that the com-
posite system (A|B|T) has the transition se-
quence:
(
(A0, Bo, T0), [x = 0, y = 0, C = 0]

) 1−→ a!−→
(
(A1, B0, T1), [x = 1, y = 1, C = 4]

) 1−→ b!−→(
(A1, B1, T2), [x = 2, y = 2, C = 6]

)
,

demonstrating that the final location T3 of T
is reachable. In fact, location T3 is reachable
within cost 0 to 6 and within total time 0 and
2 in (A|B|T) depending on when (and in which order) A and B choose to per-
form the output actions a! and b!. Assuming that the choice of these time-delays
is governed by probability distributions, a measure on sets of runs of NPTAs is
induced, according to which quantitative properties such as “the probability of
T3 being reached within a total cost-bound of 4.3” become well-defined.

Time
Cost

Time/Cost

pr
ob

ab
ili

ty

0

0.12

0.24

0.36

0.48

0.60

0.72

0 1.2 2.4 3.6 4.8 6.0

Fig. 2. Cumulative probabilities for time
and Cost-bounded reachability of T3

In our early works [4], the stochas-
tic semantic of PTA components as-
sociates probability distributions on
both the delays one can spend in a
given state as well as on the transition
between states. In Uppaal uniform
distributions are applied for bounded
delays and exponential distributions
for the case where a component can
remain indefinitely in a state. In a net-
work of PTAs the components repeat-
edly race against each other, i.e. they

independently and stochastically decide on their own how much to delay before
outputting, with the “winner” being the component that chooses the minimum
delay. For instance, in the NPTA of Fig. 1, A wins the initial race over B with
probability 0.75.

Properties. For specifying properties of NPTAs, we use cost-constraint tem-
poral properties over runs of the form ψ = �C≤cϕ. Here C is an observer clock
(that is never reset and should grow to infinity on any infinite run), c ∈ IR≥0

452 P. Bulychev et al.

and ϕ is a state-predicate. We say that a run π satisfies ψ = �C≤cϕ if there
exists a state (�, v) in π satisfying ϕ and with v(C) ≤ c. For an NPTA M we
define PM (ψ) to be the probability that a random run of M satisfies ψ.
Reconsider the example of Fig. 1, we can evaluate the the probabilities

Pr[time<=2](� T.T3) and Pr[C<=6](� T.T3) in Uppaal, obtaining as ex-
pected 0.75 for the composition (A|B|T) for both of these probabilities. In fact
Fig. 2 gives the time- and cost-bounded reachability probabilities for (A|B|T)
for a range of bounds.

2.2 Statistical Model Checking Algorithms

We briefly recall statistical algorithms allowing to answer the following two types
of questions : (1) Qualitative : Is the probability that a random run of a given
NPTA A satisfies a property �C≤cϕ greater than a certain threshold θ? and (2)
Quantitative :What is the probability that a random run of A satisfies �C≤cϕ?
For both question a run of the system is encoded as a Bernoulli random variable
that is true if the run satisfies the property and false otherwise.

Qualitative Question. This reduces to test the hypothesis H: p = PA(�C≤cϕ)
≥ θ againstK : p < θ. To bound the probability of making errors, we use strength
parameters α and β and we test the hypothesis H0 : p ≥ p0 and H1 : p ≤ p1
with p0 = θ + δ0 and p1 = θ − δ1 (δ0 and δ1 are parameters of the algorithm).
The interval p0 − p1 defines an indifference region, and p0 and p1 are used as
thresholds in the algorithm. The parameter α is the probability of accepting H0

when H1 holds and the parameter β is the probability of accepting H1 when
H0 holds. The above test can be solved by using Wald’s sequential hypothesis
testing [16]. This test, which is presented in Algorithm 1, computes a proportion
r among those runs that satisfy the property. With probability 1, the value of
the proportion will eventually cross log(β/(1 − α) or log((1 − β)/α) and one of
the two hypothesis will be selected.

Algorithm 1. Hypothesis testing
function hypothesis(S:model , ψ: property)
r:=01

while true do2

Observe the random variable x corresponding to �C≤cϕ for a run.3

r := r + x ∗ log(p1/p0) + (1− x) ∗ log((1− p1)/(1− p0))4

if r ≤ log(β/(1− α)) then accept H05

if r ≥ log((1− β)/α) then accept H16

end

Quantitative Question. This reduces to a Monte Carlo approach that com-
putes the numberN of runs needed in order to produce an approximation interval
[p − ε, p + ε] for p = Pr(ψ) with a confidence 1 − α. The values of ε and α are
chosen by the user and N relies on the Chernoff-Hoeffding bound.

Checking and Distributing Statistical Model Checking 453

2.3 Analysing SMC in Uppaal

In this section we will use the SMC engine of Uppaal to our first non-trivial task,
namely to analyse itself! More precisely, by suitably modeling the sequentual
testing algorithm as well as a sample model M , we will be able to use the SMC
engine of Uppaal to analyse the performance of SMC on M . Later, in Section
4, this will allow us to evaluate various naive (and even faulty) proposals for
distributing SMC.
The sample model M given in Fig. 3a1 makes an initial probabilistic choice

between the two branches, each having a looping transition taken repeatedly
with a delay choosen uniformly from]0, 2]. Performing sequential testing of the
hypothesis H0: Pr[<=100](� OK)≥ 0.5 some 10 times with α = 0.05 as level
of significance and with an indifference region of ±0.01, we consistently (and
correctly) dismiss the hypothesis with an average of 408.6 runs and with standard
deviation 127.5.

58 x<=242x<=2
NOK

x=0

OK

x=0

x=0

x=0

(a) M .

r=r−17 r=r+17

add?sub?
r=r−17 r=r+17

r>−1262 r<1262

H0 r>=1262r<−1262
add?sub?

H1

(b) Master.

time>=100

time<100

x<=2

sub!

58x<=2 42

add!
runs=++truns=++t

x=0

OKNOK

time=0

x=0

x=0x=0

(c) Generator.

Fig. 3. Sample model M (a) satisfying Pr[<=100](� OK)= 0.42 and modeling SMC of
M (b,c) with respect to H0: Pr[<=100](� OK)≥ 0.5 with 0.05 as level of significance
and [0.49, 0.51] as indifference region

Now, aiming at obtaining a better understanding of sequential testing2 we
may simply model the sequential testing algorithm of M directly and analyse
its (expected) performance using Uppaal SMC. The resulting model is given in
Fig. 3 and consists of an extension of the sample model M into the component
Generator that will repeatedly generate random runs of M (of time-duration
100) and report the outcome to a Master using the channels add (when 100
time-units has elepased without OK having been observed) and sub (used as
soon as it is observed that the OK branch has been taken, note the absence of
the time>=100 guard on the right side of the Generator model). The Master
has the obligation of adjusting appropriately the ratio-variable r according to
Alg. 1, and conclude on H0 or H1 as soon as the value of r exceeds the given
threshold. Given the indifference region [0.49, 0.51] and level of significance 0.05,
we find that the approximate values to be used 3 in Alg. 1 are: − log(p1/p0) =

1 M is a timed variant of the model proposed in [17] and used to demonstrate bias in
a naive distributed approach to SMC.

2 The performance of sequential testing has been subject to significant studies and is
well-understood [15]. The aim here is to demonstrate that our Uppaal SMC engine
is a useful tool for obtaining such an insight.

3 Those values are obtained by observing Wald’s ratio on several application of the
SMC algorithm to the same problem, and then take the average of the observations.

454 P. Bulychev et al.

log(1 − p0/1 − p1) = 0.01715 and log((1 − β)/α) = − log(β/(1 − α)) = 1.2787
(≈ 1.262+0.017). In the model of Fig. 3 we are using scaled integer constants for
these values. Now, looking at the estimation of Pr[#<=20000](� Master.H1)
in Fig. 4, we find – as expected – that the probability of accepting H1 (H0) tends
to 1 (0) as the number of steps increases. We also see that the average number
of runs is estimated to 481.4. The “mismatch” with the experimentally found
average 408.6 is due to early termination when the threshold for H0 is exceeded.

avg
H1

steps

pr
ob

ab
ili

ty

0

0.16

0.32

0.48

0.64

0.80

0.96

1.3E4 4.2E4 7.1E4

(a) Pr[# ≤ 80000](� Master.H1)

avg
H1

runs

pr
ob

ab
ili

ty
0

0.16

0.32

0.48

0.64

0.80

0.96

100 400 700 1000

(b) Pr[runs ≤ 20000](� Master.H1)

Fig. 4. Cumulative probability plots over number of steps and runs

3 Distributed Statistical Model-Checking in Uppaal

SMC suffers from the fact that the high confidence required by an answer may
demand a large number of simulation runs, each of which may itself be time
consuming. As an example, the first hypothesis test shown later in this section
can generate between 14,000 and 2,390,000 runs if the parameters α, β, δ range
between 0.01 and 0.001. A possible way to leverage this problem is to use several
computers working in parallel using a master/slaves architecture: one or more
slave processes register their ability to generate simulation with a single master
process that is used to collect those simulations and perform the statistical test.

20
10
5
1

runs

pr
ob

ab
ili

ty

0

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

10 90 170 250 330 410

Fig. 5. Probability distributions obtained
with 1 (top), 5, 10, and 20 (bottom) gener-
ator nodes

When working with an estimation
algorithm, this collection is trivially
performed as the number of simula-
tions to perform is known in advance
and can be equally distributed be-
tween the slaves. When working with
sequential algorithms, the situation
gets more complicated. Indeed, we
need to avoid introducing bias when
collecting the results produced by the
slave computers. This means that re-
sults should not be collected arbitrar-
ily as illustrated by considering the
model of Section 2.3 with several in-
stances of the Generator template.

Checking and Distributing Statistical Model Checking 455

Checking the property Pr[runs<=20000](� Master.H1) Fig. 5 shows that dif-
ferent distributions can be obtained with different numbers of generator nodes,
hence revealing a bias in the results. In fact the probability of accepting H1 tends
(incorrectly) to 0 when the number of Generator components increases.
A solution, which was proposed in [17], consists in observing that Wald’s

ratio r is updated as a function of the Bernouilli random variable x as r+ =
x∗racc+(1−x)∗rrej with racc and rrej being constants depending on the tested
hypothesis. To reduce blocking and still update r, the non-biased algorithm
updates two safe approximations for r (r1 and r2). If x is unknown then it
updates with r1+ = rrej and r2+ = racc, and then testing if r1 ≤ I to accept
H0 or if r2 ≥ S to accept H1

4. When all outcomes of a round are known then
we can reset r1 := r2 := r. This allows us to accept H0 even if some accepting
outcomes are missing or conversely to accept H1 if some rejecting outcomes are
missing.
We generalize [17] by aggregating the outcomes x by batches (of size B) and

also by implementing a buffer (of size K) of incoming results.

K
buffer
size

N number of nodes

Asynchronous incoming messages

Fig. 6. Buffer of results at the master
node

The batch is used to reduce communi-
cation by sending B aggregate results.
The buffer is used to improve concur-
rency since the nodes are more loosely
synchronized and they can be K runs
ahead of the slowest node. Fig. 6 illus-
trates our algorithm at the master node
that receives asynchronous messages from
all other nodes in a buffer. A message is an
aggregate result containing the outcome
of B runs. The master may take a deci-
sion as soon as r1 ≤ I or r2 ≥ S. When all
outcomes at the bottom line of the buffer
are known we reset r1 := r2 := r with
the exact updated value of r with those
outcomes, and free the bottom line of the buffer. In practice, our algorithm is
calibrated to count the runs up to a certain depth in the buffer. Indeed, the
outcomes are weighted by B so few missing aggregated outcomes can prevent
the algorithm from deciding. We have implemented this algorithm with asyn-
chronous communications (using OpenMPI). There can be at most K pending
messages due to the size of the buffer. If a slave tries to send more messages,
then the communication will block waiting for a “slot” to be free. The experi-
ment performed in the remainder of the paper has been carried out on varying
numbers of nodes on a cluster with dual Xeons 5650 (hexa-cores at 2.66GHz)
interconnected with infiniband.
We first make two types of experiments to exhibit the performance charac-

teristics of our algorithm. The experiments are carried out using the train-gate
example available as a demo of Uppaal. This model comprises a number of

4 I = log(β/(1− α)) and S = log((1− β)/α) as stated in Alg. 1.

456 P. Bulychev et al.

trains crossing a bridge with only one track. A gate controller stops and restart
the trains to ensure mutual exclusion on the bridge and absence of starvation
for the trains. Our first experiment concerns 6 trains and the property of being
in a state where train 5 is crossing while all the other trains are stopped.

Pr[<=100](<> Train(5).Cross and
(forall (i : id_t) i != 5 imply Train(i).Stop)) >= 0.46188

The runs are relatively short with few components so they will be cheap to
compute and we expect the throughput of messages to be high. In addition, the
hypothesis we are testing is not deterministic, which means that the outcomes
and computation times of the runs will vary. The property is checked with high
confidence (99.999%) and small indifference regions (+/- 0.00001) to have a
precise and reliable result – and to stress our distributed algorithm.
Our second experiment considers a “large” instance with 20 trains, where we

check if the model satisfies mutual exclusion on the bridge, expressed by the
property

Pr[<=1000]([] forall (i : id_t) forall (j : id_t)
Train(i).Cross and Train(j).Cross imply i == j) >= 0.9999

Here, the runs are random but bounded by the same large bound and since
the inner property []forall(i : id_t)forall(j : id_t)... holds by model-
checking, all the runs will all reach their bounds. In addition, we have 20 trains
and the runs are long (1000 time units) so they are relatively expensive to gen-
erate. This means that all the runs are implicitely synchronized and small devi-
ations are amortized by the long runs. The throughput of messages will be low,
which means a low overhead compared to the actual useful work of generating
the runs.

 10
 20

 30
 40

 50
 60

 10 20 30 40 50 60

 90
 100
 110
 120
 130
 140
 150
 160
 170
 180

16 cores

’4x1x4.dat’

Batch

Buffer

 90
 100
 110
 120
 130
 140
 150
 160
 170
 180

 10
 20

 30
 40

 50
 60

 10 20 30 40 50 60

 50
 60
 70
 80
 90

 100
 110

32 cores

’8x1x4.dat’

Batch

Buffer

 50
 60
 70
 80
 90
 100
 110

 10
 20

 30
 40

 50
 60

 10 20 30 40 50 60

 10
 20
 30
 40
 50
 60
 70
 80

128 cores

’16x2x4.dat’

Batch

Buffer

 10
 20
 30
 40
 50
 60
 70
 80

 10
 20

 30
 40

 50
 60

 10
 20

 30
 40

 50
 60

 54
 54.5

 55
 55.5 56
 56.5

 57
 57.5

 58
 58.5

 59

16 cores

’topo-4x1x4.dat’

Batch
Buffer

 54
 54.5
 55
 55.5
 56
 56.5
 57
 57.5
 58
 58.5
 59

 10
 20

 30
 40

 50
 60

 10 20 30 40 50 60

 27.5 28 28.5 29 29.5 30 30.5 31 31.5 32

32 cores

’topo-8x1x4.dat’

Batch

Buffer

 27.5
 28
 28.5
 29
 29.5
 30
 30.5
 31
 31.5
 32

 10
 20

 30
 40

 50
 60

 10 20 30 40 50 60

 8.5 9
 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14

128 cores

’topo-16x2x4.dat’

Batch

Buffer

 8.5
 9
 9.5
 10
 10.5
 11
 11.5
 12
 12.5
 13
 13.5
 14

Fig. 7. Verification times on 16, 32, and 128 cores in function of B and K for the
“small” model (first row) and the “large” model (second row)

Figure 7 shows our results for different number of cores. The solution in [18]
corresponds to the particular case withK andB are equal to one, exhibiting in all
the experiments the worst verification time, and with performance deteriorating

Checking and Distributing Statistical Model Checking 457

Wait

i:node_t
Got

Done
time’==0

!H0 && !H1

H0 || H1

req!

saveWork(i,value),
value=0

deliver[i]?

(a) Master.

run length in steps

co
un

t

0

2.0E3

4.0E3

6.0E3

8.0E3

1.0E4

13 18 23 28 33 38 43 48

(b) Histogram of verification steps.

compute

iterate

start

i:bucket_t

req?

tmp

latency

deliver[id]!

x<=LatencyUp

x<=(j+1)*H_step

w[i]

runs<B
x>=j*H_step

level[id]<K

x>=LatencyLow

runs==B

runs=0,sat=0,
x=0

j=0,x=0

busy[id]=0,
value=sat

j=i, runs++,
busy[id]=1,
sat+=(i<H_last),
x=0

(c) Slave.

Fig. 8. Timed automata model of a statistical model checking process

with increasing number of cores (i.e. for 128 cores performance loss is a factor
of 4). Though the impact of the buffer size is less, the experiments indicate that
a buffer of size 2-4 will suffice. The results also demonstrate linear scalability of
our distributed implementation: for B = 32 and K = 2 the verification times for
16, 32 and 128 cores are 108, 56 and 19 seconds (respectively).

4 Analyzing Distributed SMC in Uppaal

In this section we model the implemented distributed algorithm of sequential
hypothesis testing and we check it using the SMC engine of Uppaal. The goal
is to estimate the verification time and processor utilization, check for bias in
the distributed algorithm, and explore the parameters of our distributed SMC
algorithm in an analytical manner.

Modeling. We model the master and slave processes described in Section 3 as
shown in Fig. 8. The master sends a broadcast request req! to verify batches
of runs (of size B). We use a standard modeling pattern to synchronize on the
corresponding req? as soon as possible. The master gathers the results with its
saveWork function and loops again if neither H0 nor H1 is accepted. Listing 1.1
shows this saveWork function that implements the distributed hypothesis testing
algorithm of Section 3.Uppaal uses floating point numbers that are not available
in the modeling language. Instead we encode fixed point arithmetics with integers
and we use precomputed tables for logarithm values. Once the master accepts
H0 or H1, it moves to the location Done and stops the clock time.

458 P. Bulychev et al.

Listing 1.1. Master code.
�

1 // buffer portion for early termination :
2 const int P = (K<=4)?K : ((K<=8)?5 : ((K<=16)?8 : ((K<=32)?10 : 12)));
3 bool H0 = false, H1 = false; // for hypothesis H0 and H1
4 int batch[N][K]; // buffer of batches (K batches for N nodes)
5 long satisfied =0, unsatisfied =0; // information about filled lines
6 long sat=0, unsat=0, unknown=N�P�B; // early results in unfilled lines
7 long logRatio = 0, ratioLow = 0, ratioUp = 0; // scaled by p.scale
8 void saveWork(const node t node, const int value) {
9 if (level [node]<=P) { // entered the early results portion
10 sat += value; unsat += B−value; unknown −= B;
11 }
12 batch[node][level [node]] = value; level [node]++; // store
13 if (level [node]==1) { // entered at the lowest level
14 bool filled = forall (i : node t) level [i]>0;
15 if (filled) { // line at the lowest level has been filled
16 int L;
17 for (i : node t) { // shift all queues one by one
18 satisfied += batch[i][0]; // count as firm results
19 unsatisfied += B−batch[i][0];
20 sat −= batch[i][0]; // discount from early results
21 unsat −= B−batch[i][0]; unknown += B;
22 level [i]−−; // remove from buffer
23 for (L=0; L<level[i]; ++L) {
24 batch[i][L] = batch[i][L+1]; // shift
25 if (L==P) { // entered the early results portion
26 sat += batch[i][L+1]; unsat += B−batch[i][L+1];
27 }
28 }
29 batch[i][level [i]]=0; // cleanup
30 }
31 logRatio = p.valAcc�satisfied + unsatisfied �p.valRef ;
32 if (logRatio <= p.logInf) H0 = true;
33 if (logRatio >= p.logSup) H1 = true;
34 }
35 }
36 ratioLow = p.valAcc�(satisfied +sat+unknown) +
37 p.valRef�(unsatisfied +unsat);
38 ratioUp = p.valAcc�(satisfied +sat) +
39 p.valRef�(unsatisfied +unsat+unknown);
40 if (ratioUp <= p.logInf) H0 = true;
41 if (ratioLow >= p.logSup) H1 = true;
42 }
�

Slave processes proceed to compute their batches if their communication
buffers are not full (level[id] < K) or wait for the condition to hold. The
compute location models the computation time of a run, chosen according to
the distribution shown in Fig. 8b. This is encoded using probabilistic edges with

Checking and Distributing Statistical Model Checking 459

weights matching the distribution. The distribution comes from a real verifica-
tion of the property in Section 3:

Pr[<=100](<> Train(5).Cross and
(forall (i : id_t) i != 5 imply Train(i).Stop)) >= 0.46188

The last weighted edge (case i=H) is reserved for the runs that did not satisfy
the property.

Verification. In the hypothesis we test, the actual probability is very close to
0.46188. Since the real probability falls in the indifference region of our test, we
would expect that a non-biased implementation would accept H0 or H1 equally
often. Estimating the probability of confirming the hypothesis H0 with the query
Pr[<=10000000](<> master.H0) gives the probability 0.503±0.005 with 99.9%
confidence, confirming that our algorithm is not biased as well as the validity of
our model.
Similarly, we obtain the distribution of the verification time by the query

Pr[<=10000000](<> master.Done) for a model with number of nodes N = 128,
batch size B = 64, and buffer size K = 4. The result is 9557.6 time units in
average and the distribution histogram is depicted in Fig. 9a. To estimate the
processor usage time, we add another process with a single location with the
invariant usage’==sum(i:node t)busy[i]. Here, usage is a clock that grows
with a rate equal to the number of busy nodes.

max: time

co
un

t

0

400

800

1200

1600

2000

2400

2E3 3E4 5E4 8E4

(a) Estimated time distribution.

max: Global.usage

co
un

t

0

300

600

900

1200

1500

1800

2.04770E6 2.04779E6 2.04788E6 2.04797E6

(b) Processor usage time distribution.

Fig. 9. Time estimation from 6000 runs of DSMC model

The question is now to find a good settings for the parameters of our algorithm
(B and K). We perform a parameter sweep to estimate the verification time for
values of B and K taking values in 1, 2, 4, 8, 16, 32, 64 for three topologies with
the number of processing nodes N = 16, 32, or 128. The results are depicted
in Fig. 10, where it is visible that the extremely small batch size requires more
time. Large batch sizes can also be detrimental in a large cluster setting (Fig. 10c
where too many runs are requested in bulk than actually needed to establish the
result). Buffer size of one has a huge penalty of blocking with small blocks,
but it is barely noticeable otherwise. This confirms the experimental findings of
Section 3.

460 P. Bulychev et al.

(a) 16 nodes. (b) 32 nodes. (c) 128 nodes.

Fig. 10. Estimated verification times in model time units

5 Lightweight Media Access Control

LMAC is a Lightweight Media Access protocol (studied in [4,5]) used for schedul-
ing communication in wireless sensor networks where the topology is determined
by physical location and radio connectivity of the individual nodes. One of the
goals of the LMAC protocol is to minimize the number of collisions in the net-
work and to reconfigure the network to avoid further collisions.

Fig. 11. LMAC protocol phases

The original model has been developed
in [5] where topologies of 4-5 nodes are stud-
ied exhaustively using classical Uppaal and
a number of topologies are identified as prob-
lematic, containing perpetual collisions. In
this paper we provide new insight as to the
likelihood of perpetual collisions in different
topologies. This insight could not be delivered
by the use of classical Uppaal and the exper-
iment conducted is of unprecedented size.
In LMAC communication media access

time is discretized into time frames and each
time frame is divided into time slots. The goal
of the protocol is to allocate the time slots
to each node efficiently. The challenge is that
there is no central node distributing and as-
signing slots and nodes cannot themselves listen while transmitting, hence neigh-
bours are responsible for detecting and informing each other about collisions.
After waiting phase, the node moves to a discovery phase and listens for

an entire time frame and notes which time slots are used by its neighbours.
The collision counting expression collisions=++cc; is added on the edge from
rec one0 to done0 in Fig. 12b. After one time frame of discovery phase, the
node chooses seemingly unused time slot and moves to an active phase. The
node falls back to waiting phase if there are no neighbours (no signal received)
or all slots are occupied. During active and discovery phases the node listens
and notes any collisions (several receptions during the same slot). During active
phase the node transmits information about collisions it has detected during its
time slot and listens for collisions and information about collisions during other

Checking and Distributing Statistical Model Checking 461

time slots. From the active phase the node may fall back to discovery phase if
it is notified about the collisions on its time slot and falls back to the waiting
phase if it detects that neighbours are gone.
Figure 11 shows the four phases of the protocol. Initially all nodes except

the gateway are listening and waiting for a radio signal from its neighbourhood
during the initialization phase. The communication is triggered by a dedicated
gateway node. Upon reception of signal, the node notes the relative time offset
of the signal and moves to waiting phase, during which it chooses to wait for a
random amount of time frames. The random delay is modeled using probabilistic
branching (see Fig. 12a) with geometrical weights (weight array).

waiting

t==2*counter

k:frame_t

t<=2*counter

t==1

counter=k*frame,
mode=1, t=0

curr=(curr+1)%frame,
power[id]=SLEEP,
t=0

counter=0,
power[id]=LISTEN,
mode=2, t=0

weight[k]

(a) Waiting.

rec_one0

listening0

t<=2

done0 t<=2

t<=2

d

e

!aux vec[slot]&&

t==2

counter<frame−1

t==2

can_hear[id][aux_node]
t==2

t<=2

slot:int[0,frame−1]

can_hear[id][aux_node]==1

counter>=frame−1

aux_vec==max_vec || got_info==0

counter++,
power[id]=LISTEN

curr=(curr+1)%frame,
t=0

curr=(curr+1)%frame, acc(second[id],rec_vec),
rec_vec=zero_vec, got_info=1, t=0

detected=(detected<0)?curr:detected,
rec_vec=zero_vec, collisions=++cc

aux_vec=first[id],
acc(aux_vec,second[id]),
second[id]=zero_vec,
mode=3

rec_vec=first[aux_node],
first[id][curr]=1,
power[id]=RECV

counter=−1, aux_vec=zero_vec,
first[id]=zero_vec, second[id]=zero_vec,
got_info=0, detected=−1

sendWM?

sendWM?

curr=(curr+1)%frame,
t=0

power[id] LISTEN,
mode=2, t=0

(b) Discovery.

Fig. 12. LMAC phases in the model

Starting from the model5 of [5], we removed the verification optimizations
constraining the parallelism, annotated it with power consumption and collision
counting (as cost variables). The model contains twice as many slots as nodes,
whereas one slot per node is enough to schedule flawless communication in any
topology if nodes were aware of each others choices.
First we examine the distribution of the first collisions over time. The first row

of Fig. 13 is a result of a query Pr[<=1000](� collision>0) and it shows that
most collisions happen early in time and in a ring topology some collisions may be
discovered later (possibly when the first signal propagation meets at the opposite
of the ring). In the second row of Fig. 13 the distribution of possible number
of collisions is examined using a query Pr[collisions<=100](� time>=1000):
in a chain and a ring topologies the collisions are unlikely to occur (> 90%
probability of 0 collisions), but in a star it is almost guaranteed to occur (only
8% probability of 0 collisions). The third row of Fig. 13 shows the probability
distribution of collision counts after twice as long period of time (using query
Pr[collisions<=100](� time>=2000)). Notice that the shape of distributions
has not changed, but the small bumps have shifted to the right at exactly twice
the number of collisions and almost identical probability density, which implies
that those particular collisions are accumulating proportionally to the progress
5 Thanks to Ansgar Fehnker and Angelika Mader.

462 P. Bulychev et al.

chain ring star

run duration in time

pr
ob

ab
ili

ty
 d

en
si

ty

0

7.0E−5

1.4E−4

2.1E−4

2.8E−4

3.5E−4

40 200 360 520 680
run duration in time

pr
ob

ab
ili

ty
 d

en
si

ty

0

7.0E−5

1.4E−4

2.1E−4

2.8E−4

3.5E−4

40 240 440 640 840
run duration in time

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.002

0.004

0.006

0.008

0.010

0.012

40 150 260 370 480

collisions

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.19

0.38

0.57

0.76

0.95

0 4 8 12 16 20 24
collisions

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.18

0.36

0.54

0.72

0.90

0 5 10 15 20 25 30 35
collisions

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.019

0.038

0.057

0.076

0.095

0 15 30 45 60 75 90

collisions

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.19

0.38

0.57

0.76

0.95

0 8 16 24 32 40 48
collisions

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.18

0.36

0.54

0.72

0.90

0 12 24 36 48 60 72
collisions

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.019

0.038

0.057

0.076

0.095

0 50 100 150 200

Fig. 13. Collision statistics in three different topologies, in rows: probability of a col-
lision over time, probabilities of a number of collisions up to 1000 and up to 2000 time
units

of time, and in other words it means that collisions are reoccurring perpetually
without recovery. We checked these three properties on a 128 cores cluster with
high precision (with α = β = 0.0001 and ε = 0.0005) in about 30 minutes, which
generated around 19 million runs.
We have demonstrated howUppaal SMC can be used to identify problematic

topologies and distributed implementation can provide a high degree of accuracy
in spotting the reoccurring collisions.

6 Conclusion and Future Work

In this paper we have developed, implemented, applied and evaluated a general
and scalable framework for distributed statistical model checking. We have thor-
oughly investigated the distribution of sequential algorithms where bias can be
introduced when collecting the samples produced by slave computers. In particu-
lar, we have identified best choices of batch and buffer sizes both experimentally
and analytically, with agreement in the findings of the two approaches. In the
future, we plan to implement and distribute other SMC algorithms, principaly
the Bayesian algorithms introduced in [20,9].
Finally, it is worth mentioning that we have tried to use other distributed SMC

model checkers such as Ymer [18] or PVesta [14]. Aside from the fact that the
Gui of those two tools is quite restricted, we observed that Ymer does not work
anymore and that PVesta only distributes those algorithms where the number
of simulations is precomputed in advance.

Checking and Distributing Statistical Model Checking 463

References

1. Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial Order Meth-
ods for Statistical Model Checking and Simulation. In: Bruni, R., Dingel, J. (eds.)
FMOODS/ FORTE 2011. LNCS, vol. 6722, pp. 59–74. Springer, Heidelberg (2011)

2. Clarke, E.M., Faeder, J.R., Langmead, C.J., Harris, L.A., Jha, S.K., Legay, A.:
Statistical Model Checking in BioLab: Applications to the Automated Analysis of
T-Cell Receptor Signaling Pathway. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB
2008. LNCS (LNBI), vol. 5307, pp. 231–250. Springer, Heidelberg (2008)

3. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for Statistical
Model Checking of Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011)

4. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical Model Checking for Networks of Priced Timed Automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.
Springer, Heidelberg (2011)

5. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and Verification of the LMAC
Protocol for Wireless Sensor Networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007)

6. Grosu, R., Smolka, S.A.: Monte Carlo Model Checking. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005)

7. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Methuen (1975)
8. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate Probabilistic
Model Checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 73–84. Springer, Heidelberg (2004)

9. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
Bayesian Approach to Model Checking Biological Systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

10. Legay, A., Delahaye, B.: Statistical model checking: An overview. CoRR,
abs/1005.1327 (2010)

11. El Rabih, D., Pekergin, N.: Statistical Model Checking Using Perfect Simulation.
In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 120–134. Springer,
Heidelberg (2009)

12. Sen, K., Viswanathan, M., Agha, G.: Statistical Model Checking of Black-Box
Probabilistic Systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 202–215. Springer, Heidelberg (2004)

13. Sen, K., Viswanathan, M., Agha, G.: On Statistical Model Checking of Stochastic
Systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005)

14. Sen, K., Viswanathan, M., Agha, G.A.: Vesta: A statistical model-checker and ana-
lyzer forprobabilisticsystems.In:QEST,pp.251–252. IEEEComputerSociety(2005)

15. Wald, A.: Sequential tests of statistical hypotheses. Annals of Mathematical Statis-
tics 16(2), 117–186 (1945)

16. Wald, R.: Sequential Analysis. Dove Publisher (2004)
17. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asyn-
chronous Events. PhD thesis, Carnegie Mellon (2005)

18. Younes, H.L.S.: Ymer: A Statistical Model Checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)

19. Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. statis-
tical probabilistic model checking. STTT 8(3), 216–228 (2006)

20. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to simulink/stateflow verification. In: HSCC, pp. 243–252. ACM (2010)

	Checking and Distributing Statistical Model Checking
	Introduction
	Statistical Model-Checking in Uppaal
	Networks of Priced Timed Automata
	Statistical Model Checking Algorithms
	Analysing SMC in Uppaal

	Distributed Statistical Model-Checking in Uppaal
	Analyzing Distributed SMC in Uppaal
	Lightweight Media Access Control
	Conclusion and Future Work
	References

