

Overview

- Experiences with conventional evaluations
- Instant data analysis (IDA): basic idea
- Participants and materials, procedure and roles
- The IDA session
- IDA facilitator during and after the IDA session
- Experiment
- Findings: usability problems
- Compared to ad-hoc analysis
- Conclusion
- Trade-Off: approach and resources

Experiences with Conventional Evaluations

- The value of usability evaluations has become widely acknowledged in the software industry
- However, time and other resources available for evaluating usability are often highly constrained
- Typical required effort: 100-140 manhours, with 40-60 spent on data analysis
- Aim: allow usability evaluations to be conducted, analyzed and documented in a day: Instant Data Analysis
 - ... but without sacrificing a systematic and user-oriented approach

IDA: Basic Idea

- Designed to be combined with user-based think-aloud testing
- Exploits that a typical think-aloud test already involves a test monitor and a data logger
 - High level of usability expertise
 - Often gain insight into key usability problems quickly
- Systematically capture a valuable moment of insight into the usability of a system that otherwise needs to be reconstructed during later video analysis (and is sometimes lost...)
- This approach replaces video analysis and transcription of log files
- Makes it possible to complete a usability evaluation in a day (using 4-6 test subjects)

Participants and Materials

- 4-6 test subjects
- I test monitor
- I data logger
- I IDA facilitator (not present during the tests)

- I software system
- I whiteboard or flip-over
- Printed screenshots of the system (optionally)

Procedure

Tests (4-6 hours)

 Conduct 4-6 think-aloud sessions with the test monitor and data logger (makes notes) present

Analysis (2-2½ hours)

- Conduct I hour brainstorming and data analysis session
 - Articulate and discuss the most critical problems of the system
 - Rate the severity of the problems (e.g. as critical, serious or cosmetic) and categorize them in themes (as they emerge)
 - The discussion is managed by the IDA facilitator who asks questions for clarification and writes the problems on a whiteboard or flip-over
 - Use printed screenshots and written notes for supporting overview
- Spend I-I½ hours on writing up the content of the whiteboard into a ranked list of problems with clear references to the system
- Review the problem list together for final consensus

Roles in IDA

There are three roles to be filled in IDA:

- Test Monitor, I person
- Data Logger, at least one person
- IDA session facilitator, I person

Test Monitor and Data Logger

- The test monitor's responsibility during the evaluation session is the "traditional test monitor responsibilities", eg.
 - Ensures that the participants understand what will happen and are put at their ease as much as possible
 - Administers the test
 - Make sure data is gathered
 - Debriefs the participants
- The Data loggers responsibility:
 - Records incidents and problems
 - Possibly according to a standard agreed upon upfront
 - The logged data will be used in the following in IDA session

The IDA session

- The IDA session is a one-hour brainstorm and analysis session.
- The test monitor and data logger articulate and discuss the most critical usability problems identified in the evaluation sessions.
 - Screenshots of the system is a good tool to spark the memory
- Usability problems should also be rated according to their severity.
- Goal: To identify the most critical usability problems (not to find as many problems as possible)

IDA facilitator – during the **IDA** session.

- The IDA facilitators responsibility is to support the brainstorming and analysis session by
 - Asking for clarifications
 - Writing down identified usability problems on a white board
 - Categorize problems in themes

The hard part is keeping track of all the information!

IDA facilitator - after the IDA session

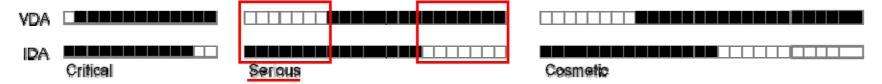
- After the IDA session it is the IDA facilitator's responsibility to go through the identified usability problems and write down a ranked list of usability problems (I-I½ hour)
- The list should include short descriptions of the problems, and clear references to the system such as references to specific parts of the GUI Like an ordinary problem list
- The last step of the IDA method is that the test monitor, the data logger and the IDA facilitator runs through the list of ranked usability problems to ensure consensus.

Experiment

- We studied the use of Instant Data Analysis through an exploratory experiment
- Purpose
 - Gaining practical experience with the use of the technique
 - Comparing results produced "instantly" with results from traditional video data analysis
 - Identifying opportunities and challenges for improving IDA
- The system: resource booking at a large hospital
- Participants
 - 5 test subjects
 - I test monitor
 - I data logger
 - I IDA facilitator.
 - 2 observers (developers from the software company)

Findings: Usability Problems

	Instant Data Analysis	Video Data Analysis	Total
Critical	11	12	13
Serious	15	15	22
Cosmetic	15	19	27
Total	41	46	62

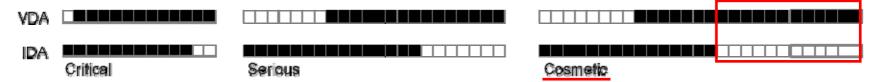


A black square represents a usability problem identified by the corresponding technique

Critical problems

- Both approaches assisted in identifying nearly all 13 identified critical problems (85% and 92% respectively)
- The two critical problems not identified by IDA were related to
 - User frustration due to slow system responses
 - A software bug

A black square represents a usability problem identified by the corresponding technique


Critical problems

- Both approaches assisted in identifying nearly all 13 identified critical problems (85% and 92% respectively)
- The two critical problems not identified by IDA were related to
 - User frustration due to slow system responses
 - A software bug

Serious problems

- IDA and VDA both identified 68% of all experienced problems
- 8 problems were identified by both approaches

A black square represents a usability problem identified by the corresponding technique

Critical problems

- Both approaches assisted in identifying nearly all 13 identified critical problems (85% and 92% respectively)
- The two critical problems not identified by IDA were related to
 - 1. User frustration due to slow system responses
 - 2. A software bug

Serious problems

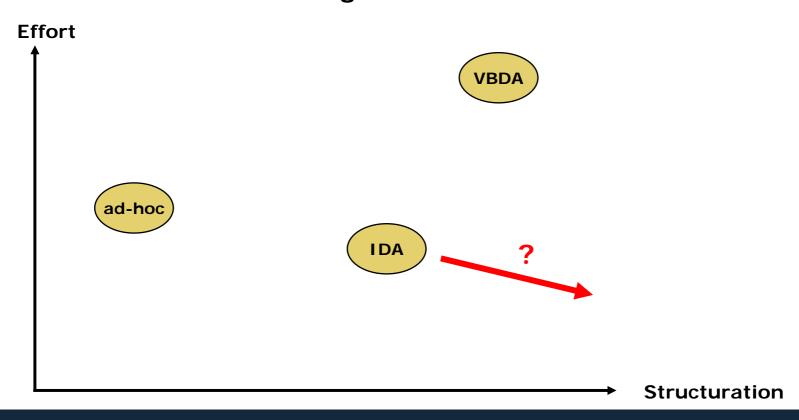
- IDA and VDA both identified 68% of all experienced problems
- 8 problems were identified by both approaches

Cosmetic problems

- IDA identified 56% of all experienced problems
- 7 problems were identified by both approaches
- II out of I2 cosmetic problems only identified by VDA were experienced by only one of the five test subjects (unique)

Compared to Ad-Hoc Analysis

- The two developers that observed the tests made a list of their own the day after the tests
- They employed an ad-hoc approach (using no structured method)
- They identified 8 usability problems
- When they read the report, they discovered several usability problems that they had forgotten or could not even remember


Conclusion

- Instant Data Analysis can...
 - Assist usability researchers in quickly identifying most the critical and serious usability problems experienced by users in a think-aloud evaluation
 - Be conducted in 10% of the time required to do a traditional video data analysis (analysis: 4 manhours compared to 40 manhours)
 - Reduce the noise of unique (false?) usability problems
 - Provide closure for the evaluators by capturing an immediate response to long a day of evaluation
- Qualitatively, the serious problems identified only by Instant Data
 Analysis were on a higher level of abstraction
 - Often related to more general usability issues than the problems identified through video data analysis
 - May be attributed to the test monitor and data logger not having "direct" access to the data during analysis thus forcing them to analyze on a higher level of abstraction

Trade-Off: Approach and Resources

- Effort: The time spent on the evaluation
- Structuration: The amount of explicit and systematic method elements that are used to guide the evaluation

