On the Metric-based Approximate Minimization of Markov Chains*

Giovanni Bacci, Giorgio Bacci, Kim G. Larsen, Radu Mardare
Aalborg University

ICALP 2017
Warsaw, 11th July 2017
Introduction

- **Moore’56, Hopcroft’71**: Minimization algorithm for DFA (partition refinement wrt Myhill-Nerode equiv.)

- Minimization via partition refinement:
 - **Kanellakis-Smolka’83**: minimization of LTSs wrt Milner’s strong bisimulation
 - **Baier’96**: minimization of MCs wrt Larsen-Skou probabilistic bisimulation
 - **Alur et al.’92, Yannakakis-Lee’97**: minimization of timed & real-time transition systems.
 - and many more…
A fundamental problem

Jou-Smolka’90 observed that behavioral equivalences are not robust for systems with real-valued data

Probabilistic systems (labelled Markov Chains)
A fundamental problem

Jou-Smolka’90 observed that behavioral equivalences are not robust for systems with real-valued data.
Metric-based Approximate Minimization

Closest Bounded Approximant (CBA) Minimum Significant Approximant Bound (MSAB)
Metric-based Approximate Minimization

Closest Bounded Approximant (CBA) Minimum Significant Approximant Bound (MSAB)

Diagram: A figure illustrating the closest bounded approximant (CBA) and the minimum significant approximant bound (MSAB) with points N and M.
Metric-based Approximate Minimization

Closest Bounded Approximant (CBA)

Minimum Significant Approximant Bound (MSAB)

\[
\minimize d
\]
Metric-based Approximate Minimization

Closest Bounded Approximant (CBA)

Minimum Significant Approximant Bound (MSAB)

minimize d
Metric-based Approximate Minimization

Closest Bounded Approximant (CBA)

Minimum Significant Approximant Bound (MSAB)

\[
\begin{align*}
\text{minimize } & d \\
\text{minimize } & k
\end{align*}
\]
“To study the complexity of an optimization problem one has to look at its decision variant”

(C. Papadimitriou)
“To study the complexity of an optimization problem one has to look at its decision variant”

(C. Papadimitriou)

Bounded Approximant (BA) given ε

Minimum Significant Approximant Bound (MSAB) minimize k
“To study the complexity of an optimization problem one has to look at its decision variant”

(C. Papadimitriou)
What distance on MCs?

(a.k.a. Kantorovich distance)

(\(\lambda\)-discounted) **Probabilistic Bisimilarity distance** of Desharnais et al. —denoted \(d_\lambda\)
What distance on MCs?

Theorem (Desharnais et. al 99)

\[m \sim n \iff d_\lambda(m,n) = 0 \]

(\(\lambda\)-discounted) Probabilistic Bisimilarity distance of Desharnais et al. —denoted \(d_\lambda\)

a.k.a. Kantorovich distance
What distance on MCs?

(\(\lambda\)-discounted) **Probabilistic Bisimilarity distance** of Desharnais et al. —denoted \(d_\lambda\)

Theorem (Desharnais et al 99)

\[m \sim n \text{ iff } d_\lambda(m,n) = 0 \]

Theorem (Chen, van Breugel, Worrell 12)

The probabilistic bisimilarity distance can be computed in polynomial time.
Relation with Model Checking

Theorem (Chen, van Breugel, Worrell 12)

For all $\phi \in \text{LTL}$, $| \Pr(m \vDash \phi) - \Pr(n \vDash \phi) | \leq d_1(m,n)$
Relation with Model Checking

Theorem (Chen, van Breugel, Worrell 12)

For all $\phi \in \text{LTL}$, $| \Pr(m \models \phi) - \Pr(n \models \phi) | \leq d_1(m,n)$

...imagine that $|M| \gg |N|$, we can use N in place of M
CBA: Example*

(*) With respect to the undiscounted probabilistic bisimilarity distance d_1
CBA: Example*

(*) With respect to the undiscounted probabilistic bisimilarity distance d_1
CBA: Example*

(*) With respect to the undiscounted probabilistic bisimilarity distance d_1

MC(5)
CBA: Example*

(*) With respect to the undiscounted probabilistic bisimilarity distance $d_1 \geq 1/4$ with $0 \leq x+y \leq 1$
CBA: Example*

(*) With respect to the undiscounted probabilistic bisimilarity distance $d_1 \geq 1/4$ with $0 \leq x+y \leq 1$

MC(5)
CBA: Example*

(*) With respect to the undiscounted probabilistic bisimilarity distance d_1
CBA: Example*

(*) With respect to the undiscounted probabilistic bisimilarity distance d_1
CBA: Example*

Optimal parameters may be irrational!

\[
x = \frac{1}{30} \left(10 + \sqrt{163} \right)
\]

\[
y = \frac{21}{200}
\]

(*) With respect to the undiscounted probabilistic bisimilarity distance \(d_1\)
CBA: Example*

Optimal distance is irrational!

\[\delta(m_0, n_0) = \frac{436}{675} - \frac{163\sqrt{163}}{13500} \approx 0.49 \]

Optimal parameters may be irrational!

\[x = \frac{1}{30} \left(10 + \sqrt{163} \right) \]
\[y = \frac{21}{200} \]

(*) With respect to the undiscounted probabilistic bisimilarity distance \(d_1 \)
Our Contributions
Our Contributions

Characterizations + COMPLEXITY results:
Our Contributions

Characterizations + COMPLEXITY results:

1. Closest Bounded Approximant (CBA) encoded as a bilinear program
Our Contributions

Characterizations + COMPLEXITY results:

1. **Closest Bounded Approximant (CBA)**
 encoded as a bilinear program
2. **Bounded Approximant (BA)**
 PSPACE & NP-hard for all $\lambda \in (0,1]$
Our Contributions

Characterizations + COMPLEXITY results:

1. **Closest Bounded Approximant (CBA)** encoded as a bilinear program
2. **Bounded Approximant (BA)** PSPACE & NP-hard for all $\lambda \in (0, 1]$
3. **Significant Bounded Approximant (SBA)** NP-complete for $\lambda = 1$
Our Contributions

Theoretical

Characterizations + COMPLEXITY results:

1. **Closest Bounded Approximant (CBA)**
 encoded as a bilinear program
2. **Bounded Approximant (BA)**
 PSPACE & NP-hard for all $\lambda \in (0,1]$
3. **Significant Bounded Approximant (SBA)**
 NP-complete for $\lambda = 1$
Our Contributions

Theoretical

Characterizations + COMPLEXITY results:

1. Closest Bounded Approximant (CBA) encoded as a bilinear program
2. Bounded Approximant (BA)
PSPACE & NP-hard for all $\lambda \in (0,1]$
3. Significant Bounded Approximant (SBA)
NP-complete for $\lambda = 1$

Practical

We proposed an EM-like method to obtain a sub-optimal approximants
Talk Outline

★ Probabilistic bisimilarity distance
 • fixed point characterization (Kantorovich oper.)

★ Metric-based Optimal Approximate Minimization
 • Closest Bounded Approximant (CBA)
 — bilinear characterization (+ complexity)
 • Minimum Significant Approximant Bound (MSAB)
 — characterization (+ complexity)
 • Expectation Maximization-like algorithm
 — 2 heuristics + experimental results
Probabilistic bisimulation

It tries to match the behaviors “quantitatively”
Probabilistic bisimulation

It tries to match the behaviors “quantitatively”
It tries to match the behaviors “quantitatively”
Probabilistic bisimulation

It tries to match the behaviors “quantitatively”
Probabilistic bisimulation

It tries to match the behaviors “quantitatively”

It’s a coupling!
Coupling

Definition (W. Doeblin 36)

A coupling of a pair \((\mu, \nu)\) of probability distributions on \(M\) is a distribution \(\omega\) on \(M \times M\) such that

- \(\sum_{n \in M} \omega(m, n) = \mu(m)\) \((\text{left marginal})\)
- \(\sum_{m \in M} \omega(m, n) = \nu(n)\) \((\text{right marginal})\).

One can think of a coupling as a measure-theoretic relation between probability distribution
A quantitative generalization

minimize $\sum_{u,v \in M} \omega(u,v) \cdot d(u,v)$
A quantitative generalization of probabilistic bisimilarity

(Desharnais et al.’99 & Worrell-van Breugel’00)

The λ-discounted **probabilistic bisimilarity pseudometric** is the smallest $d_\lambda: M \times M \rightarrow [0,1]$ such that

$$d_\lambda(m,n) = \Gamma_\lambda(d_\lambda) = \begin{cases}
1 & \text{if } \ell(m) \neq \ell(n) \\
\lambda K(d_\lambda)(\tau(m),\tau(n)) & \text{otherwise}
\end{cases}$$

(Desharnais et al. ’99 & Worrell-van Breugel ’00)
A quantitative generalization of probabilistic bisimilarity
(Desharnais et al.'99 & Worrell-van Breugel’00)

The \(\lambda\)-discounted \textbf{probabilistic bisimilarity pseudometric}
is the smallest \(d_{\lambda} : M \times M \rightarrow [0,1]\) such that

\[
d_{\lambda}(m,n) = \Gamma_{\lambda}(d_{\lambda}) = \begin{cases}
1 & \text{if } \ell(m) \neq \ell(n) \\
\lambda K(d_{\lambda}(\tau(m),\tau(n)) & \text{otherwise}
\end{cases}
\]
A quantitative generalization of probabilistic bisimilarity
(Desharnais et al.’99 & Worrell-van Breugel’00)

The λ-discounted probabilistic bisimilarity pseudometric is the smallest $d_\lambda: M \times M \rightarrow [0,1]$ such that

$$d_\lambda(m,n) = \Gamma_\lambda(d_\lambda) = \begin{cases} 1 & \text{transition probabilities} \\
\lambda K(d_\lambda)(\tau(m),\tau(n)) & \text{otherwise} \\
\end{cases}$$

if $\ell(m) \neq \ell(n)$

Kantorovich distance

$$K(d)(\mu,\nu) = \min_{\omega \in \Omega(\mu,\nu)} \sum_{u,v \in M} \omega(u,v) d(u,v)$$
Talk Outline

★ Probabilistic bisimilarity distance
 • fixed point characterization (Kantorovich oper.)

★ Metric-based Optimal Approximate Minimization
 • Closest Bounded Approximant (CBA)
 — bilinear characterization + complexity
 • Minimum Significant Approximant Bound (MSAB)
 — complexity (+ characterization)
 • Expectation Maximization-like algorithm
 — 2 heuristics + experimental results
The CBA-λ problem

Instance: An MC M, and $k \in \mathbb{N}$

Output: An MC \tilde{N}, with at most k states minimizing $d_\lambda(m_0, \tilde{n}_0)$
The CBA-λ problem

Instance: An MC M, and $k \in \mathbb{N}$

Output: An MC \tilde{N}, with at most k states minimizing $d_\lambda(m_0, \tilde{n}_0)$

$$d_\lambda(m_0, \tilde{n}_0) = \inf \{ d_\lambda(m_0, n_0) \mid N \in MC(k) \}$$
The CBA-λ problem

Instance: An MC M, and $k \in \mathbb{N}$

Output: An MC \tilde{N}, with at most k states minimizing $d_{\lambda}(m_0, \tilde{n}_0)$

\[d_{\lambda}(m_0, \tilde{n}_0) = \inf \{ d_{\lambda}(m_0, n_0) \mid N \in \text{MC}(k) \} \]

we get a solution iff the infimum is a minimum
The CBA-\(\lambda\) problem

Instance: An MC \(M\), and \(k \in \mathbb{N}\)

Output: An MC \(\tilde{N}\), with at most \(k\) states minimizing \(d_{\lambda}(m_0, \tilde{n}_0)\)

\[d_{\lambda}(m_0, \tilde{n}_0) = \inf \{ d_{\lambda}(m_0, n_0) \mid N \in MC(k) \}\]

we get a solution iff the infimum is a minimum.

generalization of bisimilarity quotient

\(17/29\)
CBA-\(\lambda\) as a Bilinear Program

\[d_{\lambda}(m_0,\tilde{n}_0) = \inf \{ d_{\lambda}(m_0,n_0) \mid N \in MC(k) \} \]
CBA-λ as a Bilinear Program

\[d_\lambda(m_0, n_0) = \inf \{ d_\lambda(m_0, n_0) \mid N \in MC(k) \} \]
\[= \inf \{ d(m_0, n_0) \mid \Gamma_\lambda(d) \leq d, N \in MC(k) \} \]
CBA-λ as a Bilinear Program

\[d_\lambda(m_0, n_0) = \inf \{ d_\lambda(m_0, n_0) \mid N \in MC(k) \} \]

\[= \inf \{ d(m_0, n_0) \mid \Gamma_\lambda(d) \leq d, N \in MC(k) \} \]

minimize \(d_{m_0, n_0} \)

such that \(d_{m, n} = 1 \)

\[\lambda \sum_{(u, v) \in M \times N} c_{u, v}^{m, n} \cdot d_{u, v} \leq d_{m, n} \]

\[\sum_{v \in N} c_{u, v}^{m, n} = \tau(m)(u) \]

\[\sum_{u \in M} c_{u, v}^{m, n} = \theta_{n, v} \]

\[c_{u, v}^{m, n} \geq 0 \]
CBA-λ as a Bilinear Program

\[d_\lambda(m_0,\tilde{n}_0) = \inf \left\{ d_\lambda(m_0,n_0) \mid N \in \text{MC}(k) \right\} \]

\[= \inf \left\{ d(m_0,n_0) \mid \Gamma_\lambda(d) \leq d, N \in \text{MC}(k) \right\} \]

minimize \(d_{m_0,n_0} \)

such that

\[d_{m,n} = 1 \]

\[\lambda \sum_{(u,v) \in M \times N} c_{u,v}^m \cdot d_{u,v} \leq d_{m,n} \]

\[\sum_{v \in N} c_{u,v}^m = \tau(m)(u) \]

\[\sum_{u \in M} c_{u,v}^m = \theta_{n,v} \]

\[c_{u,v}^m \geq 0 \]
CBA-λ as a Bilinear Program

\[
d_{\lambda}(m_0, \tilde{n}_0) = \inf \{ \ d_{\lambda}(m_0, n_0) \mid N \in MC(k) \}
= \inf \{ d(m_0, n_0) \mid \Gamma_{\lambda}(d) \leq d, N \in MC(k) \}
\]

minimize \[d_{m_0, n_0} \]
such that \[
\begin{align*}
d_{m, n} &= 1 \\
\lambda \sum_{(u, v) \in M \times N} c_{u, v}^{m, n} \cdot d_{u, v} &\leq d_{m, n} \\
\sum_{v \in N} c_{u, v}^{m, n} &= \tau(m)(u) \\
\sum_{u \in M} c_{u, v}^{m, n} &= \theta_{n, v} \quad \text{variable!} \\
c_{u, v}^{m, n} &\geq 0
\end{align*}
\]

\[\ell(m) \neq \alpha(n) \]
\[\ell(m) = \alpha(n) \]
\[m, u \in M, n \in N \]
\[m \in M, n, v \in N \]
\[N = \{1 \ldots k\} \]
CBA-λ as a Bilinear Program

\[d_\lambda(m_0, n_0) = \inf \{ d_\lambda(m_0, n_0) \mid N \in \text{MC}(k) \} \]
\[= \inf \{ d(m_0, n_0) \mid \Gamma_\lambda(d) \leq d, N \in \text{MC}(k) \} \]

minimize \(d_{m_0, n_0} \)
such that \(d_{m, n} = 1 \)
\[\lambda \sum_{(u, v) \in M \times N} c_{u, v}^m \cdot d_{u, v} \leq d_{m, n} \]
\[\sum_{v \in N} c_{u, v}^m = \tau(m)(u) \]
\[\sum_{u \in M} c_{u, v}^m = \theta_{n, v} \]
\[c_{u, v}^m \geq 0 \]

what labels should the MC N have?

variable!

\(\ell(m) = \alpha(n) \)
\(m, u \in M, n \in N \)
\(m \in M, n, v \in N \)
\(N = \{1...k\} \)
CBA-λ as a Bilinear Program

Lemma (Meaningful labels)

For any $N \in MC(k)$, there exists $N' \in MC(k)$ with labels taken from M, such that $d_\lambda(M, N) \geq d_\lambda(M, N')$
CBA-λ as a Bilinear Program

Lemma (Meaningful labels)
For any N∈MC(k), there exists N’∈MC(k) with labels taken from M, such that \(d_\lambda(M,N) \geq d_\lambda(M,N') \)

minimize \(d_{m_0,n_0} \)
such that
\[
\lambda \sum_{(u,v) \in M \times N} c_{u,v}^{m,n} \cdot d_{u,v} \leq d_{m,n}
\]
\[
1 - \alpha_{n,l} \leq d_{m,n} \leq 1
\]
\[
\alpha_{n,l} \cdot \alpha_{n,l'} = 0
\]
\[
\sum_{l \in L(M)} \alpha_{n,l} = 1
\]
\[
\sum_{v \in N} c_{u,v}^{m,n} = \tau(m)(u)
\]
\[
\sum_{u \in M} c_{u,v}^{m,n} = \theta_{n,v}
\]
\[
c_{u,v}^{m,n} \geq 0
\]
\(m \in M, n \in N \)
\(n \in N, l \in L(M), l(m) \neq l \)
\(n \in N, l, l' \in L(M), l \neq l' \)
\(n \in N \)
\(m, u \in M, n \in N \)
\(m \in M, n, v \in N \)
\(m, u \in M, n, v \in N \)
CBA-λ as a Bilinear Program

Lemma (Meaningful labels)
For any \(N \in MC(k) \), there exists \(N' \in MC(k) \) with labels taken from \(M \), such that \(d_\lambda(M,N) \geq d_\lambda(M,N') \)

minimize \(d_{m_0,n_0} \)
such that
\[
\lambda \sum_{(u,v) \in M \times N} c_{u,v}^{m,n} \cdot d_{u,v} \leq d_{m,n}
\]
\[
1 - \alpha_{n,l} \leq d_{m,n} \leq 1
\]
\[
\alpha_{n,l} \cdot \alpha_{n,l'} = 0
\]
\[
\sum_{l \in L(M)} \alpha_{n,l} = 1
\]
\[
\sum_{v \in N} c_{u,v}^{m,n} = \tau(m)(u)
\]
\[
\sum_{u \in M} c_{u,v}^{m,n} = \theta_{n,v}
\]
\[
c_{u,v}^{m,n} \geq 0
\]

\(m \in M, n \in N \)
\(n \in N, l \in L(M), \ell(m) \neq l \)
\(n \in N, l, l' \in L(M), l \neq l' \)
\(n \in N \)
\(m, u \in M, n \in N \)
\(m \in M, n, v \in N \)
\(m, u \in M, n, v \in N \)
CBA-\(\lambda\) as a Bilinear Program

this characterization has two main consequences…

1. CBA-\(\lambda\) admits always a solution (finite intersection of closed subsets)

2. CBA-\(\lambda\) can be approximated up to any precision
Complexity of CBA-λ actually, its decision variant!
Complexity of $\text{CBA-}\lambda$

actually, its decision variant!

Complexity Upper-bound

$\text{BA-}\lambda$ is in PSPACE

Proof sketch: we can encode the question $\langle M,k,\varepsilon \rangle \in \text{BA-}\lambda$ to that of checking the feasibility of a set of bilinear inequalities. This can be encoded as a decision problem for the existential theory of the reals, thus it can be solved in PSPACE [Canny—STOC88].
Complexity of CBA-λ

Complexity Upper-bound

BA-λ is in **PSPACE**

Complexity lower-bound

BA-λ is **NP-hard**

Proof idea: we provide a reduction from VERTEX COVER. (see the appendix for a sketch of the reduction)
Complexity of $CBA-\lambda$

Complexity Upper-bound

$BA-\lambda$ is in **PSPACE**

Complexity Lower-bound

$BA-\lambda$ is **NP-hard**

actually, its decision variant!

unlikely to solve CBA as simple linear program
The MSAB-λ problem

Instance: An MC M
Output: The smallest k such that $d_\lambda(m_0,n_0)<1$, for some $N \in MC(k)$
The MSAB-λ problem

Instance: An MC M

Output: The smallest k such that $d_\lambda(m_0,n_0)<1$, for some $N \in MC(k)$

For $\lambda<1$, the MSAB-λ problem is trivial, because the solution is always $k=1$
The MSAB-\(\lambda\) problem

Instance: An MC \(M\)

Output: The smallest \(k\) such that
\[d_\lambda(m_0,n_0) < 1,\] for some \(N \in MC(k)\)

For \(\lambda < 1\), the MSAB-\(\lambda\) problem is trivial, because the solution is always \(k=1\)

For \(\lambda = 1\), the same problem is surprisingly difficult…
Complexity of MSAB-1

actually, its decision variant!

Theorem

SBA-1 is \textbf{NP-complete}

\textbf{Proof idea:} we provide a reduction from VERTEX COVER. (see the appendix for a sketch of the reduction)
Towards an Algorithm...
Towards an Algorithm…

- The CBA can be solved as a bilinear program. Theoretically nice, but practically unfeasible! (our implementation in PENBMI can handle MCs with at most 5 states…)
Towards an Algorithm…

• The CBA can be solved as a bilinear program. Theoretically nice, but practically unfeasible! (our implementation in PENBMI can handle MCs with at most 5 states…)

• We are happy with **sub-optimal solutions** if they can be obtained by a practical algorithm.
EM-like Algorithm

- Given the MC M and an initial approximant N_0
- it produces a sequence N_0, \ldots, N_h of approximants having strictly decreasing distance from M
- N_h may be a sub-optimal solution of CBA-λ
EM-like Algorithm

Algorithm 1

\textbf{Input:} \(\mathcal{M} = (M, \tau, \ell), \mathcal{N}_0 = (N, \theta_0, \alpha), \) and \(h \in \mathbb{N}. \)

1. \(i \leftarrow 0 \)
2. \textbf{repeat}
3. \(i \leftarrow i + 1 \)
4. \text{compute} \(C \in \Omega(\mathcal{M}, \mathcal{N}_{i-1}) \) \text{such that} \(\delta_\lambda(\mathcal{M}, \mathcal{N}_{i-1}) = \gamma^C_\lambda(\mathcal{M}, \mathcal{N}_{i-1}) \)
5. \(\theta_i \leftarrow \text{UPDATETRANSITION}(\theta_{i-1}, C) \)
6. \(\mathcal{N}_i \leftarrow (N, \theta_i, \alpha) \)
7. \textbf{until} \(\delta_\lambda(\mathcal{M}, \mathcal{N}_i) > \delta_\lambda(\mathcal{M}, \mathcal{N}_{i-1}) \) \text{or} \(i \geq h \)
8. \textbf{return} \(\mathcal{N}_{i-1} \)
EM-like Algorithm

Algorithm 1

Input: $\mathcal{M} = (M, \tau, \ell), \mathcal{N}_0 = (N, \theta_0, \alpha)$, and $n \in \mathbb{N}$.

1. $i \leftarrow 0$
2. repeat
 3. $i \leftarrow i + 1$
 4. compute $C \in \Omega(\mathcal{M}, \mathcal{N}_{i-1})$ such that $\delta_\lambda(\mathcal{M}, \mathcal{N}_{i-1}) = \gamma^C_\lambda(\mathcal{M}, \mathcal{N}_{i-1})$
 5. $\theta_i \leftarrow \text{UpdateTransition}(\theta_{i-1}, C)$
 6. $\mathcal{N}_i \leftarrow (N, \theta_i, \alpha)$
5. until $\delta_\lambda(\mathcal{M}, \mathcal{N}_i) > \delta_\lambda(\mathcal{M}, \mathcal{N}_{i-1})$ or $i \geq h$
8. return \mathcal{N}_{i-1}

Intuitive Idea

UpdateTransition assigns greater probability to transitions that are most representative of the behavior of M.
Two update heuristics

• **Averaged Marginal (AM)**: given N_k we construct N_{k+1} by averaging the marginal of certain “coupling variables” obtained by optimizing the number of occurrences of the edges that are most likely to be seen in M.

• **Averaged Expectations (AE)**: similar to the above, but now the N_{k+1} looks only the expectation of the number of occurrences of the edges likely to be found in M.
Two update heuristics

- **Averaged Marginal (AM)**: given N_k we construct N_{k+1} by averaging the marginal of certain “coupling variables” obtained by optimizing the number of occurrences of the edges that are most likely to be seen in M.

- **Averaged Expectations (AE)**: similar to the above, but now the N_{k+1} looks only the expectation of the number of occurrences of the edges likely to be found in M.

Update Transition in polynomial time for both heuristics!
| Case | $|M|$ | k | $\lambda = 1$ | | $\lambda = 0.8$ | | | | | | | |
|--------------|-----|-----|---------------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|
| | | | δ_λ-init | δ_λ-final | # | time | δ_λ-init | δ_λ-final | # | time |
| IPv4 (AM) | 23 | 5 | 0.775 | 0.054 | 3 | 4.8 | 0.576 | 0.025 | 3 | 4.8 |
| | 53 | 5 | 0.856 | 0.062 | 3 | 25.7| 0.667 | 0.029 | 3 | 25.9 |
| | 103 | 5 | 0.923 | 0.067 | 3 | 116.3| 0.734 | 0.035 | 3 | 116.5|
| | 53 | 6 | 0.757 | 0.030 | 3 | 39.4| 0.544 | 0.011 | 3 | 39.4 |
| | 103 | 6 | 0.837 | 0.032 | 3 | 183.7| 0.624 | 0.017 | 3 | 182.7|
| | 203 | 6 | – | – | – | – | – | – | – | – |
| IPv4 (AE) | 23 | 5 | 0.775 | 0.109 | 2 | 2.7 | 0.576 | 0.049 | 3 | 4.2 |
| | 53 | 5 | 0.856 | 0.110 | 2 | 14.2| 0.667 | 0.049 | 3 | 21.8 |
| | 103 | 5 | 0.923 | 0.110 | 2 | 67.1| 0.734 | 0.049 | 3 | 100.4|
| | 53 | 6 | 0.757 | 0.072 | 2 | 21.8| 0.544 | 0.019 | 3 | 33.0 |
| | 103 | 6 | 0.837 | 0.072 | 2 | 105.9| 0.624 | 0.019 | 3 | 159.5|
| | 203 | 6 | – | – | – | – | – | – | – | – |
| DrkW (AM) | 39 | 7 | 0.565 | 0.466 | 14| 259.3| 0.432 | 0.323 | 14| 252.8|
| | 49 | 7 | 0.568 | 0.460 | 14| 453.7| 0.433 | 0.322 | 14| 420.5|
| | 59 | 8 | 0.646 | – | – | TO | 0.423 | – | – | TO |
| DrkW (AE) | 39 | 7 | 0.565 | 0.435 | 11| 156.6| 0.432 | 0.321 | 2 | 28.6 |
| | 49 | 7 | 0.568 | 0.434 | 10| 247.7| 0.433 | 0.316 | 2 | 46.2 |
| | 59 | 8 | 0.646 | 0.435 | 10| 588.9| 0.423 | 0.309 | 2 | 115.7|

Table 1. Comparison of the performance of EM algorithm on the IPv4 zeroconf protocol and the classic Drunkard’s Walk w.r.t. the heuristics AM and AE.
Future Work

• **Conjecture 1:** (with Nathanaël Fijalkow)
 Is BA-1 is SUM-OF-SQUARE-ROOTS-hard

• **Conjecture 2:** (by Borja Balle)
 for $\lambda<1$, BA-λ is in NP (hence NP-complete!)

• Real/better EM-heuristics?

• What about different models/distances?
Thank you for your attention
Appendix
BA-λ is NP-hard

\[
\langle G, h \rangle \in \text{VERTEX COVER} \text{ iff } \langle M_G, m+h+2, \lambda^2/2m^2 \rangle \in \text{BA-λ}
\]
Characterization of SBA-1

Lemma

Assume M be maximally collapsed. Then,

\[\langle M, k \rangle \in \text{SBA-1} \quad \text{iff} \quad \mathcal{G}(M) = \text{BSCC} \quad \text{and} \quad h + |C| \leq k \]
Characterization of SBA-1

Lemma

Assume M be maximally collapsed. Then,

\[\langle M,k \rangle \in \text{SBA-1} \quad \text{iff} \quad \mathcal{G}(M) = \text{BSCC} \quad \text{and} \quad h + |C| \leq k \]

Proof sketch: compute with Tarjan's algorithm all the SCCs of $\mathcal{G}(M)$. Then non deterministically choose a BSCC and a path to it. In polytime we can count the number of labels in the path and the size of the BSCC.
SBA-1 is **NP-hard**

Proof sketch: by reduction to VERTEX COVER:

\[
\langle G, h \rangle \in \text{VERTEX COVER} \iff \langle M_G, h + m + 1 \rangle \in \text{SBA-1}
\]
SBA-1 is NP-hard

Proof sketch: by reduction to VERTEX COVER:

\[\langle G, h \rangle \in \text{VERTEX COVER} \iff \langle M_G, h+m+1 \rangle \in \text{SBA-1} \]
EM-like algorithm
(experimental results)
IPv4 Zero Conf Protocol

Averaged Marginal (AM)

Input model
IPv4 Zero Conf Protocol

Averaged Marginal (AM)

Input model

\[d_{0.9}(M,N_0) \approx 0.67 \]
IPv4 Zero Conf Protocol

Averaged Marginal (AM)

Input model

\[d_{0.9}(M,N_0) \approx 0.67 \]

\[d_{0.9}(M,N_1) \approx 0.043 \]
IPv4 Zero Conf Protocol

Averaged Marginal (AM)

Input model
IPv4 Zero Conf Protocol

Averaged Expectations (AE)

Input model

\[d_{0.9}(M, N_0) \approx 0.67 \]
IPv4 Zero Conf Protocol

Averaged Expectations (AE)

Input model

\[d_{0.9}(M,N_0) \approx 0.67 \]

\[d_{0.9}(M,N_1) \approx 0.08 \]
IPv4 Zero Conf Protocol

Averaged Expectations (AE)

Input model

\(d_{0.9}(M,N_0) \approx 0.67 \)

\(d_{0.9}(M,N_1) \approx 0.08 \)

\(d_{0.9}(M,N_2) \approx 0.11 \)
Drunkard's Walk

Averaged Marginal (AM)

Input model
Drunkard's Walk
Averaged Marginal (AM)

\[d_{0.9}(M,N_0) \approx 0.64 \]
Drunkard's Walk

Averaged Marginal (AM)

Input model

\[d_{0.9}(M, N_0) \approx 0.64 \]

\[d_{0.9}(M, N_1) \approx 0.56 \]
Drunkard's Walk

Averaged Marginal (AM)

Input model

d_{0.9}(M,N_0) \approx 0.64
d_{0.9}(M,N_1) \approx 0.56

d_{0.9}(M,N_2) \approx 0.567
Drunkard's Walk
Averaged Expectations (AE)

\[\delta_{0.9}(M,N_0) \approx 0.64 \]
Drunkard's Walk
Averaged Expectations (AE)

\[\delta_{0.9}(M,N_0) \approx 0.64 \]

\[\delta_{0.9}(M,N_1) \approx 0.56 \]
Drunkard's Walk
Averaged Expectations (AE)

\[\delta_{0.9}(M,N_0) \approx 0.64 \]
\[\delta_{0.9}(M,N_1) \approx 0.56 \]
\[\delta_{0.9}(M,N_2) \approx 0.543 \]
Drunkard's Walk

Averaged Expectations (AE)

\[\delta_{0.9}(M,N_0) \approx 0.64 \]

\[\delta_{0.9}(M,N_1) \approx 0.56 \]

\[\delta_{0.9}(M,N_2) \approx 0.543 \]

\[\delta_{0.9}(M,N_3) \approx 0.540 \]