Analog of El Gamal

Public Key: \mathbf{F}_q , E, $B \in E$, $a_B B$

Secret Key: a_B

Protocol:

Alice has a message P_m and choose a number k by random. She sends

$$(kB, P_m + k(a_B B))$$

to Bob.

Bob calculates $a_B k B$ and subtracts this from $P_m + k(a_B B)$

Analog of Diffie-Helman Key Exchange

Public Key: \mathbf{F}_q , E, $B \in E$

Protocol:

Alice chooses natural number a by random and sends $aB \in E$ to Bob

Bob chooses natural number b by random and sends $bB \in E$ to Alice

Alice computes $a(bB) \in E$ (the key)

Bob computes $b(aB) \in E$ (the key)

Exercises

Exercise 1:

Consider Example 6.7 in [Stinson]. Show $4\alpha = (10, 2)$ in two different ways.

Exercise 2:

In this exercise we consider the analog of the Diffie-Helman key exchange. Let E be as in Example 6.7 of [Stinson], and let B=(2,7). Choose random numbers a for Alice and b for Bob. Exchange the key abB

Exercise 3:

In this exercise we consider the analog of ElGamal.

Let E be as in Example 6.7 of [Stinson], and let B = (2,7). Choose, P_m , k and a_B and exchange information.