Cryptography - Session 2

O. Geil, Aalborg University

November 18, 2010

Random variables

Discrete random variable \mathbf{X} :

1. Probability distribution on finite set \mathcal{X}.
2. For $x \in \mathcal{X}$ write $\operatorname{Pr}(x)=\operatorname{Pr}(\mathbf{X}=x)$.
\mathbf{X} and \mathbf{Y} are independent:

- $\forall x, y: \operatorname{Pr}(x, y)=\operatorname{Pr}(x) \operatorname{Pr}(y)$
- $\forall x, y: \operatorname{Pr}(x \mid y)=\operatorname{Pr}(x)$.

Perfect secrecy

Given $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ assume in the beginning of the talk that K is used only for ONE encryption.

A cryptosystem has perfect secrecy if for all $x \in \mathcal{P}$ and $y \in \mathcal{C}$ it holds that

$$
\operatorname{Pr}(x \mid y)=\operatorname{Pr}(x)
$$

One, observation of cipher text does not reveal anything.

Theorem 2.3: The shift cipher is perfect
Proof:

$$
\begin{aligned}
\operatorname{Pr}(y) & =\sum_{K \in \mathbf{Z}_{s}} \operatorname{Pr}(K) \operatorname{Pr}\left(\mathbf{X}=d_{K}(y)\right) \\
& =\sum_{K \in \mathbb{Z}_{s}} \frac{1}{s} \operatorname{Pr}\left(\mathbf{X}=d_{K}(y)\right) \\
& =\frac{1}{s} \sum_{K \in \mathbb{Z}_{s}} \operatorname{Pr}(\mathbf{X}=y-K) \\
& =\frac{1}{s} \sum_{x \in \mathbb{Z}_{s}} \operatorname{Pr}(x)=\frac{1}{s} \\
\operatorname{Pr}(y \mid x) & =\operatorname{Pr}(\mathbf{K}=y-x)=\frac{1}{s}
\end{aligned}
$$

Due to Bayes' formula (which holds for all y with $\operatorname{Pr}(y)>0$):

$$
\operatorname{Pr}(x \mid y)=\frac{\operatorname{Pr}(x) \operatorname{Pr}(y \mid x)}{\operatorname{Pr}(y)}=\frac{\operatorname{Pr}(x) \frac{1}{s}}{\frac{1}{s}}=\operatorname{Pr}(x)
$$

Some necessary conditions for perfect cipher

Assume $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ provides perfect secrecy. That is, $\operatorname{Pr}(x \mid y)=\operatorname{Pr}(x)$ for all $x \in \mathcal{P}, y \in \mathcal{C}$.

Assume $\operatorname{Pr}(x), \operatorname{Pr}(y)>0$ for all x, y. From Bayes' formula we get $\operatorname{Pr}(y \mid x)=\operatorname{Pr}(y)>0$.

Hence, for any fixed x there exists for any y a K such that $e_{K}(x)=y$.

In conclussion: $|\mathcal{P}| \leq|\mathcal{C}| \leq|\mathcal{K}|$.

Theorem 2.4

Assume $|\mathcal{P}|=|\mathcal{C}|=|\mathcal{K}|$. The cryptosystem provides perfect secrecy iff:

$$
\begin{aligned}
& \text { 1. } \forall K \in \mathcal{K}: \operatorname{Pr}(K)=\frac{1}{|\mathcal{K}|} \text {. } \\
& \text { 2. } \forall x \in \mathcal{P} \forall y \in \mathcal{C} \exists!K \in \mathcal{K}: e_{K}(x)=y .
\end{aligned}
$$

Proof:
To see the \Uparrow-part adapt proof of Th. 2.3.
Assume perfect secrecy. As already noted for every x, y there exists a K with $e_{K}(x)=y$. In other words

$$
\mathcal{C}=\left\{\boldsymbol{e}_{K}(x): K \in \mathcal{K}\right\} .
$$

But $|\mathcal{C}|=|\mathcal{K}|$ and therefore no two different keys map x to same y.

Proof cont.

Write $\mathcal{K}=\left\{K_{1}, \ldots, K_{n}\right\}$ and $\mathcal{P}=\left\{x_{1}, \ldots, x_{n}\right\}$. Given fixed y assume w.l.o.g.

$$
e_{K_{1}}\left(x_{1}\right)=y, \ldots, e_{K_{n}}\left(x_{n}\right)=y
$$

From Bayes' formula we get

$$
\begin{aligned}
\operatorname{Pr}\left(x_{i} \mid y\right) & =\frac{\operatorname{Pr}\left(x_{i}\right) \operatorname{Pr}\left(y \mid x_{i}\right)}{\operatorname{Pr}(y)} \\
& =\frac{\operatorname{Pr}\left(x_{i}\right) \operatorname{Pr}\left(K_{i}\right)}{\operatorname{Pr}(y)}
\end{aligned}
$$

That is, for any fixed $y \operatorname{Pr}\left(K_{i}\right)=\operatorname{Pr}(y)$ for $i=1, \ldots, n$.
But then $\operatorname{Pr}\left(K_{i}\right)=\frac{1}{n}$.

One-time pad

Let $\mathcal{P}=\mathcal{C}=\mathcal{K}=\mathbb{Z}_{2}^{n}$.
Let $K \in \mathcal{K}$ be chosen equiprobable.
For $K=\left(K_{1}, \ldots, K_{n}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right)$ define

$$
e_{K}(x)=\left(x_{1}+K_{1}, \ldots, x_{n}+K_{n}\right) \quad \bmod 2 .
$$

Decoding similar.

Entropy

Given \mathbf{X} with $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ the entropy is

$$
H(\mathbf{X})=-\sum_{x \in \mathcal{X}} \operatorname{Pr}(x) \log _{2} \operatorname{Pr}(x)
$$

The entropy is a meassure for the uncertainty of the outcome of X.

Theorem: $0 \leq H(\mathbf{X}) \leq \log _{2} n$.
The extreme cases being:

- $H(\mathbf{X})=0$ iff $\operatorname{Pr}\left(x_{i}\right)=1$ for some i.
- $H(\mathbf{X})=\log _{2}(n)$ iff $\operatorname{Pr}\left(x_{1}\right)=\cdots=\operatorname{Pr}\left(x_{n}\right)=\frac{1}{n}$.

Given random variables \mathbf{X} and \mathbf{Y} then (\mathbf{X}, \mathbf{Y}) is also a random variable.

Theorem:

$$
H(\mathbf{X}, \mathbf{Y})=H(\mathbf{X})+H(\mathbf{Y})
$$

with equality iff \mathbf{X} and \mathbf{Y} are independent.
Uncertainty is maximal iff \mathbf{X} does not reveal anything about \mathbf{Y} and vice versa.

Given $y \in \mathcal{Y}$ consider $\operatorname{Pr}\left(x_{1} \mid y\right), \ldots, \operatorname{Pr}\left(x_{n} \mid y\right)$. The corresponding entropy is

$$
H(\mathbf{X} \mid y)=-\sum_{x \in \mathcal{X}} \operatorname{Pr}(x \mid y) \log _{2} \operatorname{Pr}(x \mid y)
$$

which is the uncertainty of \mathbf{X} given the information that $\mathbf{Y}=y$ holds.

The average of $H(\mathbf{X} \mid \mathbf{Y})$ taken over all y is

$$
H(\mathbf{X} \mid \mathbf{Y})=-\sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} \operatorname{Pr}(x \mid y) \log _{2} \operatorname{Pr}(x \mid y)
$$

which is the average uncertainty of \mathbf{X} when \mathbf{Y} is observed.
Theorem: $\quad H(\mathbf{X}, \mathbf{Y})=H(\mathbf{Y})+H(\mathbf{X} \mid \mathbf{Y})$,
Theorem: $H(\mathbf{X} \mid \mathbf{Y}) \leq H(\mathbf{X})$ (it does not hurt to know \mathbf{Y}.)

Given $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ then $H(\mathbf{K} \mid \mathbf{C})$ meassures the uncertainty of the key when the cipher text is observed.

If $H(\mathbf{K} \mid \mathbf{C})=0$ then the cipher text always reveals the key.

Theorem: $H(\mathbf{K} \mid \mathbf{C})=H(\mathbf{K})+H(\mathbf{P})-H(\mathbf{C})$.
Proof:

- $H(\mathbf{K}, \mathbf{P}, \mathbf{C})=H(\mathbf{C} \mid \mathbf{K}, \mathbf{P})+H(\mathbf{K}, \mathbf{P})$ by theorem above.
- $H(\mathbf{C} \mid \mathbf{K}, \mathbf{P})=0$ as $y=e_{K}(x)$.
- $H(\mathbf{K}, \mathbf{P})=H(\mathbf{K})+H(\mathbf{P})$ as independent.

Hence, $H(\mathbf{K}, \mathbf{P}, \mathbf{C})=H(\mathbf{K})+H(\mathbf{P})$.

- $H(\mathbf{P} \mid \mathbf{K}, \mathbf{C})=0$ as $x=d_{K}(y)$.

Hence, $H(\mathbf{K}, \mathbf{P}, \mathbf{C})=H(\mathbf{K}, \mathbf{C})$.
In conclussion:

$$
\begin{aligned}
H(\mathbf{K} \mid \mathbf{C}) & =H(\mathbf{K}, \mathbf{C})-H(\mathbf{C}) \\
& =H(\mathbf{K}, \mathbf{P}, \mathbf{C})-H(\mathbf{C}) \\
& =H(\mathbf{K})+H(\mathbf{P})-H(\mathbf{C}) .
\end{aligned}
$$

Knowing the language

Recall, crypto analysis is about revealing K.
Assume plaintext is a natural language \mathcal{L}.
If Oscar sees cipher text then from knowledge about the language he may rule out some keys. The left keys, except the correct one, are called spurious keys.

English language: $H(\mathbf{P}) \simeq 4.19$.
But some digrams, trigrams (or even books) are more common than others.
\mathbf{P}^{n} (text of length n).

$$
H_{\mathcal{L}}=\lim _{n \rightarrow \infty} \frac{H\left(\mathbf{P}^{n}\right)}{n}
$$

is called the entropy of language \mathcal{L}.

A language with letters distributed equiprobable would have entropy $\log _{2}|\mathcal{P}|$. Hence, the fraction of redundancy in \mathcal{L} is

$$
R_{\mathcal{L}}=\frac{\log _{2}|\mathcal{P}|-H_{\mathcal{L}}}{\log _{2}|\mathcal{P}|}=1-\frac{H_{\mathcal{L}}}{\log _{2}|\mathcal{P}|}
$$

Study of English text yields $1.0 H_{\mathcal{L}} \leq 1.5$.

Assuming $H_{\mathcal{L}}=1.25$ gives fraction of redundancy $R_{\mathcal{L}} \simeq 0.75$.
This means that using Huffman coding one could compress English text by a factor four.

Estimating number of spurious keys

Probability distribution on \mathcal{K} and \mathcal{P}^{n} induces probability distribution on \mathcal{C}^{n}.

Given $\vec{y} \in \mathcal{C}^{n}$ let

$$
K(\vec{y})=\left\{K \in \mathcal{K}: \exists \vec{x} \in \mathcal{P}^{n} \text { with } \operatorname{Pr}(\vec{x})>0 \text { and } e_{K}(\vec{x})=\vec{y}\right\} .
$$

If \vec{y} is observed then the number of spurious keys are $|K(\vec{y})|-1$.

Average number of spurious keys when plain text is n long is called \bar{s}_{n}.

$$
\begin{aligned}
\bar{s}_{n} & =\sum_{\vec{y} \in \mathcal{C}^{n}} \operatorname{Pr}(\vec{y})(|K(\vec{y})|-1) \\
& =\sum_{\vec{y} \in \mathcal{C}^{n}} \operatorname{Pr}(\vec{y})|K(\vec{y})|-\sum_{\vec{y} \in \mathcal{C}^{n}} \operatorname{Pr}(\vec{y}) \\
& =\sum_{\vec{y} \in \mathcal{C}^{n}} \operatorname{Pr}(\vec{y})|K(\vec{y})|-1 .
\end{aligned}
$$

- $H\left(\mathbf{K} \mid \mathbf{C}^{n}\right)=H(\mathbf{K})+H\left(\mathbf{P}^{n}\right)-H\left(\mathbf{C}^{n}\right)($ Th. 2.10)
- $H\left(\mathbf{P}^{n}\right) \simeq n H_{\mathcal{L}}=n\left(1-R_{\mathcal{L}}\right) \log _{2}|\mathcal{P}|$ (Definition of $H_{\mathcal{L}}$.)
- $H\left(\mathbf{C}^{n}\right) \leq \log _{2}|\mathcal{C}|^{n}=n \log _{2}|\mathcal{C}|$.

Hence, if $|\mathcal{C}|=|\mathcal{P}|$ then

$$
\begin{equation*}
H\left(\mathbf{K} \mid \mathbf{C}^{n}\right) \geq H(\mathbf{K})-n R_{\mathcal{L}} \log _{2}|\mathcal{P}| \tag{1}
\end{equation*}
$$

$$
\begin{align*}
H\left(\mathbf{K} \mid \mathbf{C}^{n}\right) & =\sum_{\vec{y} \in \mathcal{C}^{n}} \operatorname{Pr}(\vec{y}) H(\mathbf{K} \mid \vec{y}) \\
& \leq \sum_{\vec{y} \in \mathcal{C}^{n}} \operatorname{Pr}(\vec{y}) \log _{2}|K(\vec{y})| \\
& \leq \log _{2}\left(\sum_{\vec{y} \in \mathcal{C}^{n}} \operatorname{Pr}(\vec{y})|K(\vec{y})|\right) \\
& =\log _{2}\left(\bar{s}_{n}+1\right) \tag{2}
\end{align*}
$$

If keys are chosen equiprobable then $H(\mathbf{K})=\log _{2}|\mathcal{K}|$. Eqs. (1) and (2) then give

$$
\bar{s}_{n}+1 \geq \frac{|\mathcal{K}|}{|\mathcal{P}|^{n R_{\mathcal{L}}}} .
$$

For n big enough this is taken as an estimate.
Substitution cipher applied to English text: If $n \simeq 25$ the approximately 0 spurious keys.

Product of crypto systems

Given
$S_{1}=\left(\mathcal{P}, \mathcal{C}=\mathcal{P}, \mathcal{K}_{1}, \mathcal{E}_{1}, \mathcal{D}_{1}\right)$,
$S_{1}=\left(\mathcal{P}, \mathcal{C}=\mathcal{P}, \mathcal{K}_{2}, \mathcal{E}_{2}, \mathcal{D}_{2}\right)$.
Define
$S_{1} \times S_{2}=\left(\mathcal{P}, \mathcal{C}=\mathcal{P}, \mathcal{K}_{1} \times \mathcal{K}_{2}, \mathcal{E}, \mathcal{D}\right)$
with
$e_{\left(K_{1}, K_{2}\right)}(x)=e_{K_{2}}\left(e_{K_{1}}(x)\right)$.
If $S \times S=S$ then called idempotent (NOT interesting).
Examples of idempotents are: Shift ciphers, Hill ciphers, affine ciphers, substitution ciphers, Vigenére ciphers, permutation ciphers.

BUT, combinations of two DIFFERENT of the above ciphers may be interesting.

Iterated cipher

Consider cypto system ($\mathcal{P}, \mathcal{C}=\mathcal{P}, \mathcal{K}, \mathcal{E}, \mathcal{D}$) which is not idempotent (can itself be a product of two different idempotents).

Given a "key" construct from this a key schedule $K^{1}, \ldots, K^{N r} \in \mathcal{K}$.

Write $g(x, K)=e_{K}(x)$ and encode as follows:

$$
\begin{aligned}
w^{0} & \leftarrow x \\
w^{1} & \leftarrow g\left(w^{0}, K^{1}\right) \\
w^{2} & \leftarrow g\left(w^{1}, K^{2}\right) \\
& \vdots \\
w^{N r-1} & \leftarrow g\left(w^{N r-2}, K^{N r-1}\right) \\
w^{N r} & \leftarrow g\left(w^{N r-1}, K^{N r}\right) \\
y & \leftarrow w^{N r} .
\end{aligned}
$$

Decoding: Start from the bottom.

SPN

g is build up by substitution, permutation and XOR with key (from key schedule).

Example: $\mathcal{P}=\mathcal{C}=\mathbb{Z}_{2}^{16}$.
S-box: Divide block of size 16 into four blocks of size four. Each block is modified by applying the substitution $\pi_{s}: \mathbb{Z}_{2}^{4} \rightarrow \mathbb{Z}_{2}^{4}$.

Permutation (of positions in entire block): Apply the permuation $\pi_{p}: \mathbb{Z}_{2}^{16} \rightarrow \mathbb{Z}_{2}^{16}$.

Initialization: $w^{0}=\left(x_{1}, \ldots, x_{16}\right)$.
Updating: For $i=1, \ldots, 4$ (w^{4} is not used)

$$
\begin{array}{ccc}
u^{i} & w^{i-1} \oplus K^{i} & \\
v^{i} & = & S\left(u^{i}\right) \\
w^{i} & = & \pi_{p}\left(v^{i}\right)
\end{array}
$$

Finalization: $y=v^{4} \oplus K^{5}$

Picture from Stinson's book

Preparing for crypto analysis of SPN

Let $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots$ be independent binary random variables:

$$
\begin{aligned}
p_{i} & =\operatorname{Pr}\left(\mathbf{X}_{i}=0\right) \\
1-p_{i} & =\operatorname{Pr}\left(\mathbf{X}_{i}=1\right)
\end{aligned}
$$

Denote by $\epsilon_{i}=p_{i}-0.5$ the bias of the distribution of \mathbf{X}_{i}.
Examples:
If $p_{i}=0.5$ then $\epsilon_{i}=0$.
If $p_{i}=0$ then $\epsilon_{i}=-0.5$.
If $p_{i}=1$ then $\epsilon_{i}=0.5$.
Piling-up Lemma: Let $\epsilon_{i_{1}}, \ldots, \epsilon_{i_{k}}$ denote the bias of independent binary variables $\mathbf{X}_{i_{1}}, \ldots, \mathbf{X}_{i_{k}}$. The bias of $\mathbf{X}_{i_{1}} \oplus \cdots \oplus \mathbf{X}_{i_{k}}$ equals

$$
\epsilon_{i_{1}, \ldots, i_{k}}=2^{k-1} \prod_{j=1}^{k} \epsilon_{i_{j}}
$$

Proof: By induction.

The S-box from our SPN is given in Table 3.1 of Stinson's book.
$\operatorname{Pr}\left(X_{1} \oplus X_{4} \oplus Y_{2}=0\right)=\frac{8}{16}$, that is bias $=0$.
$\operatorname{Pr}\left(X_{3} \oplus X_{4} \oplus Y_{1} \oplus Y_{2}=0\right)=\frac{2}{16}$, that is bias $=-\frac{3}{8}$.
This kind of information will be used in linear attack on SPN.

From Stinson's book

Linear attack

$$
\begin{array}{ll}
T_{1}=U_{5}^{1} \oplus U_{7}^{1} \oplus U_{8}^{1} \oplus V_{6}^{1} & \text { bias is } 0.25 \\
T_{2}=U_{6}^{2} \oplus V_{6}^{2} \oplus V_{8}^{2} & \text { bias is }-0.25 \\
T_{3}=U_{6}^{3} \oplus V_{6}^{3} \oplus V_{8}^{3} & \text { bias is }-0.25 \\
T_{4}=U_{14}^{3} \oplus V_{14}^{3} \oplus V_{16}^{3} & \text { bias is }-0.25
\end{array}
$$

The variables $T_{1}, T_{2}, T_{3}, T_{4}$ are not independent. Even so, we use the piling lemma. We get that the bias of $T_{1} \oplus T_{2} \oplus T_{3} \oplus T_{4}$ is $-1 / 32$.

Rewriting we get

$$
\begin{aligned}
T_{1} \oplus \cdots \oplus T_{4}= & X_{5} \oplus X_{7} \oplus X_{8} \oplus U_{6}^{4} \oplus U_{8}^{4} \oplus U_{14}^{4} \oplus U_{16}^{4} \oplus K_{5}^{1} \oplus K_{7}^{1} \\
& \oplus K_{8}^{1} \oplus K_{6}^{2} \oplus K_{6}^{3} \oplus K_{14}^{3} \oplus K_{6}^{4} \oplus K_{8}^{4} \oplus K_{14}^{4} \oplus K_{16}^{4}
\end{aligned}
$$

For fixed (unknown key) we get that the bias of

$$
X_{5} \oplus X_{7} \oplus X_{8} \oplus U_{6}^{4} \oplus U_{8}^{4} \oplus U_{14}^{4} \oplus U_{16}^{4}
$$

is $1 / 32$ or $-1 / 32$.
For every guess of a key we can calculate U_{i}^{4} from cipher text (the value of U_{i}^{4} will be correct if we guess the right key).
For a not too small sample of plain text/chipher text estimate the bias of $X_{5} \oplus X_{7} \oplus X_{8} \oplus U_{6}^{4} \oplus U_{8}^{4} \oplus U_{14}^{4} \oplus U_{16}^{4}$ for every combination of values of $K_{5}^{5}, K_{6}^{5}, K_{7}^{5}, K_{8}^{5}, K_{13}^{5}, K_{14}^{5}, K_{15}^{5}, K_{16}^{5}$.

Choose, the combination with bias approximately $1 / 32$ or $-1 / 32$.

DES and AES

DES (used to be the standard). AES (becoming the standard).
DES uses the Feistel cipher:
Divide stage u_{i-1} into (L^{i-1}, R^{i-1}).
$\left(L^{i}, R^{i}\right)=g\left(L^{i-1}, R^{i-1}, K^{i}\right)$ where

$$
\begin{aligned}
L^{i} & =R^{i-1} \\
R^{i} & =L^{i-1} \oplus f\left(R^{i-1}, K^{i}\right)
\end{aligned}
$$

Note, that f needs not be invertible. In DES the function f involves substituion and permutation.

AES not Feistel cipher. For the substitution we use the inverse in $\mathbb{Z}_{2^{8}}$. This map is a socalled "almost non-linear map" which protects against differential attacks.

Is AES volnourable to algebraic attacks? No real success with algebraic attacks yet.

