
Verification, Performance Analysis and
Controller Synthesis for Real-Time

Systems

Uli Fahrenberg a Kim G. Larsen a,1, and Claus R. Thrane a

a Department of Computer Science, Aalborg University, Denmark

Abstract.
This note aims at providing a concise and precise Travellers Guide,

Phrase Book or Reference Manual to the timed automata modeling for-

malism introduced by Alur and Dill [7,8]. The note gives comprehensive
definitions of timed automata, priced (or weighted) timed automata,

and timed games and highlights a number of results on associated deci-

sion problems related to model checking, equivalence checking, optimal
scheduling, and winning strategies.

Keywords. Timed automata, regions, zones, reachability, bisimilarity;
priced and weighted timed automata, optimal reachability, optimal

infinite runs, conditional optimality; timed games, winning strategies.

1. Introduction

The model of timed automata, introduced by Alur and Dill [7,8], has by now
established itself as a classical formalism for describing the behaviour of real-time
systems. A number of important properties has been shown decidable, including
reachability, model checking and several behavioural equivalences and preorders.

By now, real-time model checking tools such as UppAal [17,57] and Kronos
[32] are based on the timed automata formalism and on the substantial body of
research on this model that has been targeted towards transforming the early
results into practically efficient algorithms — e.g. [14,21,13,19] — and data struc-
tures — e.g. [56,54,20,20].

The maturity of a tool like UppAal is witnessed by the numerous applications
— e.g. [48,60,55,45,40,38,52,61] — to the verification of industrial case-studies
spanning real-time controllers and real-time communication protocols. More re-
cently, model-checking tools in general and UppAal in particular have been ap-
plied to solve realistic scheduling problems by a reformulation as reachability
problems — e.g. [42,47,1,62].

Aiming at performance analysis allowing to formulate and solve optimal
scheduling problems, a recent extension of timed automata is that of priced or

1Corresponding Author: Kim G. Larsen, Department of Computer Science, Aalborg

University, Selma Lagerløfs Vej 300, 9220 Aalborg Øst, Denmark. E-mail: kgl@cs.aau.dk

kgl@cs.aau.dk

weighted timed automata [18,9]. Surprisingly, a number of properties have been
shown to be decidable for this formalism [41,58,18,9,29]. The newly emerged
branch UppAal Cora provides an efficient tool for solving cost-optimal reach-
ability problems [53] and has been applied successfully to a number of optimal
scheduling problems, e.g. [15,22,44].

Most recently, substantial efforts have been made on the automatic synthesis
of (correct-by-construction) controllers from timed games for given control objec-
tives. From early decidability results [63,12] the effort has lead to efficient on-the-
fly algorithms [68,34] with the newest branch UppAal Tiga [16] providing an
efficient tool implementation with industrial applications emerging, e.g. [50].

This note aims at providing a concise and precise Travellers Guide, Phrase
Book or Reference Manual to the land and language of timed automata. The note
gives comprehensive definitions of timed automata, weighted timed automata,
and timed games and highlights a number of results on associated decision prob-
lems related to model checking, equivalence checking, optimal scheduling, and
winning strategies. The intention is that the note should provide an easy-to-access
introduction and overview of the field to anyone interested.

2. Timed automata

In this section we review the notion of timed automata introduced by Alur and
Dill [7,8] as a formalism for describing the behaviour of real-time systems. We
review the syntax and semantics and highlight the by now classical region con-
struction underlying the decidability of several associated problems.

Here we illustrate how regions are applied in showing decidability of reach-
ability and timed and untimed (bi)similarity. However, though indispensable for
showing decidability, the notion of region does not provide the means for effi-
cient, practical tool implementations. The verification engine of UppAal instead
applies so-called zones, which are convex unions of regions. We give a brief ac-
count of zones as well as their efficient representation and manipulation using
difference-bound matrices.

2.1. Syntax and semantics

Definition 2.1. The set Φ(C) of clock constraints ϕ over a finite set (of clocks) C
is defined by the grammar

ϕ ::= x ./ k | ϕ1 ∧ ϕ2 (x ∈ C, k ∈ Z, ./ ∈ {≤, <,≥, >}

The set Φ+(C) of extended clock constraints ϕ is defined by the grammar

ϕ ::= x ./ k | x− y ./ k | ϕ1 ∧ ϕ2 (x, y ∈ C, k ∈ Z, ./ ∈ {≤, <,≥, >}

Off

Light
x ≤ 100

Bright
x ≤ 100

press?
x := 0 press?

x ≤ 3

x := 0

press?
x > 3

x := 0
x = 100
x := 0

press?

x := 0

x = 100
x := 0

Figure 1. A light switch modelled as a timed automaton.

Remark 2.2. The clock constraints in Φ(C) above are also called diagonal-free
clock constraints, and the additional ones in Φ+(C) are called diagonal. We re-
strict ourselves to diagonal-free clock constraints here; see Remark 2.44 for one
reason. For additional modelling power, timed automata with diagonal constraints
can be used, as it is shown in [8,26] that any such can be converted to a diagonal-
free one; however the conversion may lead to an exponential blow-up.

Definition 2.3. A timed automaton is a tuple (L, `0, F, C,Σ, I, E) consisting of a
finite set L of locations, an initial location `0 ∈ Q, a set F ⊆ Q of final locations,
a finite set C of clocks, a finite set Σ of actions, a location invariants mapping
I : L→ Φ(C), and a set E ⊆ L× Φ(C)× Σ× 2C × L of edges.

We shall denote an edge (`, ϕ, a, r, `′) ∈ E by `
ϕ,a,r−−−→ `′.

Example 2.1. Figure 1 provides a timed automaton model of an “intelligent” light
switch. A press of the button turns on the light, which switches itself off after
100 time units. The switching-off can be prevented by pressing the button again,
and pressing the button twice, with at most three time units between the presses,
triggers a special bright light.

Definition 2.4. A clock valuation on a finite set C of clocks is a mapping v : C →
R≥0. The initial valuation v0 is given by v0(x) = 0 for all x ∈ C. For a valuation
v, d ∈ R≥0, and r ⊆ C, the valuations v + d and v[r] are defined by

(v + d)(x) = v(x) + d

v[r](x) =

{
0 for x ∈ r
v(x) for x /∈ r

Note. We will in general write BA for the set of mappings from a set A to a set
B. The set of clock valuations on C is thus RC≥0.

Definition 2.5. The zone of an extended clock constraint in Φ(C) is a set of clock
valuations C → R≥0 given inductively by

Jx ./ kK = {v : C → R≥0 | v(x) ./ k}

Jx− y ./ kK = {v : C → R≥0 | v(x)− v(y) ./ k}

Jϕ1 ∧ ϕ2K = Jϕ1K ∩ Jϕ2K

We shall write v |= ϕ instead of v ∈ JϕK.

Definition 2.6. The semantics of a timed automaton A = (L, `0, F, C,Σ, I, E) is
the transition system JAK = (S, s0,Σ ∪R≥0, T = Ts ∪ Td) given by

S =
{

(`, v) ∈ L×RC≥0

∣∣ v |= I(`)
}

s0 = (`0, v0)

Ts =
{

(`, v) a−→ (`′, v′)
∣∣ ∃` ϕ,a,r−−−→ `′ ∈ E : v |= ϕ, v′ = v[r]

}
Td =

{
(`, v) d−→ (`, v + d)

∣∣ ∀d′ ∈ [0, d] : v + d′ |= I(`)
}

Remark 2.7. The transition system JAK from above is an example of what is
known as a timed transition system, i.e. a transition system where the label set
includes R≥0 as a subset and which satisfies certain additivity and time determi-
nacy properties. We refer to [2] for a more in-depth treatment.

Definition 2.8. A (finite) run of a timed automaton A = (L, `0, F, C,Σ, I, E) is a
finite path ρ = (`0, v0) −→ · · · (`k, vk) in JAK. ρ is said to be accepting if `k ∈ F .

Example 2.1 (continued). The light switch model from figure 1 has as state set

S = {Off} ×R≥0 ∪ {Light,Bright} × [0, 100]

where we identify valuations with their values at x. A few example runs are given
below; we abbreviate “press?” to “p”:

(Off, 0) 150−−→ (Off, 150)
p−→ (Light, 0) 100−−→ (Light, 100) −→ (Off, 0)

(Off, 0)
p−→ (Light, 0) 10−→ (Light, 10)

p−→ (Light, 0) 100−−→ (Light, 100) −→ (Off, 0)

(Off, 0)
p−→ (Light, 0) 1−→ (Light, 1)

p−→ (Bright, 0) 100−−→ (Bright, 100) −→ (Off, 0)

`0

`1

a

y ≤ 2

y := 0

b

x ≤ 2

x := 0

c x ≥ 4 ∧ y ≤ 2

Figure 2. A timed automaton with two clocks.

Example 2.2 (cf. [2, Ex. 11.7]). Figure 2 shows a timed automaton A with two
clocks and a final location `1. In the next section we shall be concerned with a
reachability problem: Is the location `1 reachable, i.e. does there exist a state
(`1, v) in JAK for some valuation v?

2.2. Reachability

We are concerned with the following problem: Given a timed automaton A =
(L, `0, F, C,Σ, I, E), is any of the locations in F reachable? We shall later define
the timed language generated by a timed automaton and see that this reachability
problem is equivalent to emptiness checking : Is the timed language generated by
A non-empty?

An immediate obstacle to reachability checking is the infinity of the state
space of A: The transition system JAK has uncountably many states, hence
straight-forward näıve reachability algorithms do not work for us.

Notation 2.9. The derived transition relations in a timed automaton A =
(L, `0, F, C,Σ, I, E) are defined as follows: For (`, v), (`′, v′) states in JAK, we say
that

• (`, v) δ−→ (`′, v′) if (`, v) d−→ (`′, v′) in JAK for some d > 0,
• (`, v) α−→ (`′, v′) if (`, v) a−→ (`′, v′) in JAK for some a ∈ Σ, and
• (`, v) (`′, v′) if (`, v) (δ−→ ∪ α−→)∗ (`′, v′).

Definition 2.10. The set of reachable locations in a timed automaton A =
(L, `0, F, C,Σ, I, E) is

Reach(A) =
{
` ∈ L

∣∣ ∃v : C → R≥0 : (`0, v0) (`, v)
}

Hence we can now state the reachability problem as follows:

Problem 2.1 (Reachability). Given a timed automaton A = (L, `0, F, C,Σ, I, E),
is Reach(A) ∩ F 6= ∅ ?

Definition 2.11. Let A = (L, `0, F, C,Σ, I, E) be a timed automaton. A reflexive
relation R ⊆ L ×RC≥0 × L ×RC≥0 is a time-abstracted simulation provided that
for all (`1, v1) R (`2, v2),

• for all (`1, v1) δ−→ (`′1, v
′
1) there exists (`′2, v

′
2) R (`′1, v

′
1) for which (`2, v2) δ−→

(`′2, v
′
2), and

• for all (`1, v1) a−→ (`′1, v
′
1), a ∈ Σ, there exists (`′2, v

′
2) R (`′1, v

′
1) for which

(`2, v2) a−→ (`′2, v
′
2).

R is called a time-abstracted bisimulation if it is also symmetric; it is said to be
F -sensitive if additionally, (`1, v1) R (`2, v2) implies that `1 ∈ F if and only if
`2 ∈ F .

Note that a time-abstracted (bi)simulation on A is the same as a standard
(bi)simulation on the transition system derived from JAK with transitions δ−→ and
a−→. Likewise, the quotient introduced below is just the bisimulation quotient of
that derived transition.

Definition 2.12. Let A = (L, `0, F, C,Σ, I, E) be a timed automaton and R ⊆ L×
R
C
≥0×L×RC≥0 a time-abstracted bisimulation. The quotient of JAK = (S, s0,Σ∪

R≥0, T) with respect to R is the transition system JAKR = (SR, s0
R,Σ ∪ {δ}, TR)

given by SR = S/R, s0
R = 〈s0〉R, and with transitions

• π δ−→ π′ whenever (`, v) δ−→ (`′, v′) for some (`, v) ∈ π, (`′, v′) ∈ π′, and
• π a−→ π′ whenever (`, v) a−→ (`′, v′) for some (`, v) ∈ π, (`′, v′) ∈ π′.

The following proposition expresses that F -sensitive quotients are sound and
complete with respect to reachability.

Proposition 2.13 ([4]). Let A = (L, `0, F, C,Σ, I, E) be a timed automaton, R ⊆
L×RC≥0×L×RC≥0 an F -sensitive time-abstracted bisimulation and ` ∈ F . Then
` ∈ Reach(A) if and only if there is a reachable state π in JAKR and v : C → R≥0

such that (`, v) ∈ π.

Example 2.2 (continued). We shall now try to construct, in a näıve way, a time-
abstracted bisimulation R for the timed automaton A from Figure 2 which is
as coarse as possible. Note first that we cannot have (`0, v) R (`1, v′) for any
v, v′ : C → R≥0 because `1 ∈ F and `0 /∈ F . On the other hand it is easy to
see that we can let (`1, v) R (`1, v′) for all v, v′ : C → R≥0, which leaves us with
constructing R on the states involving `0.

We handle switch transitions α−→ first: If v, v′ : C → R≥0 are such that
v(y) ≤ 2 and v′(y) > 2, the state (`0, v) has an a-transition available while the
state (`0, v′) has not, hence these cannot be related in R. Similarly we have to
distinguish states (`0, v) from states (`0, v′) where v(x) ≤ 2 and v′(x) > 2 because
of b-transitions, and states (`0, v) from states (`0, v′) where v(x) < 4 and v′(x) ≥ 4
because of c-transitions. Altogether this gives the five classes depicted to the left
of Figure 3, where the shading indicates to which class the boundary belongs, and
we have written the set of available actions in the classes.

2 4
x

2

y

{a, b} {a} {a, c}

{b} ∅

2 4
x

2

y

Figure 3. Time-abstracted bisimulation classes for the two-clock timed automaton from Exam-

ple 2.2. Left: equivalence classes for switch transitions only; right: equivalence classes for switch

and delay transitions.

When also taking delay transitions δ−→ into account, one has to partition the
state space further: From a valuation v in the class marked {a, b} in the left of
the figure, a valuation in the class marked {a} can only be reached by a delay
transition if v(y) < v(x); likewise, from the {a} class, the {a, c} class can only
be reached if v(y) ≤ v(x) − 2. Hence these two classes need to be partitioned as
shown to the right of Figure 3.

It can easily be shown that no further partitioning is needed, thus we have
defined the coarsest time-abstracted bisimulation relation for A, altogether with
eight equivalence classes.

2.3. Regions

Motivated by the construction in the example above, we now introduce a time-
abstracted bisimulation with a finite quotient. To ensure finiteness, we need the
maximal constants which respective clocks are compared to in the invariants and
guards of a given timed automaton. These may be defined as below.

Definition 2.14. For a finite set C of clocks, the maximal constant mapping cmax :
C → Z

Φ(C) is defined inductively as follows:

cmax(x)(y ./ k) =

{
k if y = x

0 if y 6= x

cmax(x)(ϕ1 ∧ ϕ2) = max
(
c(x)(ϕ1), c(x)(ϕ2)

)
For a timed automaton A = (L, `0, F, C,Σ, I, E), the maximal constant mapping
is cA : C → Z defined by

cA(x) = max
{
cmax(x)(I(`)), cmax(x)(ϕ)

∣∣ ` ∈ L, ` ϕ,a,r−−−→ `′ ∈ E
}

Notation 2.15. For d ∈ R≥0 we write bdc and 〈d〉 for the integral respectively
fractional part of d, so that d = bdc+ 〈d〉.

2 4
x

2

y

Figure 4. Clock regions for the timed automaton from Example 2.2.

Definition 2.16. For a timed automatonA = (L, `0, F, C,Σ, I, E), valuations v, v′ :
C → R≥0 are said to be region equivalent, denoted v ∼= v′, if

• bv(x)c = bv′(x)c or v(x), v′(x) > cA(x), for all x ∈ C, and
• 〈v(x)〉 = 0 iff 〈v′(x)〉 = 0, for all x ∈ C, and
• 〈v(x)〉 ≤ 〈v(y)〉 iff 〈v′(x)〉 ≤ 〈v′(y)〉 for all x, y ∈ C.

Proposition 2.17 ([4]). For a timed automaton A = (L, `0, F, C,Σ, I, E), the re-
lation ∼= defined on states of JAK by (`, v) ∼= (`′, v′) if ` = `′ and v ∼= v′ is an
F -sensitive time-abstracted bisimulation. The quotient JAK∼= is finite.

The equivalence classes of valuations of A with respect to ∼= are called regions,
and the quotient JAK∼= is called the region automaton associated with A.

Proposition 2.18 ([8]). The number of regions for a timed automaton A with a set
C of n clocks is bounded above by

n! · 2n ·
∏
x∈C

(2cA(x) + 2)

Example 2.2 (continued). The 69 regions of the timed automaton A from Figure 2
are depicted in Figure 4.

Propositions 2.13 and 2.17 together now give the decidability part of the
theorem below; for PSPACE-completeness see [6,37].

Theorem 2.19. The reachability problem for timed automata is PSPACE-complete.

2.4. Behavioural refinement relations

We have already introduced time-abstracted simulations and bisimulations in
Definition 2.11. As a corollary of Proposition 2.17, these are decidable:

Theorem 2.20. Time-abstracted simulation and bisimulation are decidable for
timed automata.

The following provides a time-sensitive variant of (bi)simulation.

Definition 2.21. Let A = (L, `0, F, C,Σ, I, E) be a timed automaton. A reflexive
relation R ⊆ L × RC≥0 × L × RC≥0 is a timed simulation provided that for all
(`1, v1) R (`2, v2),

• for all (`1, v1) d−→ (`′1, v
′
1), d ∈ R≥0, there exists (`′2, v

′
2) R (`′1, v

′
1) for which

(`2, v2) d−→ (`′2, v
′
2), and

• for all (`1, v1) a−→ (`′1, v
′
1), a ∈ Σ, there exists (`′2, v

′
2) R (`′1, v

′
1) for which

(`2, v2) a−→ (`′2, v
′
2).

R is called a timed bisimulation if it is also symmetric. Two states (`1, v1), (`2, v2) ∈
JAK are said to be timed bisimilar, written (`1, v1) ∼ (`2, v2), if there exists a
timed bisimulation R for which (`1, v1) R (`2, v2).

Note that a timed (bi)simulation onA is the same as a standard (bi)simulation
on JAK.

Definition 2.22. Two timed automata A = (LA, `A0 , F
A, CA,ΣA, IA, EA) and B =

(LB , `B0 , F
B , CB ,ΣB , IB , EB) are said to be timed bisimilar, denoted A ∼ B, if

(`A0 , v0) ∼ (`B0 , v0) in the disjoint-union transition system JAK t JBK.

Timed simulation of timed automata can be analogously defined. The follow-
ing decidability result was established for parallel timed processes in [36]; below
we give a version of the proof which has been adapted for timed automata.

Theorem 2.23. Timed simulation and bisimulation are decidable for timed au-
tomata.

Before the proof, we need a few auxiliary definitions and lemmas. The first
is a product of timed transition systems which synchronizes on time, but not on
actions:

Definition 2.24. The independent product of the timed transition systems JAK =
(SA, sA0 ,Σ

A ∪ R≥0, T
A), JBK = (SB , sB0 ,Σ

B ∪ R≥0, T
B) associated with timed

automata A, B is JAK× JBK = (S, s0,ΣA ∪ ΣB ∪R≥0, T) given by

S = SA × SB s0 = (sA0 , s
B
0)

T =
{

(p, q) a−→ (p′, q)
∣∣ a ∈ Σ, p a−→ p′ ∈ TA

}
∪
{

(p, q) b−→ (p, q′)
∣∣ b ∈ Σ, q b−→ q′ ∈ TB

}
∪
{

(p, q) d−→ (p′, q′)
∣∣ d ∈ R≥0, p

d−→ p′ ∈ TA, q d−→ q′ ∈ TB
}

We need to extend region equivalence ∼= to the independent product. Below, ⊕
denotes vector concatenation (direct sum); note that (p1, q1) ∼= (p2, q2) is not the
same as p1

∼= q1 and p2
∼= q2, as fractional orderings 〈xA〉 ./ 〈xB〉, for xA ∈ CA,

xB ∈ CB , have to be accounted for in the former, but not in the latter. Hence
(p1, q1) ∼= (p2, q2) implies p1

∼= q1 and p2
∼= q2, but not vice-versa.

Definition 2.25. For states pi = (`pi , vpi) in JAK and qi = (`qi , vqi) in JBK for
i = 1, 2, we say that (p1, q1) ∼= (p2, q2) iff `p1 = `p2 ∧ `q1 = `q2 and vp1 ⊕ vq1 ∼=
vp2 ⊕ vq2 .

Note that the number of states in
(
JAK×JBK

)
∼= is finite, with an upper bound

given by Proposition 2.18. Next we define transitions in
(
JAK× JBK

)
∼=:

Notation 2.26. Regions in
(
JAK × JBK

)
∼= will be denoted X,X ′. The equivalence

class of a pair (p, q) ∈ JAK× JBK is denoted [p, q].

Definition 2.27. For X,X ′ ∈
(
JAK× JBK

)
∼= we say that

• X a−→` X
′ for a ∈ Σ if for all (p, q) ∈ X there exists (p′, q) ∈ X ′ such that

(p, q) a−→ (p′, q) in JAK× JBK,
• X b−→r X

′ for b ∈ Σ if for all (p, q) ∈ X there exists (p, q′) ∈ X ′ such that
(p, q) b−→ (p, q′) in JAK× JBK, and

• X δ−→ X ′ if for all (p, q) ∈ X there exists d ∈ R≥0 and (p′, q′) ∈ X ′ such

that (p, q) d−→ (p′, q′).

Definition 2.28. A subset B ⊆
(
JAK × JBK

)
∼= is a symbolic bisimulation provided

that for all X ∈ B,

• whenever X a−→` X
′ for some X ′ ∈

(
JAK× JBK

)
∼=, then X ′ a−→r X

′′ for some
X ′′ ∈ B,

• whenever X a−→r X
′ for some X ′ ∈

(
JAK× JBK

)
∼=, then X ′ a−→` X

′′ for some
X ′′ ∈ B, and

• whenever X δ−→ X ′ for some X ′ ∈
(
JAK× JBK

)
∼=, then X ′ ∈ B.

Note that it is decidable whether
(
JAK× JBK

)
∼= admits a symbolic bisimula-

tion. The following proposition finishes the proof of Theorem 2.23.

Proposition 2.29. The quotient
(
JAK × JBK

)
∼= admits a symbolic bisimulation if

and only if A ∼ B.

Proof (cf. [36]): For a given symbolic bisimulation B ⊆
(
JAK × JBK

)
∼=, the set

RB =
{

(p, q)
∣∣ [p, q] ∈ B

}
⊆ JAK × JBK is a timed bisimulation. For the other

direction, one can construct a symbolic bisimulation from a timed bisimulation
R ⊆ JAK× JBK by BR =

{
[p, q]

∣∣ (p, q) ∈ R
}

�

2.5. Language inclusion and equivalence

Similarly to the untimed setting, there is also a notion of language inclusion and
equivalence for timed automata. We need to introduce the notion of timed trace
first.

Definition 2.30. A timed trace over a finite set of actions Σ is a finite sequence
((t1, a1), (t2, a2), . . . , (tk, ak)), where ai ∈ Σ and ti ∈ R≥0 for i = 1, . . . , k, and
ti < ti+1 for i = 1, . . . , k − 1. The set of all timed traces over Σ is denoted TΣ∗.

In a pair (ti, ai), the number ti is called the time stamp of the action ai, i.e.
the time at which event ai occurs.

Remark 2.31. Timed traces as defined above are also known as strongly monotonic
timed traces, because of the assumption that no consecutive events occur at the
same time. Weakly monotonic timed traces, i.e. with requirement ti ≤ ti+1 instead
of ti < ti+1, have also been considered, and there are some subtle differences
between the two; see [65] for an important example.

Definition 2.32. A timed trace ((t1, a1), . . . , (tk, ak)) is accepted by a timed au-
tomaton A = (L, `0, F, C,Σ, I, E) if there is an accepting run

(`0, v0) t1−→ (`0, v0 + t1) a1−→ (`1, v1) t2−t1−−−→ · · ·

· · · ak−1−−−→ (`k−1, vk−1)
tk−tk−1−−−−−→ (`k−1, vk−1 + tk − tk−1) ak−→ (`k, vk)

in A. The timed language of A is L(A) = {τ ∈ TΣ∗ | τ accepted by A}.

It is clear that L(A) = ∅ if and only if none of the locations in F is reachable,
hence Theorem 2.19 provides us with the decidability result in the following the-
orem. Undecidability of universality was established in [8]; we give an account of
the proof below.

Theorem 2.33. For a timed automaton A = (L, `0, F, C,Σ, I, E), deciding whether
L(A) = ∅ is PSPACE-complete. It is undecidable whether L(A) = TΣ∗.

Proof: We may show that the universality problem for a timed automata is un-
decidable by reduction from the Σ1

1-hard problem of of deciding whether a given
2-counter machine M has a recurring computation.

Let the timed language Lu be the set of timed traces encoding recurring
computations of M . Observe that Lu = ∅ if and only if M does not have such
a computation. We then construct a timed automaton Au which accepts the
complement of Lu, i.e. L(Au) = TΣ∗ \Lu. Hence the language of Au is universal
if and only if M does not have a recurring computation.

Recall that a 2-counter, or Minsky, machine M is a finite sequence of labeled
instructions {I0, · · · , In} and counters x1 and x2, with Ii for 0 ≤ i ≤ n− 1 on the
form

Ii : xc := xc + 1; goto Ij or Ii :

{
if xc = 0 then goto Ij

else xc = xc-1; goto Ik

for c ∈ 1, 2, with a special In : Halt instruction which stops the computation.
The language Lu is designed such that each Ii and the counters x1 and x2

are represented by actions in Σ. A correctly encoded computation is represented
by a timed trace where “instruction actions” occur at discrete intervals, while
the state (values of x1 and x2) is encoded by occurrences of “counter actions”
in-between instruction actions (e.g. if xi = 5 after instruction Ij , then action xi
occurs 5 times within the succeeding interval of length 1).

1

1 1
time

Ii Ii+1 Ii+2

1111 111112222 2222

Figure 5. Timed trace encoding a increment instruction Ii+1 of a 2-counter machine.

When counters are incremented (or decremented), one more (or less) such
action occurs through the next interval, and increments and decrements are always
from the right. Additionally we require corresponding counter actions to occur
exactly with a time difference of 1, such that if xi occurs with time stamp a then
also xi occurs with time stamp a+ 1, unless xi is the rightmost xi action and Ii
at time stamp bac is a decrement of xi. Figure 5 shows a increment of x1 (from 4
to 5) using actions 1 and 2.

We obtain Au as a disjunction of timed automata A1, . . . , Ak where each
Ai violates some property of a (correctly encoded) timed trace in Lu, either by
accepting traces of incorrect format or inaccurate encodings of instructions.

Consider the instruction: (p): x1:= x1+1 goto (q), incrementing x1 and
jumping to q. A correct encoding would be similar to the one depicted in Figure 5
where all 1’s and 2’s are matched one time unit later, but with an additional
1 action occurring. In order to accept all traces except this encoding we must
consider all possible violations, i.e.

• not incrementing the counter (no change),
• decrementing the counter,
• incrementing the counter more than once,
• jumping to the wrong instruction, or
• incrementing the wrong counter,

and construct a timed automaton having exactly such traces.
Figure 6 shows the timed automaton accepting traces in which instruction p

yields no change of x1. �

Turning our attention to timed trace inclusion and equivalence, we note the
following.

Proposition 2.34. Let A and B be timed automata. If A is timed simulated by B,
then L(A) ⊆ L(B). If A and B are timed bisimilar, then L(A) = L(B).

By a standard argument, Theorem 2.33 implies undecidability of timed trace
inclusion and equivalence, a result first shown in [7].

Theorem 2.35. Timed trace inclusion and equivalence are undecidable for timed
automata.

There is also a notion of untimed traces for timed automata.

Σ

1
z := 0

2

p

1

1
z = 1

Σ \ {1}

Σ

Figure 6. Timed automaton which violates the encoding of the increment instruction.

Definition 2.36. The untiming of a set of timed traces L ⊆ TΣ∗ over a finite set
of actions Σ is the set

UL =
{
w = (a1, . . . , ak) ∈ Σ∗

∣∣ ∃t1, . . . , tk ∈ R≥0 : ((t1, a1), . . . , (tk, ak)) ∈ L
}

Hence we have a notion of the set UL(A) of untimed language of a timed
automaton A. One can also define an untime operation U for timed automata,
forgetting about the timing information of a timed automaton and thus converting
it to a finite automaton; note however that UL(A) ⊆ L(UA) in general.

Lemma 2.37 ([8]). For A a timed automaton, UL(A) = L(JAK∼=) provided that
δ-transitions in JAK∼= are taken as silent.

As a corollary, sets of untimed traces accepted by timed automata are regular :

Theorem 2.38. For a timed automaton A = (L, `0, F, C,Σ, I, E), the set UL(A) ⊆
Σ∗ is regular. Accordingly, whether UL(A) = ∅ is decidable, and so is whether
UL(A) = Σ∗. Also untimed trace inclusion and equivalence are decidable.

2.6. Zones and difference-bound matrices

As shown in the above sections, regions provide a finite and elegant abstraction
of the infinite state space of timed automata, enabling us to prove decidability of
reachability, timed and untimed bisimilarity, untimed language equivalence and
language emptiness.

Unfortunately, the number of states obtained from the region partitioning is
extremely large. In particular, by Proposition 2.18 the number of regions is expo-
nential in the number of clocks as well as in the maximal constants of the timed
automaton. Efforts have been made in developing more efficient representations
of the state space [56,20,25], using the notion of zones from Definition 2.5 as a
coarser and more compact representation of the state space.

An extended clock constraint over a finite set C may be represented using
a directed weighted graph, where the nodes correspond to the elements of C
together with an extra “zero” node x0, and an edge xi

k−→ xj corresponds to a
constraint xi − xj ≤ k (if there is more than one upper bound on xi − xj , k
is the minimum of all these constraints’ right-hand sides). The extra clock x0 is
fixed at value 0, so that a constraint xi ≤ k can be represented as xi − x0 ≤ k.
Lower bounds on xi − xj are represented as (possibly negative) upper bounds on

Z =

x1 ≤ 3

x1 − x2 ≤ 10

x1 − x2 ≥ 4

x1 − x3 ≤ 2

x3 − x2 ≤ 2

x3 ≥ −5
x0

x1 x2

x3

5

3 2

10

-4

2

Figure 7. Graph representation of extended clock constraint.

xj − xi, and strict bounds xi − xj < k are represented by adding a flag to the
corresponding edge.

The weighted graph in turn may be represented by its adjacency matrix,
which is known as a difference-bound matrix or DBM. The above technique has
been introduced in [39].

Example 2.3. Figure 7 gives an illustration of an extended clock constraint to-
gether with its representation as a difference-bound matrix. Note that the clock
constraint contains superfluous information.

Zone-based reachability analysis of a timed automaton A uses symbolic states
of the type (`, Z), where ` is a location of A and Z is a zone, instead of the
region-based symbolic states of Proposition 2.17.

Definition 2.39. For a finite set C, Z ⊆ RC≥0, and r ⊆ C, define

• the delay of Z by Z↑ = {v + d | v ∈ Z, d ∈ R≥0} and
• the reset of Z under r by Z[r] = {v[r] | v ∈ Z}.

Lemma 2.40 ([46,69]). If Z is a zone over C and r ⊆ C, then Z↑ and Z[r] are
also zones over C.

Extended clock constraints representing Z↑ and Z[r] may be computed effi-
ciently (i.e. in time cubic in the number of clocks in C) by representing the zone
Z in a canonical form obtained by computing the shortest-path closure of the
directed graph representation of Z, see [54].

Example 2.3 (continued). Figure 8 shows two canonical representations of the
difference-bound matrix for the zone Z of Figure 7. The left part illustrates the
shortest-path closure of Z; on the right is the shortest-path reduction [54] of Z,
essentially obtained by removing redundant edges from the shortest-path closure.
The latter is useful for checking zone inclusion, see below.

The zone automaton associated with a timed automaton is similar to the
region automaton of Proposition 2.17, but uses zones for symbolic states instead
of regions:

x0

x1 x2

x3

3 7

5

3 2

4

-4

-2
-1-2

2

1
x0

x1 x2

x3

33 2

-4

2

Figure 8. Canonical representations. Left: shortest-path closure; right: shortest-path reduction.

Definition 2.41. The zone automaton associated with a timed automaton A =
(L, `0, F, C,Σ, I, E) is the transition system JAKZ = (S, s0,Σ ∪ {δ}, T) given by

S =
{

(`, Z)
∣∣ ` ∈ L,Z ⊆ RC≥0 zone

}
s0 =

(
`0, Jv0K

)
T =

{
(`, Z) δ

(
`, Z↑ ∧ I(`)

)}
∪
{

(`, Z) a

(
`′, (Z ∧ ϕ)[r] ∧ I(`′)

) ∣∣ ` ϕ,a,r−−−→ `′ ∈ E
}

The analogue of Proposition 2.13 for zone automata is as follows:

Proposition 2.42 ([69]). A state (`, v) in a timed automaton A = (L, `0, F, C,Σ, I, E)
is reachable if and only if there is a zone Z ⊆ RC≥0 for which v ∈ Z and such that
(`, Z) is reachable in JAKZ .

The zone automaton associated with a given timed automaton is infinite and
hence unsuitable for reachability analysis. Finiteness can be enforced by employ-
ing normalization, using the fact that region equivalence ∼= has finitely many
equivalence classes:

Definition 2.43. For a timed automaton A and a zone Z ⊆ RC≥0, the normalization
of Z is the set {v : C → R≥0 | ∃v′ ∈ D : v ∼= v′}

The normalized zone automaton is defined in analogy to the zone automa-
ton from above, and the analogue of Proposition 2.42 holds for the normalized
zone automaton. Hence we can obtain a reachability algorithm by applying any
search strategy (depth-first, breadth-first, or another) on the normalized zone
automaton.

Remark 2.44. For timed automata on extended clock constraints, i.e. with diag-
onal constraints permitted, it can be shown [27,24] that normalization as defined
above does not give rise to a sound and complete characterization of reachability.
Instead, one can apply a refined normalization which depends on the difference
constraints used in the timed automaton, see [24].

In addition to the efficient computation of symbolic successor states accord-
ing to the relation, termination of reachability analysis requires that we can

efficiently recognize whether the search algorithm has encountered a given sym-
bolic state. Here it is crucial that there is an efficient way of deciding inclusion
Z1 ⊆ Z2 between zones. Both the shortest-path-closure canonical form as well as
the more space-economical shortest-path-reduced canonical form [54], cf. Exam-
ple 2.3, allow for efficient inclusion checking.

In analogy to difference-bound matrices and overcoming some of their prob-
lems, another data structure of clock difference diagram (CDD) has been pro-
posed [56]. However, the design of efficient algorithms for delay and reset op-
erations is a challenging open problem; generally, the design of efficient data
structures for computations with (unions of) zones is a field of active research,
see [3,64,11] for some examples.

3. Weighted timed automata

The notion of weighted — or priced — timed automata was introduced indepen-
dently, at the very same conference, by Behrmann et.al. [18] and Alur et.al. [9]. In
these models both edges and locations can be decorated with weights, or prices,
giving the cost of taking an action transition or the cost per time unit of delaying
in a given location. The total cost of a trace is then simply the accumulated (or
total) weight of its discrete and delay transitions.

As a first result, the above two papers independently, and with quite different
methods, showed that the problem of cost-optimal reachability is computable for
weighted timed automata. Later, optimal reachability for timed automata with
several weight functions was considered in [59] as well as optimal infinite runs
in [41,29].

Definition 3.1. A weighted timed automaton is a tupleA = (L, `0, F, C,Σ, I, E,R, P),
where (L, `0, F, C,Σ, I, E) is a timed automaton, R : L→ Z a location weight-rate
mapping, and P : E → Z an edge weight mapping.

The semantics of A is the weighted transition system JAK = (S, s0,Σ ∪
R≥0, T, w), where (S, s0,Σ ∪ R≥0, T) is the semantics of the underlying timed
automaton (L, `0, F, C,Σ, I, E), and the transition weights w : T → R are given
as follows:

w
(
(`, v) d−→ (`, v + d)

)
= dR(`)

w
(
(`, v) a−→ (`′, v′)

)
= P

(
`
ϕ,a,r−−−→ `′

)
with v |= ϕ, v′ = v[r]

We shall denote weighted edges and transitions by symbols e−→
w

to illustrate an
edge or a transition labeled e with weight w.

3.1. Optimal reachability

The objective of optimal reachability analysis is to find runs to a final location
with the lowest total weight as defined below.

`1

R = 4

`2

R = 2
`3

y ≤ 4 x := 0
a P = 1

x ≤ 2 ∧ y ≥ 3

c P = 4

y ≤ 4x := 0 b

Figure 9. A weighted timed automaton with two clocks.

Example 3.1. Figure 9 shows a simple weighted timed automaton with final lo-
cation `3. Below we give a few examples of accepting runs, where we identify
valuations v : {x, y} → R≥0 with their values (v(x), v(y)). The total weights of
the runs given here are 17 and 11.

(`1, 0, 0) 3−→
12

(`1, 3, 3) a−→
1

(`2, 0, 3) c−→
4

(`3, 0, 3)

(`1, 0, 0) a−→
1

(`2, 0, 0) 3−→
6

(`2, 3, 3) b−→
0

(`2, 0, 3) c−→
4

(`3, 0, 3)

Definition 3.2. The total weight of a finite run ρ = s0 −−→
w1

s1 −−→
w2
· · · −−→

wk

sk in a
weighted transition system is w(ρ) =

∑k
i=1 wk.

We are now in a position to state the problem with which we are concerned
here: We want to find accepting runs with minimum total weight in a weighted
timed automaton A. However due to the possible use of strict clock constraints
on edges and in locations of A, the minimum total weight might not be realizable,
i.e. there might be no run which achieves it. For this reason, one also needs to
consider (infinite) sets of runs and the infimum of their members’ total weights:

Problem 3.1 (Optimal reachability). Given a weighted timed automaton A, com-
pute W = inf

{
w(ρ)

∣∣ ρ accepting run in A
}

and a set P of accepting runs for
which infρ∈P w(ρ) = W .

The key ingredient in the proof of the following theorem is the introduction
of weighted regions in [18]. A weighted region is a region as of Definition 2.16
enriched with an affine cost function describing in a finite manner the cost of
reaching any point within it. This notion allows to define the weighted region
automaton associated with a weighted timed automaton, and one can then show
that optimal reachability can be computed in the weighted region automaton.

Theorem 3.3 ([18]). The optimal reachability problem is computable for weighted
timed automata with non-negative weights.

Similar to the notion of regions for timed automata, the number of weighted
regions is exponential in the number of clocks as well as in the maximal constants
of the timed automaton. Hence a notion of weighted zone — a zone extended with

R = (1, 4)

x ≤ 2

`1
R = (2, 1)

x ≤ 3

`2

y ≤ 2

`3
y := 0 a

x ≥ 2 ∧ y ≥ 1

y := 0 b

Figure 10. A doubly weighted timed automaton with two clocks.

an affine cost function — was introduced [53] together with an efficient, sym-
bolic A∗-algorithm for searching for cost-optimal tracing using branch-and-bound
techniques. In particular, efficient means of generalizing the notion of symbolic
successor to incorporate the affine cost functions were given.

During the symbolic exploration, several small linear-programming problems
in terms of determining the minimal value of the cost function over the given
zone have to be dealt with. Given that the constraints of these problems are sim-
ple difference constraints, it turns out that substantial gain in performance may
be achieved by solving the dual problem of minimum-cost flow [67]. The newly
emerged branch UppAal Cora provides an efficient tool for cost-optimal reach-
ability analysis, applying the above data structures and algorithms and allowing
the user to guide and heuristically prune the search.

3.2. Multi-weighted timed automata

Definition 3.4. An doubly weighted timed automaton is a tuple

A = (L, `0, F, C,Σ, I, E,R, P)

where (L, `0, F, C,Σ, I, E) is a timed automaton, R : L → Z
2 a location weight-

rate mapping, and P : E → Z
2 an edge weight mapping.

The semantics of a doubly weighted timed automaton is a doubly weighted
transition system defined similarly to Definition 3.1, and the total weight of finite
paths is defined accordingly as a pair; we shall refer to the total weights as w1 and
w2 respectively. These definitions have natural generalizations to multi-weighted
timed automata with more than two weight coordinates.

The objective of conditional reachability analysis is to find runs to a final
location with the lowest total weight in the first weight coordinate while satisfying
a constraint on the other weight coordinate.

Example 3.2. Figure 10 depicts a simple doubly weighted timed automaton with
final location `3. Under the constraint w2 ≤ 3, the optimal run of the automaton
can be seen to be

(`1, 0, 0)
1/3−−−→

(1
3 ,

4
3)

(`1, 1/3, 1/3) a−→ (`2, 1/3, 0)
5/3−−−−→

(10
3 ,

5
3)

(`2, 2, 5/3) b−→ (`3, 2, 0)

with total weight
(

11
3 , 3

)
.

The precise formulation of the conditional optimal reachability problem is as
follows, where we again need to refer to (possibly infinite) sets of runs:

R = 2
x ≤ 3

H
R = 5
x ≤ 3

M
R = 9
L

x = 3 x := 0

d

x = 3

d

y ≥ 2 x, y := 0

a P = 2

y ≥ 2 x, y := 0

a P = 1

Figure 11. A weighted timed automaton modelling a simple production system.

Problem 3.2 (Conditional optimal reachability). Given a doubly weighted timed
automaton A and M ∈ Z, compute W = inf

{
w1(ρ)

∣∣ ρ accepting run in A,
w2(ρ) ≤ M} and a set P of accepting runs such that w2(ρ) ≤ M for all ρ ∈ P
and infρ∈P w(ρ) = W .

Theorem 3.5 ([58,59]). The conditional optimal reachability problem is computa-
ble for doubly weighted timed automata with non-negative weights and without
weights on edges.

The proof of the above theorem rests on a direct generalization of weighted to
doubly-weighted zones. An extension can be found in [59], where it is shown that
also the Pareto frontier, i.e. the set of cost vectors which cannot be improved in
any cost variable, can be computed.

3.3. Optimal infinite runs

In this section we shall be concerned with computing optimal infinite runs in
(doubly) weighted timed automata. We shall treat both the limit ratio viewpoint
discussed in [29] and the discounting approach of [41].

Example 3.3. Figure 11 shows a simple production system modelled as a weighted
timed automaton. The system has three modes of production, High, Medium,
and Low. The weights model the cost of production, so that the High production
mode has a low cost, which is preferable to the high cost of the Low production
mode. After operating in a High or Medium production mode for three time
units, production automatically degrades (action d) to a lower mode. When in
Medium or Low production mode, the system can be attended to (action a),
which advances it to a higher mode.

The objective of optimal-ratio analysis is to find an infinite run in a dou-
bly weighted timed automaton which minimizes the ratio between the two total
weights. This will be formalized below.

Definition 3.6. The total ratio of a finite path ρ = s0
w1−−→
z1

s1
w2−−→
z2
· · · wk−−→

zk

sk in a

doubly weighted transition system is

Γ(ρ) =
∑k
i=1 wk∑k
i=1 zk

The total ratio of an infinite path ρ = s0
w1−−→
z1

s1
w2−−→
z2
· · · is

Γ(ρ) = lim inf
k→∞

Γ(s0 → · · · → sk)

A special case of optimal-ratio analysis is given by weight-per-time models,
where the interest is in minimizing total weight per accumulated time. The exam-
ple provided in this section is a case of this. In the setting of optimal-ration anal-
ysis, these can be modelled as doubly weighted timed automata with R2(`) = 1
and P2(e) = 0 for all locations ` and edges e.

Example 3.3 (continued). In the timed automaton of Figure 11, the following
cyclic behaviour provides an infinite run ρ:

(H, 0, 0) 3−→ (H, 3, 3) d−→ (M, 0, 3) 3−→ (M, 3, 6) d−→ (L, 3, 6) 1−→

(L, 4, 7) a−→ (M, 0, 0) 3−→ (M, 3, 3) a−→ (H, 0, 0) −→ · · ·

Taking the weight-per-time viewpoint, the total ratio of ρ is Γ(ρ) = 4.8.

Problem 3.3 (Minimum infinite ratio). Given a doubly weighted timed automa-
ton A, compute W = inf

{
Γ(ρ)

∣∣ π infinite run in A
}

and a set P of infinite runs
for which infπ∈P Γ(π) = W . ¿¿¿¿¿¿¿ .r180

The main tool in the proof of the following theorem is the introduction of the
corner-point abstraction of a timed automaton in [29]. This is a finite refinement
of the region automaton of Definition 2.16 in which one also keeps track of the
corner points of regions. One can then show that any infinite run with minimum
ratio must pass through corner points of regions, hence these can be found in the
corner-point abstraction by an algorithm first proposed in [51].

The technical condition in the theorem that the second weight coordinate
be strongly diverging means that any infinite run ρ in the closure of the timed
automaton in question satisfy w2(ρ) =∞, see [29] for details.

Theorem 3.7 ([29]). The minimum infinite ratio problem is computable for doubly
weighted timed automata with non-negative and strongly diverging second weight
coordinate.

For discount-optimal analysis, the objective is to find an infinite run in a
weighted timed automaton which minimizes the discounted total weight as defined
below. The point of discounting is that the weight of actions is discounted with
time, so that the impact of an event decreases, the further in the future it takes
place.

In the definition below, ε is the empty run, and (`, v) → π denotes the con-
catenation of the transition (`, v)→ with the run π.

Definition 3.8. The discounted total weight of finite runs in a weighted timed
automaton under discounting factor λ ∈ [0, 1[is given inductively by

wλ(ε) = 0

wλ
(
(`, v) a−→

P
ρ
)

= P + wλ(ρ)

wλ
(
(`, v) d−→ ρ

)
= R(`)

∫ d

0

λτdτ + λdwλ(ρ)

The discounted total weight of an infinite run ρ = (`0, v0) d1−→ (`0, v0 + d1)
a1
−→
P1(`1, v1) −→ · · · is

wλ(ρ) = lim
k→∞

wλ
(
(`0, v0) −→ · · · ak−−→

Pk

(`k, vk)
)

provided that the limit exists.

Example 3.3 (continued). The discounted total weight of the infinite run ρ in
the timed automaton of Figure 11 satisfies the following equality, where It =∫ t

0
λτdτ = − 1

lnλ (1− λt):

wλ(ρ) = 2I3 + λ3(5I3 + λ3(9I1 + λ(1 + 5I3 + λ3(2 + wλ(ρ)))))

With a discounting factor of λ = .9 for example, the discounted total weight of ρ
would hence be wλ(ρ) ≈ 40.5.

Problem 3.4 (Minimum discounted weight). Given a weighted timed automaton
A and λ ∈ [0, 1[, compute W = inf

{
wλ(ρ)

∣∣ π infinite run in A
}

and a set P of
infinite runs for which infπ∈P wλ(π) = W . ¿¿¿¿¿¿¿ .r180

The proof of the following theorem rests again on the corner-point abstraction,
and on a result in [10]. The technical condition that the timed automaton be
time-divergent is analogous to the condition on the second weight coordinate in
Theorem 3.7.

Theorem 3.9 ([41]). The minimum discounted weight problem is computable for
time-divergent weighted timed automata with non-negative weights and rational
λ.

4. Timed games

Recently, substantial effort has been made towards the synthesis of winning strate-
gies for timed games with respect to safety and reachability control objectives.
From known region-based decidability results, efficient on-the-fly algorithms have
been developed [68,34] and implemented in the newest branch UppAal Tiga.

For timed games, as for untimed ones, transitions are either controllable or
uncontrollable (i.e. under the control of an environment), and the problem is to
synthesize a strategy for when to take which (enabled) controllable transitions
in order that a given objective is guaranteed regardless of the behaviour of the
environment.

`1 `2 `3 `4

`5 `6

x > 1 u1

x ≤ 1
c1

x < 1 x := 0u2

x < 1
u3

x ≥ 2 c2

c3

x ≤ 1c4

Figure 12. A timed game with one clock. Controllable edges (with actions from Σc) are solid,

uncontrollable edges (with actions from Σu) are dashed.

Definition 4.1. A timed game is a tuple (L, `0, F, C,Σc,Σu, I, E) for which the
tuple (L, `0, F, C,Σ = Σc ∪ Σu, I, E) is a timed automaton.

Edges with actions in Σc are said to be controllable, those with actions in Σu
are uncontrollable.

Example 4.1. Figure 12 provides an example of a timed game. Here, Σc =
{c1, c2, c4} and Σ2 = {u1, u2, u3}, and the controllable edges are drawn with solid
lines, the uncontrollable ones with dashed lines.

We only treat reachability games here, where the goal of the game is to reach
a final location. There is also a somewhat dual notion of safety games, where one
instead wants to avoid final locations, see [34] for details.

We need the notion of strategy ; essentially, a strategy provides instructions
for which controllable edge to take, or whether to wait, in a given state:

Definition 4.2. A strategy for a timed game A = (L, `0, F, C,Σc,Σu, I, E) is a
partial mapping σ from finite runs of A to Σc ∪ {δ}, where δ /∈ Σ, such that for
any run ρ = (`0, v0)→ · · · → (`k, vk),

• if σ(ρ) = δ, then (`, v) d−→ (`, v + d) in JAK for some d > 0, and
• if σ(ρ) = a, then (`, v) a−→ (`′, v′) in JAK.

A strategy σ is said to be memoryless if σ(ρ) only depends on the last state

of ρ, i.e. if ρ1 = (`0, v0) d1−→ (`0, v0 + d1) → · · · → (`k, vk), ρ2 = (`0, v0)
d′1−→

(`0, v0 + d′1)→ · · · → (`k, vk) imply σ(ρ1) = σ(ρ2).

An outcome of a strategy is any run which adheres to its instructions in the
obvious manner:

Definition 4.3. A run (`0, v0) d1−→ (`0, v0 + d1) → · · · → (`k, vk) in a timed game
A = (L, `0, F, C,Σc,Σu, I, E) is said to be an outcome of a strategy σ provided
that

• for all (`i, vi)
d−→ (`i, vi + d) and for all d′ < d, we have σ

(
(`0, v0)→ · · · →

(`i, vi + d′)
)

= δ, and
• for all (`i, vi + d) a−→ (`i+1, vi+1) for which a ∈ Σc, we have σ

(
(`0, v0) →

· · · → (`i, v′i)
)

= a.

An outcome is said to be maximal if `k ∈ F , or if (`k, vk) a−→ (`k+1, vk+1) implies
a ∈ Σu.

Hence an outcome is maximal if it stops in a final state, or if no controllable
actions are available at its end. An underlying assumption is that uncontrollable
actions cannot be forced, hence a maximal outcome which does not end in a final
state may “get stuck” in a non-final state. The aim of reachability games is to
find strategies all of whose maximal outcomes end in a final state:

Definition 4.4. A strategy is said to be winning if any of its maximal outcomes is
an accepting run.

Example 4.1 (continued). The following memoryless strategy is winning for the
reachability game on the timed game from Figure 12:

σ(`1, v) =

{
δ if v(x) 6= 1
c1 if v(x) = 1

σ(`2, v) =

{
δ if v(x) < 2
c2 if v(x) ≥ 2

σ(`3, v) =

{
δ if v(x) < 1
c3 if v(x) ≥ 1

σ(`4, v) =

{
δ if v(x) 6= 1
c4 if x(x) = 1

Problem 4.1 (Reachability game). Given a timed game A, does there exist a win-
ning strategy for A?

An important ingredient in the proof of the following theorem is the fact
that for reachability (as well as safety) games, it is sufficient to consider mem-
oryless strategies. This is not the case for other, more subtle, control objectives
(e.g. counting properties modulo some N) as well as for the synthesis of winning
strategies under partial observability.

Theorem 4.5 ([63,12]). The reachability game is decidable for timed games.

In [35] the on-the-fly algorithm applied in UppAal Tiga has been extended
to timed games under partial observability.

The field of timed games is a very active research area. Research has been
conducted towards the synthesis of optimal winning strategies for reachability
games on weighted timed games. In [5,30] computability of optimal strategies is
shown under a certain condition of strong cost non-zenoness, requiring that the
total weight diverges with a given minimum rate per time. Later undecidability
results [33,28] show that for weighted timed games with three or more clocks
this condition (or a similar one) is necessary. Lately [31] proves that optimal
reachability strategies are computable for one-clock weighted timed games, though
there is an unsettled (large) gap between the known lower bound complexity
P and an upper bound of 3EXPTIME.

References

[1] Yasmina Abdeddäım, Abdelkarim Kerbaa, and Oded Maler. Task graph scheduling using

timed automata. In IPDPS, page 237. IEEE Computer Society, 2003.
[2] Luca Aceto, Anna Ingólfsdóttir, Kim G. Larsen, and Jǐŕı Srba. Reactive Systems. Cam-

bridge University Press, 2007.
[3] Xavier Allamigeon, Stephane Gaubert, and Eric Goubault. Inferring min and max in-

variants using max-plus polyhedra. In Maŕıa Alpuente and Germán Vidal, editors, SAS,

volume 5079 of Lecture Notes in Computer Science, pages 189–204. Springer-Verlag, 2008.
[4] Rajeev Alur. Timed automata. In Halbwachs and Peled [43], pages 8–22.

[5] Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability for weighted

timed games. In Josep Dı́az, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, edi-
tors, ICALP, volume 3142 of Lecture Notes in Computer Science, pages 122–133. Springer-

Verlag, 2004.

[6] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking for real-time sys-
tems. In LICS, pages 414–425. IEEE Computer Society, 1990.

[7] Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In Mike

Paterson, editor, ICALP, volume 443 of Lecture Notes in Computer Science, pages 322–
335. Springer-Verlag, 1990.

[8] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

[9] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted timed

automata. In Benedetto and Sangiovanni-Vincentelli [23], pages 49–62.
[10] D. Andersson. Improved combinatorial algorithms for discounted payoff games. Master’s

thesis, Uppsala University, Department of Information Technology, 2006.

[11] Eugene Asarin, Marius Bozga, Alain Kerbrat, Oded Maler, Amir Pnueli, and Anne Rasse.
Data-structures for the verification of timed automata. In Oded Maler, editor, HART,

volume 1201 of Lecture Notes in Computer Science, pages 346–360. Springer-Verlag, 1997.

[12] Eugene Asarin, Oded Maler, and Amir Pnueli. Symbolic controller synthesis for discrete
and timed systems. In Panos J. Antsaklis, Wolf Kohn, Anil Nerode, and Shankar Sastry,

editors, Hybrid Systems, volume 999 of Lecture Notes in Computer Science, pages 1–20.

Springer-Verlag, 1994.
[13] Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim G. Larsen, Paul Pettersson,

and Wang Yi. Uppaal implementation secrets. In Werner Damm and Ernst-Rüdiger
Olderog, editors, FTRTFT, volume 2469 of Lecture Notes in Computer Science, pages
3–22. Springer-Verlag, 2002.

[14] Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelánek. Lower and upper
bounds in zone based abstractions of timed automata. In Jensen and Podelski [49], pages

312–326.

[15] Gerd Behrmann, Ed Brinksma, Martijn Hendriks, and Angelika Mader. Production
scheduling by reachability analysis - a case study. In IPDPS. IEEE Computer Society,

2005.
[16] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim G. Larsen,

and Didier Lime. Uppaal-tiga: Time for playing games! In Werner Damm and Holger
Hermanns, editors, CAV, volume 4590 of Lecture Notes in Computer Science, pages 121–

125. Springer-Verlag, 2007.
[17] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on Uppaal. In Marco

Bernardo and Flavio Corradini, editors, SFM, volume 3185 of Lecture Notes in Computer
Science, pages 200–236. Springer-Verlag, 2004.

[18] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul Pettersson, Judi
Romijn, and Frits W. Vaandrager. Minimum-cost reachability for priced timed automata.
In Benedetto and Sangiovanni-Vincentelli [23], pages 147–161.

[19] Gerd Behrmann, Thomas Hune, and Frits W. Vaandrager. Distributing timed model

checking - how the search order matters. In E. Allen Emerson and A. Prasad Sistla, editors,
CAV, volume 1855 of Lecture Notes in Computer Science, pages 216–231. Springer-Verlag,

2000.

[20] Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi. Efficient

timed reachability analysis using clock difference diagrams. In Halbwachs and Peled [43],

pages 341–353.
[21] Gerd Behrmann, Kim G. Larsen, and Radek Pelánek. To store or not to store. In Warren

A. Hunt Jr. and Fabio Somenzi, editors, CAV, volume 2725 of Lecture Notes in Computer
Science, pages 433–445. Springer-Verlag, 2003.

[22] Gerd Behrmann, Kim G. Larsen, and Jacob Illum Rasmussen. Optimal scheduling using

priced timed automata. SIGMETRICS Performance Evaluation Review, 32(4):34–40,
2005.

[23] Maria Domenica Di Benedetto and Alberto L. Sangiovanni-Vincentelli, editors. Hybrid

Systems: Computation and Control, 4th International Workshop, HSCC 2001, Rome,
Italy, March 28-30, 2001, Proceedings, volume 2034 of Lecture Notes in Computer Science.

Springer-Verlag, 2001.

[24] Johan Bengtsson and Wang Yi. On clock difference constraints and termination in reacha-
bility analysis of timed automata. In Jin Song Dong and Jim Woodcock, editors, ICFEM,

volume 2885 of Lecture Notes in Computer Science, pages 491–503. Springer-Verlag, 2003.

[25] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In Jörg
Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency and

Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 87–124. Springer-
Verlag, 2003.

[26] Béatrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. Characterization of the

expressive power of silent transitions in timed automata. Fundam. Inform., 36(2–3):145–
182, 1998.

[27] Patricia Bouyer. Untameable timed automata! In Helmut Alt and Michel Habib, editors,

STACS, volume 2607 of Lecture Notes in Computer Science, pages 620–631. Springer-
Verlag, 2003.

[28] Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability results

on weighted timed automata. Inf. Process. Lett., 98(5):188–194, 2006.
[29] Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. Staying alive as cheaply as possible.

In Rajeev Alur and George J. Pappas, editors, HSCC, volume 2993 of Lecture Notes in

Computer Science, pages 203–218. Springer-Verlag, 2004.
[30] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal strategies

in priced timed game automata. In Kamal Lodaya and Meena Mahajan, editors, FSTTCS,
volume 3328 of Lecture Notes in Computer Science, pages 148–160. Springer-Verlag, 2004.

[31] Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob Illum Rasmussen. Almost

optimal strategies in one clock priced timed games. In S. Arun-Kumar and Naveen Garg,
editors, FSTTCS, volume 4337 of Lecture Notes in Computer Science, pages 345–356.

Springer-Verlag, 2006.

[32] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and Sergio
Yovine. Kronos: A model-checking tool for real-time systems. In Alan J. Hu and Moshe Y.

Vardi, editors, CAV, volume 1427 of Lecture Notes in Computer Science, pages 546–550.

Springer-Verlag, 1998.
[33] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On optimal timed strate-

gies. In Pettersson and Yi [66], pages 49–64.

[34] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier Lime.
Efficient on-the-fly algorithms for the analysis of timed games. In Mart́ın Abadi and Luca

de Alfaro, editors, CONCUR, volume 3653 of Lecture Notes in Computer Science, pages
66–80. Springer-Verlag, 2005.

[35] Franck Cassez, Alexandre David, Kim G. Larsen, Didier Lime, and Jean-François Raskin.

Timed control with observation based and stuttering invariant strategies. In Kedar S.
Namjoshi, Tomohiro Yoneda, Teruo Higashino, and Yoshio Okamura, editors, ATVA, vol-

ume 4762 of Lecture Notes in Computer Science, pages 192–206. Springer-Verlag, 2007.

[36] Kārlis Čerāns. Decidability of bisimulation equivalences for parallel timer processes. In
Gregor von Bochmann and David K. Probst, editors, CAV, volume 663 of Lecture Notes

in Computer Science, pages 302–315. Springer-Verlag, 1992.

[37] Costas Courcoubetis and Mihalis Yannakakis. Minimum and maximum delay problems in

real-time systems. In Larsen and Skou [60], pages 399–409.

[38] Pedro R. D’Argenio, Joost-Pieter Katoen, Theo C. Ruys, and Jan Tretmans. The bounded

retransmission protocol must be on time! In Ed Brinksma, editor, TACAS, volume 1217
of Lecture Notes in Computer Science, pages 416–431. Springer-Verlag, 1997.

[39] David L. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Joseph Sifakis, editor, Automatic Verification Methods for Finite State Systems, volume

407 of Lecture Notes in Computer Science, pages 197–212. Springer-Verlag, 1989.

[40] Juhan P. Ernits. Memory arbiter synthesis and verification for a radar memory interface
card. Nord. J. Comput., 12(2):68–88, 2005.

[41] Uli Fahrenberg and Kim G. Larsen. Discount-optimal infinite runs in priced timed au-

tomata. Electr. Notes Theor. Comput. Sci., 2008. To be published.
[42] Ansgar Fehnker. Scheduling a steel plant with timed automata. In RTCSA, pages 280–286.

IEEE Computer Society, 1999.

[43] Nicolas Halbwachs and Doron Peled, editors. Computer Aided Verification, 11th Interna-
tional Conference, CAV ’99, Trento, Italy, July 6-10, 1999, Proceedings, volume 1633 of

Lecture Notes in Computer Science. Springer-Verlag, 1999.

[44] Michael R. Hansen, Jan Madsen, and Aske Wiid Brekling. Semantics and verification
of a language for modelling hardware architectures. In Cliff B. Jones, Zhiming Liu, and

Jim Woodcock, editors, Formal Methods and Hybrid Real-Time Systems, volume 4700 of
Lecture Notes in Computer Science, pages 300–319. Springer-Verlag, 2007.

[45] Martijn Hendriks. Model checking the time to reach agreement. In Pettersson and Yi [66],

pages 98–111.
[46] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic model

checking for real-time systems. Inf. Comput., 111(2):193–244, 1994.

[47] Thomas Hune, Kim G. Larsen, and Paul Pettersson. Guided synthesis of control programs
using uppaal. Nord. J. Comput., 8(1):43–64, 2001.

[48] Henrik Ejersbo Jensen, Kim G. Larsen, and Arne Skou. Scaling up Uppaal automatic veri-

fication of real-time systems using compositionality and abstraction. In Mathai Joseph, ed-
itor, FTRTFT, volume 1926 of Lecture Notes in Computer Science, pages 19–30. Springer-

Verlag, 2000.

[49] Kurt Jensen and Andreas Podelski, editors. Tools and Algorithms for the Construction
and Analysis of Systems, 10th International Conference, TACAS 2004, Held as Part

of the Joint European Conferences on Theory and Practice of Software, ETAPS 2004,
Barcelona, Spain, March 29 - April 2, 2004, Proceedings, volume 2988 of Lecture Notes

in Computer Science. Springer-Verlag, 2004.

[50] Jan Jakob Jessen, Jacob Illum Rasmussen, Kim G. Larsen, and Alexandre David. Guided
controller synthesis for climate controller using uppaal tiga. In Jean-François Raskin

and P. S. Thiagarajan, editors, FORMATS, volume 4763 of Lecture Notes in Computer

Science, pages 227–240. Springer-Verlag, 2007.
[51] Richard M. Karp. A characterization of the minimum cycle mean in a digraph. Disc.

Math., 23(3):309–311, 1978.

[52] Leslie Lamport. Real-time model checking is really simple. In Dominique Borrione and
Wolfgang J. Paul, editors, CHARME, volume 3725 of Lecture Notes in Computer Science,

pages 162–175. Springer-Verlag, 2005.

[53] Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas Hune, Paul
Pettersson, and Judi Romijn. As cheap as possible: Efficient cost-optimal reachability for

priced timed automata. In Gérard Berry, Hubert Comon, and Alain Finkel, editors, CAV,
volume 2102 of Lecture Notes in Computer Science, pages 493–505. Springer-Verlag, 2001.

[54] Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Efficient verification of

real-time systems: compact data structure and state-space reduction. In IEEE Real-Time
Systems Symposium, pages 14–24. IEEE Computer Society, 1997.

[55] Kim G. Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou. Testing real-time

embedded software using uppaal-tron: an industrial case study. In Wayne Wolf, editor,
EMSOFT, pages 299–306. ACM, 2005.

[56] Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi. Clock difference diagrams.

Nord. J. Comput., 6(3):271–298, 1999.

[57] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. STTT, 1(1–2):134–

152, 1997.

[58] Kim G. Larsen and Jacob Illum Rasmussen. Optimal conditional reachability for multi-
priced timed automata. In Vladimiro Sassone, editor, FoSSaCS, volume 3441 of Lecture

Notes in Computer Science, pages 234–249. Springer-Verlag, 2005.
[59] Kim G. Larsen and Jacob Illum Rasmussen. Optimal reachability for multi-priced timed

automata. Theor. Comput. Sci., 390(2-3):197–213, 2008.

[60] Kim G. Larsen and Arne Skou, editors. Computer Aided Verification, 3rd International
Workshop, CAV ’91, Aalborg, Denmark, July, 1-4, 1991, Proceedings, volume 575 of

Lecture Notes in Computer Science. Springer-Verlag, 1992.

[61] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal design and analysis of a gear
controller. In Bernhard Steffen, editor, TACAS, volume 1384 of Lecture Notes in Computer

Science, pages 281–297. Springer-Verlag, 1998.

[62] Oded Maler. Timed automata as an underlying model for planning and scheduling. In
Maria Fox and Alexandra M. Coddington, editors, AIPS Workshop on Planning for Tem-

poral Domains, pages 67–70, 2002.

[63] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers for
timed systems (an extended abstract). In STACS, pages 229–242, 1995.

[64] Jesper B. Møller, Jakob Lichtenberg, Henrik Reif Andersen, and Henrik Hulgaard. Differ-
ence decision diagrams. In Jörg Flum and Mario Rodŕıguez-Artalejo, editors, CSL, volume

1683 of Lecture Notes in Computer Science, pages 111–125. Springer-Verlag, 1999.

[65] Joël Ouaknine and James Worrell. Universality and language inclusion for open and closed
timed automata. In Oded Maler and Amir Pnueli, editors, HSCC, volume 2623 of Lecture

Notes in Computer Science, pages 375–388. Springer-Verlag, 2003.

[66] Paul Pettersson and Wang Yi, editors. Formal Modeling and Analysis of Timed Systems,
Third International Conference, FORMATS 2005, Uppsala, Sweden, September 26-28,

2005, Proceedings, volume 3829 of Lecture Notes in Computer Science. Springer-Verlag,

2005.
[67] Jacob Illum Rasmussen, Kim G. Larsen, and K. Subramani. Resource-optimal scheduling

using priced timed automata. In Jensen and Podelski [49], pages 220–235.

[68] Stavros Tripakis and Karine Altisen. On-the-fly controller synthesis for discrete and dense-
time systems. In Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors, World

Congress on Formal Methods, volume 1708 of Lecture Notes in Computer Science, pages
233–252. Springer-Verlag, 1999.

[69] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic verification of real-time com-

municating systems by constraint-solving. In Dieter Hogrefe and Stefan Leue, editors,
FORTE, volume 6 of IFIP Conference Proceedings, pages 243–258. Chapman & Hall,

1994.

