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Abstract 
Video communication systems traditionally offer limited 
or no experience of eye contact due to the offset 
between cameras and the screen. In response, we are 
experimenting with the use of multiple Kinect cameras 
for generating a 3D model of the user, and then 
rendering a virtual camera angle giving the user an 
experience of eye contact. In doing this, we use 
concepts from KinectFusion, such as a volumetric voxel 
data representation and GPU accelerated ray tracing for 
viewpoint rendering. This achieves a detailed 3D model 
from a noisy source, and delivers a promising video 
output in terms of visual quality, lag and frame rate, 
enabling the experience of eye contact and face gaze. 
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Introduction 
Eye contact plays an important role in interpersonal 
face-to-face communication [3]. Contemporary video 
communication systems, however, offer very limited 
experience of eye contact with a remote person due to 
their physical setup, which involves an offset between 
the camera and the screen. According to [11] if this 
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offset is greater than 5 degrees, at conversational 
distance, then the experience of eye contact is lost. 
Instead, the remote person appears to be looking 
slightly away from their communication partner, 
depending on where the camera is placed. Placing a 
physical camera where the remote viewer’s eyes are 
depicted on the screen is obviously challenging, if not 
impossible, as it would either occlude, or be occluded 
by, the screen. As an alternative approach we have 
explored the feasibility of creating a virtual camera 
view from the correct perspective. To achieve this we 
have used a number of Microsofts Kinect cameras 
placed along the edges of the screen to generate a real 
time 3D model, and then rendered a video stream from 
the desired camera perspective. Here we introduce our 
prototype system called EyeGaze, and illustrate the 
quality of the rendering output.  

Related Work 
Face gaze and eye contact has been subject of research 
in social psychology since the mid 1960s. Its 
significance in human relationships and communication 
has been summarized in, for example [3]. Firstly, 
people’s gazing behaviours have been shown to 
influence other people’s judgements of liking/attraction, 
attentiveness, competence social skills, credibility, and 
dominance, and also as an expression of the intensity 

of their feelings, and of their intimacy. Secondly, gazing 
behaviour has been shown to provide an important 
regulatory function in communication, such as turn 
taking and synchronization between verbal and kinesic 
behaviours. As a third factor, gaze and eye contact has 
also been shown to have an important social control 
function in relation to acts like persuasion, deception, 
ingratiation, threat, dominance, avoidance, and 
compliance. Since these communicative roles of gaze 
and eye contact are largely lost when communicating 
over video, several strands of research has explored 
technologies that facilitate better mediation of them. 

One of the earliest examples is the Hydra system [10] 
that preserves participants’ spatial arrangement in a 
distributed multiparty meeting. More recent examples 
include “blended spaces” like HP Halo and BISi where 
physical placement of displays, cameras and furniture 
creates an experience of two or more locations blending 
into one [7, 9]. As alternative to well-considered spatial 
arrangement and physical configurations, and the use 
of raw camera feeds, other research has explored the 
possibility of rendering live virtual viewpoints from 
multiple cameras. An early example of this is [8] where 
a virtual camera view is calculated based on 
stereoscopic analysis. More recently this approach has 
been extended with the use of depth sensors for better 

 
Figure 1. Virtual camera views rendered by EyeGaze for enabling eye contact over video.  



 

 

results, such as in [12]. Very visually promising results 
are also presented in [4] where a Kinect is used to 
rotate a facial texture in a video frame making it 
appear as if the person is looking straight at the 
camera. Notably [5] demonstrates the capturing of an 
entire environment into a 3D model, and subsequent 
rendering of virtual viewpoints in real time. 

EyeGaze 
Our system, EyeGaze, allows eye contact and face gaze 
between two people over video by creating visually 
realistic representations of the users from virtual 
camera views and rendering it in real time (Figure 1). 
The graphics pipeline of EyeGaze has two parts: 1) a 
merging algorithm storing data from cameras in a voxel 
grid, and 2) an engine for ray tracing the scene from a 
remote user’s perspective. Building on the work in [5], 
we have focussed our technical efforts on using a 
volumetric data representation. Specifically, we use a 
voxel data representation, which allows us to merge 
data from several Microsoft Kinect depth cameras, and 
improve the quality and completeness of the 3D model 
over time. In order to achieve high frame rates, we 
have constructed a GPU accelerated ray tracer that 
renders the model stored in the voxel grid and 
texturizes it using the RGB data captured by the Kinect. 

Volumetric Representation 
Using off-the-shelf hardware such as the Kinect 
involves some challenges with accuracy of depth data. 
To overcome this, we apply a Signed Distance Function 
(SDF) to encode geometry by describing the distance to 
the surface of the model, inspired by [1, 2]. The SDF is 
represented as a fixed resolution three-dimensional grid 
of volumetric pixels (voxels), where the position of a 
voxel is implicit in the grid. Each voxel holds a discrete 

SDF value, describing its proximity to the surface of the 
model. The actual surface is thus an implicit surface 
that can be calculated when needed by interpolating 
the SDF from several voxels adjacent to it. New 
distances can be merged into the SDF for each frame 
and from each Kinect camera used, allowing continuous 
refinement of the 3D model from multiple angles.   

Merging camera inputs 
The merging algorithm captures depth and colour 
frames from all Kinects, and then for each Kinect 
transform the voxels into camera space and project 
them into 2D positions on the Kinect camera's depth 
frame. It then calculates the distance between the 
voxel and the surface observed by the Kinect camera, 
and finally average the surface distances obtained from 
the depth frames with the weighted distance obtained 
from the voxel's truncated SDF value, and store it in 
the grid. Figure 2 illustrates the data obtained from two 
Kinect cameras placed either side of a person. The top 
row shows the output from the RGB camera. The 
middle row shows the corresponding 3D models 
generated from the depth camera. In the bottom row 
we have rotated the 3D models to view the face 
straight on. This illustrates that they are both 
incomplete, but also that they are complementary and 
partly overlapping, with each missing data that is 
contained in the other. Figure 3 shows the merged 3D 
model created from the two depth cameras. 

Ray tracing 
In order to obtain live video output we have 
constructed a GPU accelerated ray tracer that renders 
the 3D model stored in the voxel grid. Because natural 
light is a part of the texture, we do not need virtual 
lighting as in a traditional ray tracer. One of the 

 

Figure 2. Output from the RGB camera 
with corresponding 3D models 
generated from the depth camera. Note 
that the models are incomplete, but 
complementary and overlapping. 

 

Figure 3. The merged 3D model  



 

 

challenges during ray tracing is to decide which Kinect 
RGB camera should provide the texturing colour for this 
point. Each point in the scene may be captured by 
more than one Kinect, and thus we need to identify 
what Kinect has the best view of it. We base this 
decision on the angle between the surface normal of 
the intersection point and the vectors of the Kinect 
cameras, as illustrated in figure 4. Knowing the surface 
normal (n) of the point p, and the vector of each Kinect 
(a and b) we can identify what Kinect has the smallest 
angle of disparity, and hence the best view of p. In this 
example, the angle between n and b is smaller than 
the angle between n and a, telling us that the camera 
on the right side of the figure has the best data for 
texturing. The position of p is then transformed into the 
camera space for that Kinect, and perspective-
projected, to acquire the pixel coordinates (x, y) 
needed to lookup data in the RGB image captured by it. 

Quality and performance 
Figure 5 show the output from a traditional webcam 
placed on top of the screen (a), video output from a 
simple virtual camera approach (b), and rendered video 
from EyeGaze (c and d). The figure illustrates that 
EyeGaze is capable of producing a high quality virtual 
camera view of the user’s head and torso in good detail 
and enabling the experience of eye contact and face 
gaze. The difference between using one or two Kinect 
cameras for texturing is that two cameras provide more 
detail in “shaded” areas such as under the chin and in 
the eye sockets (figure 5d), while using only one 
camera results in those areas being blurred (figure 5c). 
As can be seen in figure 5d, our current texturing from 
two cameras does, however, create a bit of colouring-
noise, which requires some correctional filtering.  

  
(a) Camera view from a 
webcam on top of the screen  

(b) Virtual camera view using a 
simple approach  

  
(c) EyeGaze - with texture 
from one Kinect  

(d) EyeGaze - with texture 
from two Kinects 

Figure 5. Video output from webcam on top of the screen (a), 
a simple virtual camera approach (b), and EyeGaze (c and d) 

Using depth-sensing cameras, volumetric 
representation within a Signed Distance Function, and 
exploring the powers of the GPU, EyeGaze is able to 
capture, model and render with a time lag of less than 
40 ms and a frame rate of up to 25 fps. This means 
that the system is experienced as working in real time. 

Using multiple Kinect cameras, EyeView can reliably 
capture enough perspective of the user’s face and torso 
to render a realistic face-on view with very little 

 

Figure 4. Using vectors to decide 
what camera provides best data for 
texturing. 

 



 

 

missing data in each video frame. Due to the way 
volumetric data is represented EyeGaze is also able to 
“remember” objects and areas when they are 
temporarily occluded, which minimizes the number of 
video frames with missing data. 

Model quality 
Using a volumetric approach for storing information 
about the users and the background allows us to 
achieve a high quality image from a noisy input source. 
This is illustrated in the difference between figure 5b 
and 5c/d. Figure 5b shows a frame of texturized depth 
data from a single Kinect, where the model has been 
tilted to obtain a straight-on view. This results in a lot 
of missing information in the model, and therefore 
holes in the rendered video. In figure 5c/d we see a 
notable increase in model quality, with far less missing 
data. This is firstly because of the better coverage 
obtained with multiple cameras, but also because the 
volumetric approach allows us to compensate for the 
lack of data in one frame by reusing information from a 
previous one. Thereby, random misreading by the 
depth cameras have only very little effect on the model, 
and on the rendered video image. 

Frame rate 
For our current prototype we store the model in a 5123 
voxel grid and render at 1080p on an NVIDIA GeForce 
GTX 770 graphics card. The merging and ray tracing 
implementations are alternating in execution, limiting 
the output video to 30 fps. This will result in some 
frames being dropped due to timing constraints. While 
our frame rate does not match the performance in [5] 
it is still promising given the computation required for 
merging data and rendering video at this resolution. 

Conclusions and further work 
We have presented a gaze enabling video system that 
takes live depth data from two Microsoft Kinect 
cameras and renders a virtual camera view in real time. 
We have shown that using two Kinects, volumetric 
voxel data representations, concepts from KinectFusion 
[2], and exploring the power of GPUs for ray tracing, 
EyeGaze can create a visually convincing representation 
of a remote person from a virtual camera perspective 
enabling the experience of eye contact. EyeGaze 
renders this representation of the remote person in real 
time with low lag and promising frame rates. 

Our work with EyeGaze opens several avenues for 
further work. Firstly, we are exploring the effect of 
rendering the virtual camera view from a dynamic set 
of coordinates matching the exact location of the 
viewer’s eyes, creating an even more natural 
experience, as the visual perspective changes when you 
move your head, as it does face-to-face. We currently 
do this using the Kinects’ built-in skeletal tracking and 
feeding this data into the ray-tracer. The effect is 
indeed promising. However, some texture errors do 
occur when real time RGB data for a particular 
perspective is incomplete. We speculate that this may 
be solved by storing known texture maps, and then 
simply updating these in sync with the model.  

Related to this we are also exploring the rendering of a 
stereoscopic image, and displaying this to the remote 
user on a 3D screen. This is in principle a built-in 
potential of our approach, as one just needs to define 
two virtual camera views – for the left and right eye. 
However, there are some technical challenges of 
calibration and synchronization, as well as performance 
when rendering two streams of video rather than just 



 

 

one. Another potential of our approach is to render 
multiple perspectives for multiple remote viewers. This 
could be used to facilitate eye contact in meetings with 
several individual participants in a spatial arrangement 
similar to that of the Hydra system. If combined with 
multi-perspective capable screens [6] this could also be 
used to facilitate eye contact in meetings between 
groups of people, in a spatial arrangement similar to HP 
Halo and BISi. 

We have compared the experience of EyeGaze to face-
to-face communication and the use of Skype through 
two within-subject laboratory experiments with a total 
of 130 participants. Findings from these experiments 
are still being analyzed in detail, and will be published 
elsewhere, but preliminary results indicate that while 
face-to-face is still superior, EyeGaze has added value 
over the traditional video system in terms of eye 
contact, involvement, turn-taking and co-presence. 
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