
Cryptography - Session 2

O. Geil, Aalborg University

November 18, 2010

Random variables

Discrete random variable X:

1. Probability distribution on finite set X .

2. For x ∈ X write Pr(x) = Pr(X = x).

X and Y are independent:
I ∀x , y : Pr(x , y) = Pr(x)Pr(y)
I ∀x , y : Pr(x |y) = Pr(x).

Perfect secrecy

Given (P, C,K, E ,D) assume in the beginning of the talk that K
is used only for ONE encryption.

A cryptosystem has perfect secrecy if for all x ∈ P and y ∈ C it
holds that

Pr(x |y) = Pr(x).

One, observation of cipher text does not reveal anything.

Theorem 2.3: The shift cipher is perfect
Proof:

Pr(y) =
∑

K∈Zs

Pr(K)Pr(X = dK (y))

=
∑

K∈Zs

1
s

Pr(X = dK (y))

=
1
s

∑

K∈Zs

Pr(X = y − K)

=
1
s

∑

x∈Zs

Pr(x) =
1
s
.

Pr(y |x) = Pr(K = y − x) =
1
s
.

Due to Bayes’ formula (which holds for all y with Pr(y) > 0):

Pr(x |y) =
Pr(x)Pr(y |x)

Pr(y)
=

Pr(x)1
s

1
s

= Pr(x).

Some necessary conditions for perfect cipher

Assume (P, C,K, E ,D) provides perfect secrecy. That is,
Pr(x |y) = Pr(x) for all x ∈ P, y ∈ C.

Assume Pr(x),Pr(y) > 0 for all x , y . From Bayes’ formula we
get Pr(y |x) = Pr(y) > 0.

Hence, for any fixed x there exists for any y a K such that
eK (x) = y .

In conclussion: |P| ≤ |C| ≤ |K|.

Theorem 2.4
Assume |P| = |C| = |K|. The cryptosystem provides perfect
secrecy iff:

1. ∀K ∈ K : Pr(K) = 1
|K| .

2. ∀x ∈ P ∀y ∈ C ∃!K ∈ K : eK (x) = y .

Proof:
To see the ⇑-part adapt proof of Th. 2.3.
Assume perfect secrecy. As already noted for every x , y there
exists a K with eK (x) = y . In other words

C = {eK (x) : K ∈ K}.

But |C| = |K| and therefore no two different keys map x to same
y .

Proof cont.

Write K = {K1, . . . ,Kn} and P = {x1, . . . , xn}. Given fixed y
assume w.l.o.g.

eK1
(x1) = y , . . . ,eKn(xn) = y .

From Bayes’ formula we get

Pr(xi |y) =
Pr(xi)Pr(y |xi)

Pr(y)

=
Pr(xi)Pr(Ki)

Pr(y)
.

That is, for any fixed y Pr(Ki) = Pr(y) for i = 1, . . . ,n.

But then Pr(Ki) =
1
n .

One-time pad

Let P = C = K = Z
n
2.

Let K ∈ K be chosen equiprobable.

For K = (K1, . . . ,Kn) and x = (x1, . . . , xn) define

eK (x) = (x1 + K1, . . . , xn + Kn) mod 2.

Decoding similar.

Entropy

Given X with X = {x1, . . . , xn} the entropy is

H(X) = −
∑

x∈X

Pr(x) log2 Pr(x).

The entropy is a meassure for the uncertainty of the outcome of
X.

Theorem: 0 ≤ H(X) ≤ log2 n.

The extreme cases being:
I H(X) = 0 iff Pr(xi) = 1 for some i .
I H(X) = log2(n) iff Pr(x1) = · · · = Pr(xn) =

1
n .

Given random variables X and Y then (X,Y) is also a random
variable.

Theorem:

H(X,Y) = H(X) + H(Y)

with equality iff X and Y are independent.

Uncertainty is maximal iff X does not reveal anything about Y
and vice versa.

Given y ∈ Y consider Pr(x1|y), . . . ,Pr(xn|y). The
corresponding entropy is

H(X|y) = −
∑

x∈X

Pr(x |y) log2 Pr(x |y)

which is the uncertainty of X given the information that Y = y
holds.

The average of H(X|Y) taken over all y is

H(X|Y) = −
∑

y∈Y

∑

x∈X

Pr(x |y) log2 Pr(x |y)

which is the average uncertainty of X when Y is observed.

Theorem: H(X,Y) = H(Y) + H(X|Y),

Theorem: H(X|Y) ≤ H(X) (it does not hurt to know Y.)

Given (P, C,K, E ,D) then H(K|C) meassures the uncertainty of
the key when the cipher text is observed.

If H(K|C) = 0 then the cipher text always reveals the key.

Theorem: H(K | C) = H(K) + H(P)− H(C).

Proof:
I H(K,P,C) = H(C|K,P) + H(K,P) by theorem above.
I H(C|K,P) = 0 as y = eK (x).
I H(K,P) = H(K) + H(P) as independent.

Hence, H(K,P,C) = H(K) + H(P).

I H(P | K,C) = 0 as x = dK (y).

Hence, H(K,P,C) = H(K,C).

In conclussion:

H(K|C) = H(K,C)− H(C)

= H(K,P,C)− H(C)

= H(K) + H(P)− H(C).

Knowing the language

Recall, crypto analysis is about revealing K .

Assume plaintext is a natural language L.

If Oscar sees cipher text then from knowledge about the
language he may rule out some keys. The left keys, except the
correct one, are called spurious keys.

English language: H(P) ' 4.19.

But some digrams, trigrams (or even books) are more common
than others.

Pn (text of length n).

HL = lim
n→∞

H(Pn)

n
is called the entropy of language L.

A language with letters distributed equiprobable would have
entropy log2 |P|. Hence, the fraction of redundancy in L is

RL =
log2 |P| − HL

log2 |P|
= 1−

HL

log2 |P|
.

Study of English text yields 1.0HL ≤ 1.5.

Assuming HL = 1.25 gives fraction of redundancy RL ' 0.75.

This means that using Huffman coding one could compress
English text by a factor four.

Estimating number of spurious keys
Probability distribution on K and Pn induces probability
distribution on Cn.

Given ~y ∈ Cn let

K (~y) = {K ∈ K : ∃~x ∈ Pn with Pr(~x) > 0 and eK (~x) = ~y}.

If ~y is observed then the number of spurious keys are
|K (~y)| − 1.

Average number of spurious keys when plain text is n long is
called s̄n.

s̄n =
∑

~y∈Cn

Pr(~y)(|K (~y)| − 1)

=
∑

~y∈Cn

Pr(~y)|K (~y)| −
∑

~y∈Cn

Pr(~y)

=
∑

~y∈Cn

Pr(~y)|K (~y)| − 1.

I H(K|Cn) = H(K) + H(Pn)− H(Cn) (Th. 2.10)
I H(Pn) ' nHL = n(1− RL) log2 |P| (Definition of HL.)
I H(Cn) ≤ log2 |C|

n = n log2 |C|.

Hence, if |C| = |P| then

H(K|Cn) ≥ H(K)− nRL log2 |P|. (1)

H(K|Cn) =
∑

~y∈Cn

Pr(~y)H(K|~y)

≤
∑

~y∈Cn

Pr(~y) log2 |K (~y)|

≤ log2

(

∑

~y∈Cn

Pr(~y)|K (~y)|
)

= log2(s̄n + 1). (2)

If keys are chosen equiprobable then H(K) = log2 |K|. Eqs. (1)
and (2) then give

s̄n + 1 ≥
|K|

|P|nRL

.

For n big enough this is taken as an estimate.

Substitution cipher applied to English text: If n ' 25 the
approximately 0 spurious keys.

Product of crypto systems
Given
S1 = (P, C = P,K1, E1,D1),
S1 = (P, C = P,K2, E2,D2).

Define
S1 × S2 = (P, C = P,K1 ×K2, E ,D)
with
e(K1,K2)(x) = eK2

(eK1
(x)).

If S × S = S then called idempotent (NOT interesting).

Examples of idempotents are: Shift ciphers, Hill ciphers, affine
ciphers, substitution ciphers, Vigenére ciphers, permutation
ciphers.

BUT, combinations of two DIFFERENT of the above ciphers
may be interesting.

Iterated cipher
Consider cypto system (P, C = P,K, E ,D) which is not
idempotent (can itself be a product of two different
idempotents).

Given a “key” construct from this a key schedule
K 1, . . . ,K Nr ∈ K.

Write g(x ,K) = eK (x) and encode as follows:

w0 ← x

w1 ← g(w0,K 1)

w2 ← g(w1,K 2)

...

wNr−1 ← g(wNr−2,K Nr−1)

wNr ← g(wNr−1,K Nr)

y ← wNr .

Decoding: Start from the bottom.

SPN

g is build up by substitution, permutation and XOR with key
(from key schedule).

Example: P = C = Z
16
2 .

S-box: Divide block of size 16 into four blocks of size four. Each
block is modified by applying the substitution πs : Z4

2 → Z
4
2.

Permutation (of positions in entire block): Apply the permuation
πp : Z16

2 → Z
16
2 .

Initialization: w0 = (x1, . . . , x16).

Updating: For i = 1, . . . ,4 (w4 is not used)

u i w i−1 ⊕ K i

v i = S(u i)

w i = πp(v i)

Finalization: y = v4 ⊕ K 5

Picture from Stinson’s book

Preparing for crypto analysis of SPN
Let X1,X2, . . . be independent binary random variables:

pi = Pr(Xi = 0)

1− pi = Pr(Xi = 1)

Denote by εi = pi − 0.5 the bias of the distribution of Xi .

Examples:
If pi = 0.5 then εi = 0.
If pi = 0 then εi = −0.5.
If pi = 1 then εi = 0.5.

Piling-up Lemma: Let εi1 , . . . , εik denote the bias of
independent binary variables Xi1, . . . ,Xik . The bias of
Xi1 ⊕ · · · ⊕ Xik equals

εi1,...,ik = 2k−1
k
∏

j=1

εij .

Proof: By induction.

The S-box from our SPN is given in Table 3.1 of Stinson’s book.

Pr(X1 ⊕ X4 ⊕ Y2 = 0) = 8
16 , that is bias=0.

Pr(X3 ⊕ X4 ⊕ Y1 ⊕ Y2 = 0) = 2
16 , that is bias=−3

8 .

This kind of information will be used in linear attack on SPN.

From Stinson’s book

Linear attack

T1 = U1
5 ⊕ U1

7 ⊕U1
8 ⊕ V 1

6 bias is 0.25
T2 = U2

6 ⊕ V 2
6 ⊕ V 2

8 bias is − 0.25
T3 = U3

6 ⊕ V 3
6 ⊕ V 3

8 bias is − 0.25
T4 = U3

14 ⊕ V 3
14 ⊕ V 3

16 bias is − 0.25

The variables T1,T2,T3,T4 are not independent. Even so, we
use the piling lemma. We get that the bias of T1 ⊕ T2 ⊕ T3 ⊕ T4

is −1/32.

Rewriting we get

T1 ⊕ · · · ⊕ T4 = X5 ⊕ X7 ⊕ X8 ⊕ U4
6 ⊕ U4

8 ⊕ U4
14 ⊕ U4

16 ⊕ K 1
5 ⊕ K 1

7

⊕K 1
8 ⊕ K 2

6 ⊕ K 3
6 ⊕ K 3

14 ⊕ K 4
6 ⊕ K 4

8 ⊕ K 4
14 ⊕ K 4

16.

For fixed (unknown key) we get that the bias of

X5 ⊕ X7 ⊕ X8 ⊕ U4
6 ⊕ U4

8 ⊕U4
14 ⊕ U4

16

is 1/32 or −1/32.
For every guess of a key we can calculate U4

i from cipher text
(the value of U4

i will be correct if we guess the right key).
For a not too small sample of plain text/chipher text estimate
the bias of X5 ⊕ X7 ⊕ X8 ⊕U4

6 ⊕ U4
8 ⊕ U4

14 ⊕U4
16 for every

combination of values of K 5
5 ,K

5
6 ,K

5
7 ,K

5
8 ,K

5
13,K

5
14,K

5
15,K

5
16.

Choose, the combination with bias approximately 1/32 or
−1/32.

DES and AES
DES (used to be the standard). AES (becoming the standard).

DES uses the Feistel cipher:
Divide stage ui−1 into (Li−1,R i−1).
(Li ,R i) = g(Li−1,R i−1,K i) where

Li = R i−1

R i = Li−1 ⊕ f (R i−1,K i)

Note, that f needs not be invertible. In DES the function f
involves substituion and permutation.

AES not Feistel cipher. For the substitution we use the inverse
in Z28 . This map is a socalled “almost non-linear map” which
protects against differential attacks.

Is AES volnourable to algebraic attacks? No real success with
algebraic attacks yet.

