Analog of El Gamal

Public Key: $\mathbf{F}_{q}, E, B \in E, a_{B} B$
Secret Key: a_{B}

Protocol:

Alice has a message P_{m} and choose a number k by random. She sends

$$
\left(k B, P_{m}+k\left(a_{B} B\right)\right)
$$

to Bob.
Bob calculates $a_{B} k B$ and subtracts this from $P_{m}+k\left(a_{B} B\right)$

Analog of Diffie-Helman Key Exchange

Public Key: $\mathbf{F}_{q}, E, B \in E$
Protocol:
Alice chooses natural number a by random and sends $a B \in E$ to Bob
Bob chooses natural number b by random and sends $b B \in E$ to Alice
Alice computes $a(b B) \in E$ (the key)
Bob computes $b(a B) \in E$ (the key)

Exercises

Exercise 1:

Consider Example 6.7 in [Stinson]. Show $4 \alpha=(10,2)$ in two different ways.

Exercise 2:

In this exercise we consider the analog of the Diffie-Helman key exchange. Let E be as in Example 6.7 of [Stinson], and let $B=(2,7)$. Choose random numbers a for Alice and b for Bob. Exchange the key $a b B$

Exercise 3:

In this exercise we consider the analog of ElGamal.
Let E be as in Example 6.7 of [Stinson], and let $B=(2,7)$. Choose, P_{m}, k and a_{B} and exchange information.

