

Eye Contact over Video

Abstract
Video communication systems traditionally offer limited
or no experience of eye contact due to the offset
between cameras and the screen. In response, we are
experimenting with the use of multiple Kinect cameras
for generating a 3D model of the user, and then
rendering a virtual camera angle giving the user an
experience of eye contact. In doing this, we use
concepts from KinectFusion, such as a volumetric voxel
data representation and GPU accelerated ray tracing for
viewpoint rendering. This achieves a detailed 3D model
from a noisy source, and delivers a promising video
output in terms of visual quality, lag and frame rate,
enabling the experience of eye contact and face gaze.

Author Keywords
Eye contact; gaze; virtual view camera; Kinect

ACM Classification Keywords
H.5.5. Group and Organization Interfaces: Computer-
supported cooperative work, Synchronous interaction.

Introduction
Eye contact plays an important role in interpersonal
face-to-face communication [3]. Contemporary video
communication systems, however, offer very limited
experience of eye contact with a remote person due to
their physical setup, which involves an offset between
the camera and the screen. According to [11] if this

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

CHI 2014, Apr 26 - May 01 2014, Toronto, ON, Canada
ACM 978-1-4503-2474-8/14/04.
http://dx.doi.org/10.1145/2559206.2581221

Jesper Kjeldskov
Computer Science Dept.
Socio+Interactive Design
Aalborg University, Denmark
jesper@cs.aau.dk

Jacob H. Smedegård
Computer Science Dept.
Socio+Interactive Design
Aalborg University, Denmark
jhaubach @cs.aau.dk

Thomas S. Nielsen
Computer Science Dept.
Socio+Interactive Design
Aalborg University, Denmark
primogens@gmail.com

Mikael B. Skov
Computer Science Dept.
Socio+Interactive Design
Aalborg University, Denmark
dubois@cs.aau.dk

Jeni Paay
Computer Science Dept.
Socio+Interactive Design
Aalborg University, Denmark
jeni@cs.aau.dk

offset is greater than 5 degrees, at conversational
distance, then the experience of eye contact is lost.
Instead, the remote person appears to be looking
slightly away from their communication partner,
depending on where the camera is placed. Placing a
physical camera where the remote viewer’s eyes are
depicted on the screen is obviously challenging, if not
impossible, as it would either occlude, or be occluded
by, the screen. As an alternative approach we have
explored the feasibility of creating a virtual camera
view from the correct perspective. To achieve this we
have used a number of Microsofts Kinect cameras
placed along the edges of the screen to generate a real
time 3D model, and then rendered a video stream from
the desired camera perspective. Here we introduce our
prototype system called EyeGaze, and illustrate the
quality of the rendering output.

Related Work
Face gaze and eye contact has been subject of research
in social psychology since the mid 1960s. Its
significance in human relationships and communication
has been summarized in, for example [3]. Firstly,
people’s gazing behaviours have been shown to
influence other people’s judgements of liking/attraction,
attentiveness, competence social skills, credibility, and
dominance, and also as an expression of the intensity

of their feelings, and of their intimacy. Secondly, gazing
behaviour has been shown to provide an important
regulatory function in communication, such as turn
taking and synchronization between verbal and kinesic
behaviours. As a third factor, gaze and eye contact has
also been shown to have an important social control
function in relation to acts like persuasion, deception,
ingratiation, threat, dominance, avoidance, and
compliance. Since these communicative roles of gaze
and eye contact are largely lost when communicating
over video, several strands of research has explored
technologies that facilitate better mediation of them.

One of the earliest examples is the Hydra system [10]
that preserves participants’ spatial arrangement in a
distributed multiparty meeting. More recent examples
include “blended spaces” like HP Halo and BISi where
physical placement of displays, cameras and furniture
creates an experience of two or more locations blending
into one [7, 9]. As alternative to well-considered spatial
arrangement and physical configurations, and the use
of raw camera feeds, other research has explored the
possibility of rendering live virtual viewpoints from
multiple cameras. An early example of this is [8] where
a virtual camera view is calculated based on
stereoscopic analysis. More recently this approach has
been extended with the use of depth sensors for better

Figure 1. Virtual camera views rendered by EyeGaze for enabling eye contact over video.

results, such as in [12]. Very visually promising results
are also presented in [4] where a Kinect is used to
rotate a facial texture in a video frame making it
appear as if the person is looking straight at the
camera. Notably [5] demonstrates the capturing of an
entire environment into a 3D model, and subsequent
rendering of virtual viewpoints in real time.

EyeGaze
Our system, EyeGaze, allows eye contact and face gaze
between two people over video by creating visually
realistic representations of the users from virtual
camera views and rendering it in real time (Figure 1).
The graphics pipeline of EyeGaze has two parts: 1) a
merging algorithm storing data from cameras in a voxel
grid, and 2) an engine for ray tracing the scene from a
remote user’s perspective. Building on the work in [5],
we have focussed our technical efforts on using a
volumetric data representation. Specifically, we use a
voxel data representation, which allows us to merge
data from several Microsoft Kinect depth cameras, and
improve the quality and completeness of the 3D model
over time. In order to achieve high frame rates, we
have constructed a GPU accelerated ray tracer that
renders the model stored in the voxel grid and
texturizes it using the RGB data captured by the Kinect.

Volumetric Representation
Using off-the-shelf hardware such as the Kinect
involves some challenges with accuracy of depth data.
To overcome this, we apply a Signed Distance Function
(SDF) to encode geometry by describing the distance to
the surface of the model, inspired by [1, 2]. The SDF is
represented as a fixed resolution three-dimensional grid
of volumetric pixels (voxels), where the position of a
voxel is implicit in the grid. Each voxel holds a discrete

SDF value, describing its proximity to the surface of the
model. The actual surface is thus an implicit surface
that can be calculated when needed by interpolating
the SDF from several voxels adjacent to it. New
distances can be merged into the SDF for each frame
and from each Kinect camera used, allowing continuous
refinement of the 3D model from multiple angles.

Merging camera inputs
The merging algorithm captures depth and colour
frames from all Kinects, and then for each Kinect
transform the voxels into camera space and project
them into 2D positions on the Kinect camera's depth
frame. It then calculates the distance between the
voxel and the surface observed by the Kinect camera,
and finally average the surface distances obtained from
the depth frames with the weighted distance obtained
from the voxel's truncated SDF value, and store it in
the grid. Figure 2 illustrates the data obtained from two
Kinect cameras placed either side of a person. The top
row shows the output from the RGB camera. The
middle row shows the corresponding 3D models
generated from the depth camera. In the bottom row
we have rotated the 3D models to view the face
straight on. This illustrates that they are both
incomplete, but also that they are complementary and
partly overlapping, with each missing data that is
contained in the other. Figure 3 shows the merged 3D
model created from the two depth cameras.

Ray tracing
In order to obtain live video output we have
constructed a GPU accelerated ray tracer that renders
the 3D model stored in the voxel grid. Because natural
light is a part of the texture, we do not need virtual
lighting as in a traditional ray tracer. One of the

Figure 2. Output from the RGB camera
with corresponding 3D models
generated from the depth camera. Note
that the models are incomplete, but
complementary and overlapping.

Figure 3. The merged 3D model

challenges during ray tracing is to decide which Kinect
RGB camera should provide the texturing colour for this
point. Each point in the scene may be captured by
more than one Kinect, and thus we need to identify
what Kinect has the best view of it. We base this
decision on the angle between the surface normal of
the intersection point and the vectors of the Kinect
cameras, as illustrated in figure 4. Knowing the surface
normal (n) of the point p, and the vector of each Kinect
(a and b) we can identify what Kinect has the smallest
angle of disparity, and hence the best view of p. In this
example, the angle between n and b is smaller than
the angle between n and a, telling us that the camera
on the right side of the figure has the best data for
texturing. The position of p is then transformed into the
camera space for that Kinect, and perspective-
projected, to acquire the pixel coordinates (x, y)
needed to lookup data in the RGB image captured by it.

Quality and performance
Figure 5 show the output from a traditional webcam
placed on top of the screen (a), video output from a
simple virtual camera approach (b), and rendered video
from EyeGaze (c and d). The figure illustrates that
EyeGaze is capable of producing a high quality virtual
camera view of the user’s head and torso in good detail
and enabling the experience of eye contact and face
gaze. The difference between using one or two Kinect
cameras for texturing is that two cameras provide more
detail in “shaded” areas such as under the chin and in
the eye sockets (figure 5d), while using only one
camera results in those areas being blurred (figure 5c).
As can be seen in figure 5d, our current texturing from
two cameras does, however, create a bit of colouring-
noise, which requires some correctional filtering.

(a) Camera view from a
webcam on top of the screen

(b) Virtual camera view using a
simple approach

(c) EyeGaze - with texture
from one Kinect

(d) EyeGaze - with texture
from two Kinects

Figure 5. Video output from webcam on top of the screen (a),
a simple virtual camera approach (b), and EyeGaze (c and d)

Using depth-sensing cameras, volumetric
representation within a Signed Distance Function, and
exploring the powers of the GPU, EyeGaze is able to
capture, model and render with a time lag of less than
40 ms and a frame rate of up to 25 fps. This means
that the system is experienced as working in real time.

Using multiple Kinect cameras, EyeView can reliably
capture enough perspective of the user’s face and torso
to render a realistic face-on view with very little

Figure 4. Using vectors to decide
what camera provides best data for
texturing.

missing data in each video frame. Due to the way
volumetric data is represented EyeGaze is also able to
“remember” objects and areas when they are
temporarily occluded, which minimizes the number of
video frames with missing data.

Model quality
Using a volumetric approach for storing information
about the users and the background allows us to
achieve a high quality image from a noisy input source.
This is illustrated in the difference between figure 5b
and 5c/d. Figure 5b shows a frame of texturized depth
data from a single Kinect, where the model has been
tilted to obtain a straight-on view. This results in a lot
of missing information in the model, and therefore
holes in the rendered video. In figure 5c/d we see a
notable increase in model quality, with far less missing
data. This is firstly because of the better coverage
obtained with multiple cameras, but also because the
volumetric approach allows us to compensate for the
lack of data in one frame by reusing information from a
previous one. Thereby, random misreading by the
depth cameras have only very little effect on the model,
and on the rendered video image.

Frame rate
For our current prototype we store the model in a 5123
voxel grid and render at 1080p on an NVIDIA GeForce
GTX 770 graphics card. The merging and ray tracing
implementations are alternating in execution, limiting
the output video to 30 fps. This will result in some
frames being dropped due to timing constraints. While
our frame rate does not match the performance in [5]
it is still promising given the computation required for
merging data and rendering video at this resolution.

Conclusions and further work
We have presented a gaze enabling video system that
takes live depth data from two Microsoft Kinect
cameras and renders a virtual camera view in real time.
We have shown that using two Kinects, volumetric
voxel data representations, concepts from KinectFusion
[2], and exploring the power of GPUs for ray tracing,
EyeGaze can create a visually convincing representation
of a remote person from a virtual camera perspective
enabling the experience of eye contact. EyeGaze
renders this representation of the remote person in real
time with low lag and promising frame rates.

Our work with EyeGaze opens several avenues for
further work. Firstly, we are exploring the effect of
rendering the virtual camera view from a dynamic set
of coordinates matching the exact location of the
viewer’s eyes, creating an even more natural
experience, as the visual perspective changes when you
move your head, as it does face-to-face. We currently
do this using the Kinects’ built-in skeletal tracking and
feeding this data into the ray-tracer. The effect is
indeed promising. However, some texture errors do
occur when real time RGB data for a particular
perspective is incomplete. We speculate that this may
be solved by storing known texture maps, and then
simply updating these in sync with the model.

Related to this we are also exploring the rendering of a
stereoscopic image, and displaying this to the remote
user on a 3D screen. This is in principle a built-in
potential of our approach, as one just needs to define
two virtual camera views – for the left and right eye.
However, there are some technical challenges of
calibration and synchronization, as well as performance
when rendering two streams of video rather than just

one. Another potential of our approach is to render
multiple perspectives for multiple remote viewers. This
could be used to facilitate eye contact in meetings with
several individual participants in a spatial arrangement
similar to that of the Hydra system. If combined with
multi-perspective capable screens [6] this could also be
used to facilitate eye contact in meetings between
groups of people, in a spatial arrangement similar to HP
Halo and BISi.

We have compared the experience of EyeGaze to face-
to-face communication and the use of Skype through
two within-subject laboratory experiments with a total
of 130 participants. Findings from these experiments
are still being analyzed in detail, and will be published
elsewhere, but preliminary results indicate that while
face-to-face is still superior, EyeGaze has added value
over the traditional video system in terms of eye
contact, involvement, turn-taking and co-presence.

References
[1] Curless, B. and Levoy, M. A volumetric method for

building complex models from range images. In
Proc. SIGGRAPH 96, ACM (1996), 303-312.

[2] Izadi, S. Kim, D., Hilliges, O., Molyneaux, D.,
Newcombe, R., Kohli, P., Shotton, J., Hodges, S.
Freeman, D., Davison, A. and Fitzgibbon, A.
KinectFusion: real-time 3D reconstruction and
interaction using a moving depth camera. In Proc.
UIST 2011, ACM (2011), 559-568.

[3] Kleinke, C.L. Gaze and Eye Contact: A Research
Review. Psychological Bulletin 100, 1 (1986), 78-
100.

[4] Kuster, C., Popa, T., Bazin, J.C., Gotsman, C.,
Gross, M. Gaze Correction for Home Video
Conferencing. In Proc. ACM SIGGRAPH Asia (2012).

[5] Maimone, A. and Fuchs, H. Encumbrance-free
telepresence system with real-time 3D capture and
display using commodity depth cameras. In Proc.
ISMAR 2011, ACM (2011), 237-146.

[6] Nguyen, D. and Canny, J. MultiView: spatially
faithful group video conferencing. In Proc. CHI
2005, ACM (2005), 799-808.

[7] O'Hara, K., Kjeldskov, J. and Paay, J. Blended
interaction spaces for distributed team
collaboration. Transactions on Computer-Human
Interaction 18, 1 (2011), Article No. 3.

[8] Ott, M., Lewis, J. P. and Cox, I. Teleconferencing
eye contract using a virtual camera. In Proc.
INTERACT’93 and CHI’93, ACM (1993), 109-110.

[9] Paay, J., Kjeldskov, J. and O'Hara, K. BISi: a
blended interaction space. Ext. Abstracts CHI 2011,
ACM (2011), 185-200.

[10] Sellen, A.J., Buxton, W., and Arnott, J. 1992. Using
spatial cues to improve videoconferencing. In Proc.
CHI 1992, ACM (1992), 651-652.

[11] Stokes, R. Human Factors and Appearance Design
Considerations of the Mod II PICTUREPHONE &
Station Set. IEEE Transactions on Communication
Technology 17, 2 (1969), 318-323.

[12] Zhu, J., Yang, R. and Xiang, X. Eye contact in video
conference via fusion of time-of-flight depth sensor
and stereo. 3D Research 2, 3 (2011), 1-10.

