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Abstract
We address the behavioral metric-based approximate minimization problem of Markov Chains
(MCs), i.e., given a finite MC and a positive integer k, we are interested in finding a k-state
MC of minimal distance to the original. By considering as metric the bisimilarity distance of
Desharnais at al., we show that optimal approximations always exist; show that the problem
can be solved as a bilinear program; and prove that its threshold problem is in PSPACE and
NP-hard. Finally, we present an approach inspired by expectation maximization techniques that
provides suboptimal solutions. Experiments suggest that our method gives a practical approach
that outperforms the bilinear program implementation run on state-of-the-art bilinear solvers.
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1 Introduction

Minimization of finite automata, i.e., the process of transforming a given finite automaton
into an equivalent one with minimum number of states, has been a major subject since the
1950s due to its fundamental importance for any implementation of finite automata tools.

The first algorithm for the minimization of deterministic finite automata (DFAs) is due
to Moore [27], with time complexity O(n2s), later improved by the now classical Hopcroft’s
algorithm [17] to O(ns logn), where n is the number of states and s the size of the alphabet.
Their algorithms are based on a partition refinement of the states into equivalence classes
of the Myhill-Nerode equivalence relation. Partition refinement has been employed in the
definition of efficient minimization procedures for a wide variety of automata: by Kanellakis
and Smolka [19, 20] for the minimization of labelled transition systems (LTSs) w.r.t. Milner’s
strong bisimulation [26]; by Baier [4] for the reduction of Markov Chains (MCs) w.r.t.
Larsen and Skou’s probabilistic bisimulation [23]; by Alur et al. [2] and by Yannakakis
and Lee [30], respectively, for the minimization of timed transition systems and timed-
automata. This technique was used also in parallel and distributed implementations of the
above algorithms [31, 8], and in the online reachability analysis of transition systems [24].

In [18], Jou and Smolka observed that for reasoning about the behavior of probabilistic
systems (and more in general, all type of quantitative systems), rather than equivalences, a
notion of distance is more reasonable in practice, since it permits “a shift in attention from
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??:2 On the Metric-based Approximate Minimization of MCs

equivalent processes to probabilistically similar processes”. This observation motivated the
development of metric-based semantics for quantitative systems, that consists in proposing
1-bounded pseudometrics capturing the similarities of the behaviors in the presence of small
variations of the quantitative data. These pseudometrics generalize behavioral equivalences
in the sense that, two processes are at distance 0 iff they are equivalent, and at distance 1
if no significant similarities can be observed between them.

The first proposal of a behavioral pseudometric is due to Desharnais et al. [12] on labelled
MCs, a.k.a. probabilistic bisimilarity distance, with the property that two MCs are at distance
0 iff they are probabilistic bisimilar. Its definition is parametric on a discount factor λ ∈ (0, 1]
that controls the significance of the future steps in the measurement. This pseudometric
has been greatly studied by van Breugel and Worrell [28, 29, 10] who noticed, among other
notable results, its relation with the Kantorovich distance on probability distributions and
provided a polynomial-time algorithm for its computation.

The introduction of metric-based semantics motivated the interest in the approximate
minimization of quantitative systems. The goal of approximate minimization is to start from
a minimal automaton and produce a smaller automaton that is close to the given one in a
certain sense. The desired size of the approximating automaton is given as input. Inspired
by the aggregation of equivalent states typical of partition refinement techniques, in [15],
the approximate minimization problem has been approached by aggregating states having
relative smaller distance. An example of this approach on MCs using the λ-bisimilarity
distance of Desharnais et al. is shown below.
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LetM be the MC on the left and assume we want to approximate it by an MC with at most
5 states. Sincem1,m2 are the only two states at distance less than 1, the most natural choice
for an aggregation shall collapse (via convex combination) m1 and m2, obtaining the MC in
the middle, which has distance 4

9 ( λ2

2−λ ) fromM. However, the approximate aggregation of
states does not necessarily yield the closest optimal solution. Indeed, the MC on the right
is a closer approximant ofM, at distance 1

6 ( λ2

2−λ ) from it.
In this paper we address the issue of finding optimal solutions to the approximate min-

imization problem. Specifically we aim to answer to the following problem, left open in [15]:
“given a finite MC and a positive integer k, what is its ‘best’ k-state approximant? Here by
‘best’ we mean a k-state MC at minimal distance to the original”. We refer to this problem
as Closest Bounded Approximant (CBA) and we present the following results related to it.

1. We characterize CBA as a bilinear optimization problem, proving the existence of
optimal solutions. As a consequence of this result, approximations of optimal solutions can
be obtained by checking the feasibility of bilinear matrix inequalities (BMIs) [22, 21].

2. We provide upper- and lower-bound complexity results for the threshold problem of
CBA, called Bounded Approximant problem (BA), that asks whether there exists a k-state
approximant with distance from the original MC bounded by a given rational threshold. We
show that BA is in PSPACE and NP-hard. As a corollary we obtain NP-hardness for CBA.

3. We introduce the Minimum Significant Approximant Bound (MSAB) problem, that
asks what is the minimum size k for an approximant to have some significant similarity
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to the original MC (i.e., at distance strictly less than 1). We show that this problem is
NP-complete when one considers the undiscounted bisimilarity distance.

4. Finally, we present an algorithm for finding suboptimal solutions of CBA that is in-
spired by Expectation Maximization (EM) techniques [25, 7]. Experiments suggest that our
method gives a practical approach that outperforms the bilinear program implementation
—state-of-the-art bilinear solvers [21] fails to handle MCs with more than 5 states!

Related Work In [16], the approximate minimization of MCs is addressed via the notion
of quasi-lumpability. An MC is quasi-lumpable if the given aggregations of the states can be
turned into actual bisimulation-classes by a small perturbation of the transition probabilities.
This approach differs from ours since there is no relation to a proper notion of behavioral
distance (the approximation is w.r.t. the supremum norm of the difference of the stochastic
matrices) and we do not consider any approximate aggregation of states. In [6], Balle et al.
consider the approximate minimization of weighted finite automata (WFAs). Their method
is via a truncation of a canonical normal form for WFAs that they introduced for the SVD
decomposition of infinite Hankel matrices. Both [16] and [6] do not consider the issue of
finding the closest approximant, which is the main focus of this paper, instead they give
upper bounds on the distance from the given model.

2 Markov Chains and Bisimilarity Pseudometric

In this section we introduce the notation and recall the definitions of (discrete-time) Markov
chains (MCs), probabilistic bisimilarity of Larsen and Skou [23], and the probabilistic bisim-
ilarity pseudometric of Desharnais et al. [13].

For R ⊆ X ×X an equivalence relation, X/R denotes its quotient set and [x]R denotes
the R-equivalence class of x ∈ X. D(X) denotes the set of discrete probability distributions
on X, i.e., functions µ : X → [0, 1], s.t. µ(X) = 1, where µ(E) =

∑
x∈E µ(x) for E ⊆ X.

In what follows we fix a countable set L of labels.

I Definition 1 (Markov Chain). A Markov chain is a tuple M = (M, τ, `) consisting of a
finite nonempty set of states M , a transition distribution function τ : M → D(M), and a
labelling function ` : M → L.

Intuitively, if M is in state m it moves to state m′ with probability τ(m)(m′). Labels
represent atomic properties that hold in certain states. The set of labels of M is denoted
by L(M) = {`(m) | m ∈M}. Hereafter, we useM = (M, τ, `) and N = (N, θ, α) to range
over MCs and we refer to their constituents implicitly.

I Definition 2 (Probabilistic Bisimulation [23]). An equivalence relation R ⊆ M ×M is a
probabilistic bisimulation onM if whenever m R n, then
1. `(m) = `(n), and
2. for all C ∈M/R, τ(m)(C) = τ(n)(C).
Two states m,n ∈ M are probabilistic bisimilar w.r.t. M, written m ∼M n if they are
related by some probabilistic bisimulation on M. In fact, probabilistic bisimilarity is the
greatest probabilistic bisimulation.

Any bisimulation R on M induces a quotient construction, the R-quotient of M, de-
noted M/R = (M/R, τ/R, `/R), having R-equivalence classes as states, transition function
τ/R([m]R)([n]R) =

∑
u∈[n]R τ(m)(u), and labelling function `/R([m]R) = `(m). An MCM

is said minimal if it is isomorphic to its quotient w.r.t. probabilistic bisimilarity.

ICALP 2017
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A 1-bounded pseudometric on X is a function d : X × X → [0, 1] such that, for any
x, y, z ∈ X, d(x, x) = 0, d(x, y) = d(y, x), and d(x, y) + d(y, z) ≥ d(x, z). 1-bounded
pseudometrics on X forms a complete lattice under the point-wise partial order d v d′ iff,
for all x, y ∈ X, d(x, y) ≤ d′(x, y).

A pseudometric is said to lift an equivalence relation if it enjoys the property that
two points are at distance zero iff they are related by the equivalence. A lifting for the
probabilistic bisimilarity is provided by the bisimilarity distance of Desharnais et al. [13].
Its definition is based on the Kantorovich (pseudo)metric on probability distributions over a
finite setX, defined as K(d)(µ, ν) = min

{∫
d dω | ω ∈ Ω(µ, ν)

}
, where d is a (pseudo)metric

on X and Ω(µ, ν) denotes the set of couplings for (µ, ν), i.e., distributions ω ∈ D(X ×X)
such that, for all E ⊆ X, ω(E ×X) = µ(E) and ω(X × E) = ν(E).

I Definition 3 (Bisimilarity Distance). Let λ ∈ (0, 1]. The λ-discounted bisimilarity pseudo-
metric onM, denoted by δλ, is the least fixed-point of the following functional operator on
1-bounded pseudometrics over M (ordered point-wise)

Ψλ(d)(m,n) =
{

1 if `(m) 6= `(n)
λ · K(d)(τ(m), τ(n)) otherwise .

The operator Ψλ is monotonic, hence, by Tarski fixed-point theorem, δλ is well defined.
Intuitively, if two states have different labels δλ considers them as “incomparable” (i.e., at

distance 1), otherwise their distance is given by the Kantorovich distance w.r.t. δλ between
their transition distributions. The discount factor λ ∈ (0, 1] controls the significance of the
future steps in the measurement of the distance; if λ = 1, the distance is said undiscounted.

The distance δλ has also a characterization based on the notion of coupling structure.

I Definition 4 (Coupling Structure). A function C : M ×M → D(M ×M) is a coupling
structure forM if for all m,n ∈M , C(m,n) ∈ Ω(τ(m), τ(n)).

Intuitively, a coupling structure can be thought of as an MC on the cartesian productM×M ,
obtained as the probabilistic combination of two copies ofM.

Given a coupling structure C forM and λ ∈ (0, 1], let γCλ be the least fixed-point of the
following operator on [0, 1]-valued functions d : M ×M → [0, 1] (ordered point-wise)

ΓCλ(d)(m,n) =
{

1 if `(m) 6= `(n)
λ
∫
d dC(m,n) otherwise .

The function γCλ is called λ-discounted discrepancy of C, and the value γCλ(m,n) is the
λ-discounted probability of hitting from (m,n) a pair of states with different labels in C.

I Theorem 5 (Minimal coupling criterion [10]). For arbitrary MCs M and discount factors
λ ∈ (0, 1], δλ = min

{
γCλ | C coupling structure forM

}
.

Usually, MCs are associated with an initial state to be thought of as their initial con-
figurations. In the rest of the paper when we talk about the distance between two MCs,
written δλ(M,N ), we implicitly refer to the distance between their initial states computed
over the disjoint union of their MCs.

3 The Closest Bounded Approximant Problem

In this section we introduce the Closest Bounded Approximant problem w.r.t. δλ (CBA-λ),
and give a characterization of it as a bilinear optimization problem.
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mimimize dm0,n0

such that λ
∑

(u,v)∈M×N c
m,n
u,v · du,v ≤ dm,n m ∈M , n ∈ N (5)

1− αn,l ≤ dm,n ≤ 1 n ∈ N , l ∈ L(M), `(m) 6= l (6)
αn,l · αn,l′ = 0 n ∈ N , l, l′ ∈ L(M), l 6= l′ (7)∑

l∈L(M) αn,l = 1 n ∈ N (8)∑
v∈N c

m,n
u,v = τ(m)(u) m,u ∈M , n ∈ N (9)∑

u∈M cm,nu,v = θn,v m ∈M , n, v ∈ N (10)
cm,nu,v ≥ 0 m,u ∈M , n, v ∈ N (11)

Figure 1 Characterization of CBA-λ as a bilinear optimization problem.

I Definition 6 (Closest Bounded Approximant). Let k ∈ N and λ ∈ (0, 1]. The closest
bounded approximant problem w.r.t. δλ for an MC M is the problem of finding an MC N
with at most k states minimizing δλ(M,N ).

Clearly, when k is greater than or equal to the number of bisimilarity classes ofM, an
optimal solution of CBA-λ is the bisimilarity quotient. Therefore, without loss of generality,
we will assume 1 ≤ k < |M | andM to be minimal. Note that, under these assumptionsM
must have at least two nodes with different labels.

Let MC(k) denote the set of MCs with at most k states and MCA(k) its restriction to
those using only labels in A ⊆ L. Using this notation, the optimization problem CBA-λ on
the instance 〈M, k〉 can be reformulated as finding an MC N ∗ such that

δλ(M,N ∗) = min {δλ(M,N ) | N ∈ MC(k)} , (1)

In general, it is not obvious that for arbitrary instances 〈M, k〉 a minimum in (1) exists. At
the end of the section, we will show that such a minimum always exists (Corollary 9).

A useful property of CBA-λ is that an optimal solution can be found among the MCs
using labels from the given MC.

I Lemma 7 (Meaningful labels). LetM be an MC. Then, for any N ′ ∈ MC(k) there exists
N ∈ MCL(M)(k) such that δλ(M,N ) ≤ δλ(M,N ′).

In the following, fix 〈M, k〉 as instance of CBA-λ, let m0 ∈M be the initial state ofM.
By Lemma 7, Theorem 5 and Tarski fixed-point theorem

inf {δλ(M,N ) | N ∈ MC(k)} = (2)
= inf

{
γCλ(M,N ) | N ∈ MCL(M)(k) and C ∈ Ω(M,N )

}
(3)

= inf
{
d(M,N ) | N ∈ MCL(M)(k), C ∈ Ω(M,N ), and ΓCλ(d) v d

}
, (4)

where Ω(M,N ) denotes the set of all coupling structures for the disjoint union of M and
N . This simple change in perspective yields a translation of the problem of computing the
optimal value of CBA-λ to the bilinear program in Figure 1.

In our encoding, N = {n0, . . . , nk−1} are the states of an arbitraryN = (N, θ, α) ∈ MC(k)
and n0 is the initial one. The variable θn,v is used to encode the transition probability
θ(n)(v). Hence, a feasible solution satisfying (11–13) will have the variable cm,nu,v repres-
enting the value C(m,n)(u, v) for a coupling structure C ∈ Ω(M,N ). An assignment for
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the variables αn,l satisfying (7–10) encodes (uniquely) a labeling function α : N → L(M)
satisfying the following property:

for all n ∈ N, l ∈ L(M) αn,l = 1 iff α(n) = l . (12)

The constraint (7) models the fact that each node n ∈ N is assigned to at most one label
l ∈ L(M), and the constraint (10) ensures that each node is assigned to at least one label.
Conversely, any labeling α : N → L(M) admits an assignment of the variables αn,l that sat-
isfy (7–10) and (14). Finally, an assignment for the variables dm,n satisfying the constraints
(6–5) represents a prefix point of ΓCλ. Note that (5) guarantees that dm,n = 1 whenever
α(n) 6= `(m) —indeed, by (7), αn,l = 0 iff α(n) 6= `(m).

Let Fλ〈M, k〉 denote the bilinear optimization problem in Figure 1. Directly from the
arguments stated above we obtain the following result.

I Theorem 8. inf {δλ(M,N ) | N ∈MC(k)} is the optimal value of Fλ〈M, k〉.

I Corollary 9. Any instance of CBA-λ admits an optimal solution.

Proof. Let h be the number of variables in Fλ〈M, k〉. The constraints (5–13) describe a
compact subset of Rh —it is an intersection of closed sets bounded by [0, 1]h. The objective
function of Fλ〈M, k〉 is linear, hence the infimum is attained by a feasible solution. The
thesis follows by Theorem 8. J

The following example shows that even by starting with a MC with rational transition
probabilities, optimal solutions for CBA-λ may have irrational transition probabilities.

I Example 10. Consider the MC M depicted below, with initial state m0 and labeling
represented by colors. An optimal solution of CBA-1 on 〈M, 3〉 is the MC Nxy depicted
below, with initial state n0 and parameters x = 1

30
(
10 +

√
163
)
, y = 21

100 .

M =
m0 m1 m2 m3

m4

79
100

21
100

79
100

21
100

79
100

21
100

1

1

Nxy =
n0 n1

n2

y

1− x− y
x

1

1

Since the distance δ1(M,Nxy) = 436
675 −

163
√

163
13500 ≈ 0.49 is irrational, by [10, Proposition 13],

any optimal solution must have some irrational transition probability.
Next we show that the above is indeed an optimal solution. Assume by contradiction

that N ∗ 6∼ Nxy is an optimal solution. By Lemma 7, we can assume L(N ∗) ⊆ L(M). If
L(N ∗) = L(M), then δ1(M,N ∗) = min {δ1(M,Nzy) | z ∈ [0, 1− y]} since one can show
that for any y′ 6= y and z′, there exists z ∈ [0, 1− y], such that δ1(M,Nzy) ≤ δ1(M,Nz′y′).
δ1(M,Nzy) is analytically solved by z3−z2− 21

100z−
79

100 and its minimum value is achieved at
z = 1

30
(
10 +

√
163
)
. This contradicts N ∗ 6∼ Nxy. Assume L(N ∗) ( L(M). By [10, Corol-

lary 11], for any measurable set A ⊆ Lω, δ1(M,N ∗) ≥ |PM(A)−PN∗(A)|, where PN (A) de-
notes the probability that a run of N is in A. If `(m0) /∈ L(N ∗), we have that δ1(M,N ∗) ≥
|PM(`(m0)Lω) − PN∗(`(m0)Lω)| = PM(`(m0)Lω) = 1 > δ1(M,Nxy). Analogously, if
`(m3) /∈ L(N ∗) we have δ1(M,N ∗) ≥ PM(L∗`(m3)Lω) =

( 79
100
)3
> δ1(M,Nxy). Finally, if

`(m4) /∈ L(N ∗), δ1(M,N ∗) ≥ PM(L∗`(m4)Lω) = 21
100
∑2
i=0
( 79

100
)i
> δ1(M,Nxy). J
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Figure 2 (Left) An undirected graph G; (Center) The MC MG associated to the graph G;
(Right) The MCMC associated to the vertex cover C = {2, 3} of G. (see Thm. 14).

4 The Bounded Approximant Threshold Problem

The Bounded Approximant problem w.r.t. δλ (BA-λ) is the threshold decision problem of
CBA-λ, that, given MC M, integer k ≥ 1, and rational ε ≥ 0, asks whether there exists
N ∈ MC(k) such that δλ(M,N ) ≤ ε.

From the characterization of CBA-λ as a bilinear optimization problem (Theorem 8) we
immediately get the following complexity upper-bound for BA-λ.

I Theorem 11. For any λ ∈ (0, 1], BA-λ is in PSPACE.

Proof. By Theorem 8, deciding an instance 〈M, k, ε〉 of BA-λ can be encoded as a decision
problem for the existential theory of the reals, namely, checking the feasibility of the con-
straints (5–13) in conjunction with dm0,n0 ≤ ε. The encoding is polynomial in the size of
〈M, k, ε〉, thus it can be solved in PSPACE (cf. Canny [9]). J

In the rest of the section we provide a complexity lower-bound for BA-λ, by showing
that BA-λ is NP-hard via a reduction from Vertex Cover. Recall that, a vertex cover of
an undirected graph G is a subset C of vertices such that every edge in G has at least one
endpoint in C. Given a graph G and a positive integer h, the Vertex Cover problem asks
if G has a cover of size at most h.

Before presenting the reduction we establish structural properties for an optimal solution
of CBA-λ in the case the given MC has injective labeling (i.e., no two distinct states with
the same label). Specifically, we show that an optimal solution for an instance 〈M, k〉 of
CBA-λ can be found among MCs with injective labeling into L(M).

I Lemma 12. If M has injective labeling, there exists N ∈ MCL(M)(k) with injective
labeling that minimizes the distance δλ(M,N ).

I Lemma 13. For all m ∈M and n ∈ N , δλ(m,n) ≥ λ · τ(m)({u ∈M | `(u) /∈ L(N )}).

Note that Lemma 13 provides a lower-bound on the optimal distance between M and
any N ∈ MC(k). This lower-bound will be useful in the proof of the following result.

I Theorem 14. For any λ ∈ (0, 1], BA-λ is NP-hard.

Proof. We provide a polynomial-time many-one reduction from Vertex Cover.
Let 〈G = (V,E), h〉 be an instance of Vertex Cover and let e = |E|. Without loss of

generality we assume e ≥ 2 and k < n. From G we construct the MC MG = (M, τ, `) as
follows. The set of states M is given as the union of V and E to which we add two extra

ICALP 2017
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states: a root r (thought of as the initial state) and a sink s. Each node ofMG is associated
with a unique label (i.e., ` is injective). The sink state s and all v ∈ V loop to themselves
with probability 1. All the other states go with probability 1− 1

e to the sink state s. The rest
of their transition probability mass is assigned as follows. The root r goes with probability
1
e2 to each a ∈ E, and all (u, v) ∈ E go with probability 1

2e to their endpoints u, v. An
example of construction forMG is given in Figure 2. Next we show that

〈G, h〉 ∈ Vertex Cover iff 〈MG, e+ h+ 2, λ
2

2e2 〉 ∈ BA-λ .

(⇒) Let C be a h-vertex cover of G. ConstructMC ∈ MC(e+ h+ 2) by taking a copy
ofMG, removing all states in V \C, and redirecting the exceeding transition probability to
the sink state s (an example is shown in Figure 2). Next we show that δλ(MG,MC) ≤ λ2

2e2 .
For convenience, the states inMC will be marked with a bar. By construction ofMG,MC ,
for each a ∈ E, δλ(a, a) ≤ λ

2e . Thus, δλ(MG,MC) = δλ(r, r̄) = λ
e2

∑
a∈E δλ(a, a) ≤ λ2

2e2 .

(⇐) By contradiction, assume there exists N = (N, θ, α) ∈ MC(e + h + 2) such that
δλ(MG,N ) ≤ λ2

2e2 but no vertex cover of G of size h. Since ` is injective, by Lemma 12 we
can assume α to be injective and L(N ) ⊆ L(MG). We consider three cases separately:

Case: `(s) /∈ L(N ). By Lemma 13 and the fact that e > 1 and λ ∈ (0, 1], we get the
following contradiction: δλ(MG,N ) = δλ(r, n0) ≥ λ · τ(r)(s) = λ(e−1)

e > λ2

2e2 .
Case: `((u, v)) /∈ L(N ), for some (u, v) ∈ E. By Lemma 13 and the fact that λ ∈ (0, 1]

and e > 1, leading to the contradiction δλ(MG,N ) = δλ(r, n0) ≥ λ · τ(r)((u, v)) = λ
e2 >

λ2

2e2 .
Case: `(s) ∈ L(N ) and {`((u, v)) | (u, v) ∈ E} ⊆ L(N ). Let N ′ ⊆ N be the states with

labels in {`(u) | u ∈ V }. By the structural hypothesis assumed on N , we have |N ′| ≤ h.
For each (u, v) ∈ E, two possible cases apply: if α(n) ∈ {`(u), `(v)}, for some n ∈ N ′,
then δλ((u, v), (u, v)) ≥ λ

2e ; otherwise δλ((u, v), (u, v)) ≥ λ
e >

λ
2e . By hypothesis, there is no

vertex cover of size h, hence there is at least one edge (u, v) ∈ E for which the second case
applies. Therefore, δλ(MG,N ) = δλ(r, n0) = λ

e2

∑
(u,v)∈E δλ((u, v), (u, v)) > λ

e2 ·e· λ2e = λ2

2e2 .

The instance 〈MG, e+ h+ 2, λ
2

2e2 〉 of BA-λ can be constructed in polynomial time in the
size of 〈G, h〉. Thus, since Vertex Cover is NP-hard, so is BA-λ. J

5 Minimum Significant Approximant Bound

Recall that, two MCs are at distance 1 from each other when there is no significant similarity
between their behaviors. Thus an MC N is said to be a significant approximant for the MC
M w.r.t. δλ if δλ(M,N ) < 1.

Given an MC M, the Minimum Significant Approximant Bound problem w.r.t. δλ
(MSAB-λ) looks for the smallest k such that δλ(M,N ) < 1, for some N ∈ MC(k). The
decision version of this problem is called Significant Bounded Approximant problem w.r.t.
δλ (SBA-λ), and asks whether, for a given positive integer k, there exists N ∈ MC(k) such
that δλ(M,N ) < 1.

When the discount factor λ < 1, the two problems above turn out to be trivial. Indeed,
δλ(M,N ) ≤ λ when the initial states of M and N have the same label. On the contrary,
in the case the distance is undiscounted (λ = 1), these problems are NP-complete. Before
presenting the result, we provide the following technical lemma.

I Lemma 15. LetM be a MC (assumed to be minimal) with initial state m0 and G(M) its
underlying directed graph. Then, 〈M, k〉 ∈ SBA-1 iff there exists a bottom strongly connected
component (SCC) G′ = (V,E) in G(M) and a path m0 . . .mh in G(M) such that mh ∈ V
and | {`(mi) | i < h, @ a path vi . . . vh−1mh in G′ s.t. ∀i ≤ j < h. `(mj) = `(vj)} |+ |V | ≤ k.
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Figure 3 (Left) The MC MG associated to the graph G in Figure 2 and (right) an MC N
associated to the vertex cover C = {1, 2} of G such that δ1(MG,N ) < 1 (cf. Theorem 16).

I Theorem 16. SBA-1 is NP-complete.

Proof. The membership in NP is easily proved by using the characterization in Lemma 15
and exploiting Tarjan’s algorithm for generating bottom SCCs. As for the NP-hardness, we
provide a polynomial-time many-one reduction from Vertex Cover. Let G = (V,E) be a
graph with E = {e1, . . . , en}. We construct the MCMG as follows. The set of states is given
by the set of edges E along with two states e1

i and e2
i , for each edge ei ∈ E, representing

the two endpoints of ei and an extra sink state e0. The initial state is en. The transition
probabilities are given as follows. The sink state e0 loops with probability 1 to itself. Each
edge ei ∈ E goes with probability 1

2 to e1
i and e2

i , respectively. For 1 ≤ i ≤ n, the states
e1
i and e2

i go with probability 1 to the state ei−1. The edge states and the sink state are
labelled by pairwise distinct labels, while the endpoints states e1

i and e2
i are labelled by the

node in V they represent. An example of construction forMG is shown in Figure 3.
Next we show the following equivalence:

〈G, h〉 ∈ Vertex Cover iff 〈MG, h+ n+ 1〉 ∈ SBA-1 (13)

By construction,MG is minimal and its underlying graph H has a unique bottom strongly
connected component, namely the self-loop in e0. Each path p = en ; e0 in H passes
through all edge states, and the set of labels of the endpoint states in p is a vertex cover of
G. Since e0, . . . , en have pairwise distinct labels, we have that G has a vertex cover of size
at most h iff there exists a path in H from en to e0 that has at most n + 1 + h different
labels. Thus, (15) follows by Lemma 15. J

6 An Expectation Maximization-like Heuristic

In this section we describe an approximation algorithm for determining suboptimal solutions
of CBA-λ for an arbitrary instance 〈M, k〉.

Given an initial approximant N0 ∈ MC(k), the algorithm produces a sequence of MCs
N0,N1, . . . in MC(k) having successively decreased distance fromM. We defer until later a
discussion of how the initial MC N0 is chosen. The procedure is described in Algorithm 1.

The intuitive idea of the algorithm is to iteratively update the initial MC by assigning
relatively greater probability to transitions that are most representative of the behavior of
the MCM w.r.t. δλ. The procedure stops when the last iteration has not yield an improved
approximant w.r.t. the preceding one. The input also includes a parameter h ∈ N that
bounds the number of iterations.

The rest of the section explains two heuristics for implementing the UpdateTransition
function invoked at line 5. This function shall return the transition probabilities for the
successive approximant (see line 6).

ICALP 2017
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Algorithm 1 Approximate Minimization – Expectation Maximization-like heuristic
Input: M = (M, τ, `), N0 = (N, θ0, α), and h ∈ N.
1. i← 0
2. repeat
3. i← i+ 1
4. compute C ∈ Ω(M,Ni−1) such that δλ(M,Ni−1) = γCλ(M,Ni−1)
5. θi ← UpdateTransition(θi−1, C)
6. Ni ← (N, θi, α)
7. until δλ(M,Ni) > δλ(M,Ni−1) or i ≥ h
8. return Ni−1

Define βCλ to be the least fixed-point of the following functional operator on 1-bounded
real-valued functions d : M ×N → [0, 1] (ordered point-wise):

BCλ(d)(m,n) =


1 if γCλ(m,n) = 0
0 if `(m) 6= α(n)
(1− λ) + λ

∫
M×N d dC(m,n) otherwise .

By Theorem 5, the relation RC =
{

(m,n) | γCλ(m,n) = 0
}
is easily shown to be a bisimula-

tion, specifically, the greatest bisimulation induced by C.
Define Cλ as the MC obtained by augmenting C with an ‘sink’ state ⊥ to which any other

state moves with probability (1 − λ). Intuitively, the value βCλ(m,n) can be interpreted as
the reachability probability in Cλ of either hitting the sink state or a pair of bisimilar states
in RC along a path formed only by pairs of states with identical labels starting from (m,n).

I Lemma 17. For all m ∈M and n ∈ N , βCλ(m,n) = 1− γCλ(m,n).

From equation (3) and Lemma 18, we can turn the problem CBA-λ as

argmax
{
βCλ(M,N ) | N ∈ MCL(M)(k), C ∈ Ω(M,N )

}
. (14)

Equation (16) says that a solution of CBA-λ is the right marginal of a coupling structure
C such that Cλ maximizes the probability of generating paths with prefix in ∼=∗(RC ∪ ⊥)
starting from the pair (m0, n0) of initial states1, where ∼= = {(m,n) /∈ RC | `(m) = α(n)}.

In the rest of the section we assume Ni−1 ∈ MC(k) to be the current approximant with
associated coupling structure C ∈ Ω(M,Ni−1) as in line 4 in Algorithm 1.

The “Averaged Marginal” Heuristic The first heuristic is inspired by the Expectation
Maximization (EM) algorithm described in [7]. The idea is to count the expected number
of occurrences of the transitions in C in the set of paths ∼=∗RC and, in accordance with (16),
updating C by increasing the probability of the transitions that were contributing the most.

For each m,u ∈ M and n, v ∈ N let Zm,nu,v : (M × N)ω → N be the random variable
that counts the number of occurrences of the edge ((m,n)(u, v)) in a prefix in ∼=∗(RC ∪ ⊥)
of the given path. We denote by E[Zm,nu,v | C] the expected value of Zm,nu,v w.r.t. the prob-
ability distribution induced by Cλ. Using these values we define the optimization problem

1 We borrowed notation from regular expressions, such as language union, concatenation, and Kleene
star, to express the set of finite paths ∼=∗RC as a language over the alphabet M ×N .
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EM〈N , C〉:

maximize
∑
m,u∈M

∑
n,v∈N E[Zm,nu,v | C] · ln(cm,nu,v )

such that
∑
v∈N c

m,n
u,v = τ(m)(u) m,u ∈M , n ∈ N (15)∑

u∈M cm,nu,v = θn,v m ∈M , n, v ∈ N (16)
cm,nu,v ≥ 0 m,u ∈M , n, v ∈ N

A solution of EM〈N , C〉 can be used to improve a pair 〈N , C〉 in the sense of (16).

I Theorem 18. If βCλ(M,N ) > 0, then an optimal solution for EM〈N , C〉 describes an MC
N ′ ∈ MC(k) and a coupling structure C′ ∈ Ω(M,N ′) such that βC′λ (M,N ′) ≥ βCλ(M,N ).

Unfortunately, EM〈N , C〉 does not have an easy analytic solution and turns out to be
inefficiently solved by nonlinear optimization methods. On the contrary, the relaxed optim-
ization problem obtained by dropping the constraints (18) has a simple analytic solution,
and the first heuristic at line 5, updates θi as follows2

cm,nu,v =
τ(m)(n) ·E[Zm,nu,v | C]∑

x∈N E[Zm,nu,x | C]
, θi(n)(v) =


θi−1(n)(v) if ∃m ∈M.n RC m∑

m,u∈M cm,nu,v∑
x∈N

∑
m,u∈M cm,nu,x

otherwise

Note that, the cm,nu,v above may not describe a coupling structure. Nevertheless we recover
the transition probability θi, from it by averaging the right marginals.

The “Averaged Expectations” Heuristic In contrast to the previous case, the second
heuristic will update θi by directly averaging the expected values of Zm,nu,v as follows

θi(n)(v) =


θi−1(n)(v) if ∃m ∈M.n RC m∑

m,u∈M E[Zm,nu,v | C]∑
x∈N

∑
m,u∈M E[Zm,nu,x | C]

otherwise .

Computing the Expected Values We compute E[Zm,nu,v | C] using a variant of the forward-
backward algorithm for hidden Markov models. Let Zm,n : (M ×N)ω → N be the random
variable that counts the number of occurrences of the pair (m,n) in a prefix in ∼=∗(RC ∪⊥)
of the path. We compute the expected value of Zm,n w.r.t. the probability induced by Cλ
as the solution zm,n of the following system of equations

zm,n =
{

0 if m 6∼= n

ι(m,n) + λ
∑
u,v(zu,v + 1) · C(u, v)(m,n) otherwise ,

where ι denotes the characteristic function for {(m0, n0)}. Then, the expected value of Zm,nu,v

w.r.t. the probability induced by Cλ is given by E[Zm,nu,v | C] = λ ·zm,n ·C(m,n)(u, v) ·βCλ(u, v).

Choosing the initial approximant Similarly to EM algorithms, the choice of the initial
approximant N0 may have a significant effect on the quality of the solution. For the labeling
of the states, one should follow Lemma 7. As for the choice of the underlying structure
one shall be guided by Lemma 15. However, due to Theorem 14, it seems unlikely to have
generic good strategies for a starting approximant candidate. Nevertheless, good selections
for the transition probabilities may be suggested by looking at the problem instance.

2 By abusing the notation, whenever the nominator is 0, we consider entire expression equal to 0, re-
gardless of any division by 0. The same convention is used implicitly in the rest of the section.
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Case |M | k
λ = 1 λ = 0.8

δλ-init δλ-final h time δλ-init δλ-final h time

IPv4
(AM)

53 5 0.856 0.062 3 25.7 0.667 0.029 3 25.9
103 5 0.923 0.067 3 116.3 0.734 0.035 3 116.5
53 6 0.757 0.030 3 39.4 0.544 0.011 3 39.4
103 6 0.837 0.032 3 183.7 0.624 0.017 3 182.7

IPv4
(AE)

53 5 0.856 0.110 2 14.2 0.667 0.049 3 21.8
103 5 0.923 0.110 2 67.1 0.734 0.049 3 100.4
53 6 0.757 0.072 2 21.8 0.544 0.019 3 33.0
103 6 0.837 0.072 2 105.9 0.624 0.019 3 159.5

DrkW
(AM)

39 7 0.565 0.466 14 259.3 0.432 0.323 14 252.8
49 7 0.568 0.460 14 453.7 0.433 0.322 14 420.5
59 8 0.646 – – TO 0.423 – – TO

DrkW
(AE)

39 7 0.565 0.435 11 156.6 0.432 0.321 2 28.6
49 7 0.568 0.434 10 247.7 0.433 0.316 2 46.2
59 8 0.646 0.435 10 588.9 0.423 0.309 2 115.7

Table 1 Comparison of the performance of Algorithm 1 on the IPv4 zeroconf protocol and the
classic Drunkard’s Walk w.r.t. the heuristics AM and AE.

Experimental Results Table 1 shows the results of some tests3 on Algorithm 1. run on a
number of instances 〈M, k〉 of increasing size, whereM is the bisimilarity quotient of either
the IPv4 protocol [5, Ex.10.5] or the drunkard’s walk, parametric on the number of states
|M |. As initial approximant we use a suitably small instance of the same model. Each
row reports the distance to the original model respectively from N0 and Nh, where h is the
total number of iterations; and execution time (in seconds). We compare the two heuristics,
averaged marginals (AM) and averaged expectation (AE), on the same initial approximant.

The results obtained on the IPv4 protocol show significant improvements between the
initial and the returned approximant. Notably, these are obtained in very few iterations. On
this model, AM gives approximants of better quality compared with those obtained using
AE; however AE seems to be slightly faster than AM. On the drunkard’s walk model, the
two heuristics exhibit opposite results w.r.t. the previous experiment: AE provides the best
solutions with fewer iterations and significantly lower execution times.

7 Conclusions and Future Work

To the best of our knowledge, this is the first paper addressing the complexity of the optimal
approximate minimization of MCs w.r.t. a behavioral metric semantics. Even though for a
good evaluation of our heuristics more tests are needed, the current results seem promising.
Moreover, in the light of [10, 3], relating the probabilistic bisimilarity distance to the LTL-
model checking problem as δ1(M,N ) ≥ |PM(ϕ)−PN (ϕ)|, for all ϕ ∈ LTL, our results might
be used to lead saving in the overall model checking time. A deeper study of this topic will be
the focus of future work. We close with an interesting open problem. Membership of BA-λ
in NP is left open. However, by arguments analogous to [11, 14] and leveraging on the ideas
that made us produce the MC in Example 10, we suspect that BA-λ is hard for the square-
root-sum problem. The latter is known to be NP-hard and in PSPACE, but membership in
NP has been open since 1976. Allender et al. [1] showed that it can be decided in the 4th
level of the counting hierarchy, thus it is unlikely its PSPACE-completeness.

3 The tests are done on a prototype implementation coded in Mathematicar (people.cs.aau.dk/
giovbacci/tools.html) running on an Intel Core-i5 2.5GHz with 8GB of DDR3 RAM 1600MHz.

people.cs.aau.dk/giovbacci/tools.html
people.cs.aau.dk/giovbacci/tools.html


G. Bacci et. al. ??:13

References
1 Eric Allender, Peter B urgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On

the complexity of numerical analysis. SIAM Journal on Computing, 38(5):1987–2006, 2009.
doi:10.1137/070697926.

2 Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, David L. Dill, and Howard Wong-
Toi. Minimization of timed transition systems. In CONCUR, volume 630 of Lecture Notes
in Computer Science, pages 340–354. Springer, 1992. doi:10.1007/BFb0084802.

3 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. Converging from
Branching to Linear Metrics on Markov Chains. In ICTAC, volume 9399 of LNCS, pages
349–367. Springer, 2015. doi:10.1007/978-3-319-25150-9_21.

4 Christel Baier. Polynomial time algorithms for testing probabilistic bisimulation and simu-
lation. In CAV, volume 1102 of Lecture Notes in Computer Science, pages 50–61. Springer,
1996. doi:10.1007/3-540-61474-5_57.

5 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.
6 Borja Balle, Prakash Panangaden, and Doina Precup. A canonical form for weighted

automata and applications to approximate minimization. In LICS, pages 701–712. IEEE
Computer Society, 2015. doi:10.1109/LICS.2015.70.

7 Michael Benedikt, Rastislav Lenhardt, and James Worrell. LTL Model Checking of Interval
Markov Chains. In TACAS, volume 7795 of Lecture Notes in Computer Science, pages 32–
46. Springer, 2013. doi:10.1007/978-3-642-36742-7_3.

8 Stefan Blom and Simona Orzan. A distributed algorithm for strong bisimulation reduction
of state spaces. International Journal on Software Tools for Technology Transfer, 7(1):74–
86, 2005. doi:10.1007/s10009-004-0159-4.

9 John F. Canny. Some Algebraic and Geometric Computations in PSPACE. In Proceedings
of the 20th Annual ACM Symposium on Theory of Computing (STOC’88), pages 460–467.
ACM, 1988. doi:10.1145/62212.62257.

10 Di Chen, Franck van Breugel, and James Worrell. On the Complexity of Computing
Probabilistic Bisimilarity. In FoSSaCS, volume 7213 of LNCS, pages 437–451. Springer,
2012.

11 Taolue Chen and Stefan Kiefer. On the Total Variation Distance of Labelled Markov
Chains. In CSL-LICS‘14, pages 33:1–33:10. ACM, 2014. doi:10.1145/2603088.2603099.

12 Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for
Labeled Markov Systems. In CONCUR, volume 1664 of LNCS, pages 258–273. Springer,
1999. doi:10.1007/3-540-48320-9_19.

13 Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics
for labelled Markov processes. Theoretical Compututer Science, 318(3):323–354, 2004.

14 Kousha Etessami and Mihalis Yannakakis. Recursive Markov chains, stochastic grammars,
and monotone systems of nonlinear equations. J. ACM, 56(1):1:1–1:66, 2009. doi:10.
1145/1462153.1462154.

15 Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov Decision
Processes. In UAI, pages 162–169. AUAI Press, 2004.

16 Giuliana Franceschinis and Richard R. Muntz. Bounds for quasi-lumpable markov chains.
Perform. Eval., 20(1-3):223–243, 1994. doi:10.1016/0166-5316(94)90015-9.

17 John Hopcroft. An n logn algorithm for minimizing states in a finite automaton. In Zvi
Kohavi and Azaria Paz, editors, Theory of Machines and Computations, pages 189–196.
Academic Press, 1971. doi:10.1016/B978-0-12-417750-5.50022-1.

18 Chi-Chang Jou and Scott A.Smolka. Equivalences, congruences, and complete axiomatiz-
ations for probabilistic processes. In CONCUR’90 Theories of Concurrency: Unification
and Extension, volume 458 of LNCS, pages 367–383, 1990.

ICALP 2017

http://dx.doi.org/10.1137/070697926
http://dx.doi.org/10.1007/BFb0084802
http://dx.doi.org/10.1007/978-3-319-25150-9_21
http://dx.doi.org/10.1007/3-540-61474-5_57
http://dx.doi.org/10.1109/LICS.2015.70
http://dx.doi.org/10.1007/978-3-642-36742-7_3
http://dx.doi.org/10.1007/s10009-004-0159-4
http://dx.doi.org/10.1145/62212.62257
http://dx.doi.org/10.1145/2603088.2603099
http://dx.doi.org/10.1007/3-540-48320-9_19
http://dx.doi.org/10.1145/1462153.1462154
http://dx.doi.org/10.1145/1462153.1462154
http://dx.doi.org/10.1016/0166-5316(94)90015-9
http://dx.doi.org/10.1016/B978-0-12-417750-5.50022-1


??:14 On the Metric-based Approximate Minimization of MCs

19 Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state processes, and
three problems of equivalence. In Proceedings of the 2nd Annual ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, pages 228–240. ACM, 1983. doi:
10.1145/800221.806724.

20 Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state processes, and
three problems of equivalence. Information and Computation, 86(1):43–68, 1990. doi:
http://dx.doi.org/10.1016/0890-5401(90)90025-D.

21 Michal Ko1cmcvara and Michael Stingl. PENBMI 2.0. http://www.penopt.com/penbmi.
html. Accessed: 2016-08-28.

22 Michal Ko1cmcvara and Michael Stingl. PENNON: A code for convex nonlinear and
semidefinite programming. Optimization Methods and Software, 18(3):317–333, 2003.
doi:10.1080/1055678031000098773.

23 Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. In-
formation and Computation, 94(1):1–28, 1991.

24 David Lee and Mihalis Yannakakis. Online minimization of transition systems (extended
abstract). In Annual ACM Symposium on Theory of Computing, pages 264–274. ACM,
1992. doi:10.1145/129712.129738.

25 Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm and Extensions.
Wiley-Interscience, 2 edition, 2008.

26 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer, 1980. doi:10.1007/3-540-10235-3.

27 Edward F. Moore. Gedanken Experiments on Sequential Machines. In Automata Studies,
pages 129–153. Princeton University, 1956.

28 Franck van Breugel and James Worrell. Towards Quantitative Verification of Probabilistic
Transition Systems. In ICALP, volume 2076 of LNCS, pages 421–432, 2001.

29 Franck van Breugel and James Worrell. Approximating and computing behavioural dis-
tances in probabilistic transition systems. Theoretical Computer Science, 360(3):373–385,
2006.

30 Mihali Yannakakis and David Lee. An efficient algorithm for minimizing real-time trans-
ition systems. Formal Methods in System Design, 11(2):113–136, 1997. doi:10.1023/A:
1008621829508.

31 Shipei Zhang and Scott A. Smolka. Towards efficient parallelization of equivalence checking
algorithms. In FORTE, volume C-10 of IFIP Transactions, pages 121–135. North-Holland,
1992.

http://dx.doi.org/10.1145/800221.806724
http://dx.doi.org/10.1145/800221.806724
http://dx.doi.org/http://dx.doi.org/10.1016/0890-5401(90)90025-D
http://dx.doi.org/http://dx.doi.org/10.1016/0890-5401(90)90025-D
http://www.penopt.com/penbmi.html
http://www.penopt.com/penbmi.html
http://dx.doi.org/10.1080/1055678031000098773
http://dx.doi.org/10.1145/129712.129738
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1023/A:1008621829508
http://dx.doi.org/10.1023/A:1008621829508


G. Bacci et. al. ??:15

A Missing Proofs of the Technical Results

Proof of Lemma 7. Let N ′ = (N ′, θ′, α′). If L(N ′) ⊆ L(M), take N = N ′. Otherwise,
define N = (N, θ, α) as follows: N = N ′, θ = θ′, and α(n) = α′(n) if α′(n) ∈ L(M),
otherwise α(n) = `(m0), where m0 is the initial state of M. The initial state of N is the
one of N ′. Clearly, N ∈ MC(k) and L(N ) ⊆ L(M).

Let A =M⊕N and B =M⊕N ′ be the disjoint union ofM with N and N ′ respectively.
We prove N �λ N ′ by showing δAλ v δBλ . By Tarski fixed-point theorem, it suffices to
show ΨAλ (δBλ ) v δBλ . Let u, v ∈ M ∪ N . When u and v have different labels in B, then,
ΨAλ (δBλ )(u, v) ≤ 1 = δBλ (u, v) follows by definition of Ψλ and the fact that δBλ = ΨBλ (δBλ ).
Assume u and v have the same label in B. Then, by construction of N (i.e, by definition of
α′), u and v have the same label in A. By the fact that N and N ′ have the same transition
distribution function, one readily checks that ΨAλ (δBλ )(u, v) = δBλ (u, v). J

Proof of Lemma 12. By Lemma 7 it suffices to show that for any N ′ ∈ MCL(M)(k) there
exists N ∈ MCL(M)(k) with injective labeling such that δλ(M,N ) ≤ δλ(M,N ′).

Assume N ′ does not have injective labeling. By Theorem 5, there exists C ∈ Ω(M,N ′)
such that δλ(M,N ′) = γCλ(M,N ′). Consider m ∈ M and n ∈ N with same label (i.e.,
`(m) = α(n)). We can construct ωn ∈ D(M ×N) satisfying the following

ωn(u, v) ≥ C(m,n)(u, v) for all u ∈M and v ∈ N s.t. `(u) = `(v) (17)∑
v∈N ωn(u, v) = τ(m)(u) for all u ∈M (18)∑
v∈α−1(`(u)) ωn(u, v) = τ(m)(u) for all u ∈M s.t. `(u) ∈ L(N ) (19)

ωn(u, n) = τ(m)(u) for all u ∈M s.t. `(u) /∈ L(N ) (20)

Let N ′′ = (N, θ′′, α) where, for n, v ∈ N , θ′′(n)(v) =
∑
u∈M ωn(u, v). Note that θ′′ is well

defined becauseM has injective labeling. Next we show that δλ(M,N ′′) ≤ δλ(M,N ′).
By Theorem 5 and Tarski’s fixed point theorem it suffices to find C′′ ∈ Ω(M,N ′′) such

that ΓC′′λ (γCλ) v γCλ . Take any C′′ such that C′′(m,n) = ωn whenever `(m) = α(n). Note
that by (20), ωn ∈ Ω(τ(m), θ′′(n)). Next we show that, for all m ∈ M and n ∈ N ,
ΓC′′λ (γCλ)(m,n) ≤ γCλ(m,n). If `(m) 6= α(n), the inequality holds because γCλ(m,n) = 1. If
`(m) 6= α(n), the following hold∑

u,v C(m,n)(u, v)− ωn(u, v) = 0 (by C(m,n), ωn ∈ D(M ×N))∑
`(u)6=α(v) C(m,n)(u, v)− ωn(u, v) =

∑
`(u)=α(v) ωn(u, v)− C(m,n)(u, v)∑

`(u)6=α(v) C(m,n)(u, v)− ωn(u, v) ≥
∑
`(u)=α(v) γ

C
λ(u, v)

(
ωn(u, v)− C(m,n)(u, v)

)
(by (19) and γCλ v 1)∑

u,v γ
C
λ(u, v) · C(m,n)(u, v) ≥

∑
u,v γ

C
λ(u, v) · ωn(u, v)

(for `(u) 6= α(v) γC(u, v) = 1)
γCλ(m,n) ≥ λ

∑
u,v γ

C
λ(u, v) · ωn(u, v) (by def. γCλ and λ > 0)

γCλ(m,n) ≥ ΓC
′′

λ (γCλ)(m,n) (by def. C′′ and ΓC′′λ )

So far we proved that δλ(M,N ′′) ≤ δλ(M,N ′). N ′′ may not have injective labeling,
however we will show that its bisimilarity quotient has injective labeling function. To prove
that we will show that the relation R = {(n, v) | α(n) = α(v)} ⊆ N × N is a probabilistic
bisimulation. R is readily seen to be equivalence relation that preserves labeling. It only
remains to prove that if n R v, then for any C ∈ N/R, θ′′(n)(C) = θ′′(v)(C). Let m ∈ M
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be the unique state ofM such that `(m) = α(n) = α(v) and m′ ∈ M the one that has the
same label as any element of C. We consider two cases.

1. If n, v ∈ C. Let M ′ = {m ∈M | `(u) /∈ L(N )}, then the following equalities hold

θ′′(n)(C) =
∑
c∈C

∑
u∈M ωn(u, c) (by def. θ′′)

=
∑
c∈C ωn(m′, c) +

∑
u∈M ′ ωn(u, n)

(by (20), (21) and (22), ωn(u, c) > 0 implies `(u) = α(c) or c = n)
= τ(m)(m′) + τ(m)(M ′) (by (21) and (22))
=
∑
c∈C ωv(m′, c) +

∑
u∈M ′ ωv(u, v)

=
∑
c∈C

∑
u∈M ωv(u, c) = θ′′(v)(C)

2. If n, v /∈ C, then the following equalities hold

θ′′(n)(C) =
∑
c∈C

∑
u∈M ωn(u, c) (by def. θ′′)

=
∑
c∈C ωn(m′, c) (by (20) and (21) ωn(u, c) > 0 implies `(u) = α(c))

= τ(m)(m′) + τ(m)(M ′) (by (21))
=
∑
c∈C ωv(m′, c)

=
∑
c∈C

∑
u∈M ωv(u, c) = θ′′(v)(C)

This proves the thesis. J

Proof of Lemma 13. The thesis holds trivially when `(m) 6= α(n), since δλ(m,n) = 1.
Let `(m) = α(n), and M ′ = {u ∈M | `(u) /∈ L(N )}, then the following hold

δλ(m,n) = λ
∑
u∈M

∑
v∈N δλ(u, v) · ω(u, v) (for some ω ∈ Ω(τ(m), θ(n)))

≥ λ
∑
u∈M ′

∑
v∈N δλ(u, v) · ω(u, v) (by M ′ ⊆M)

= λ
∑
u∈M ′

∑
v∈N ω(u, v) (δλ(u, v) = 1 for all u ∈M ′ and n ∈ N)

= λ · τ(m)(M ′) (by ω ∈ Ω(τ(m), θ(n)))

J

Proof of Lemma 15. (⇒) By hypothesis there exists N ∈ MC(k) such that δ1(M,N ) < 1.
We can assume without loss of generality that N is minimal (otherwise one can replace it
with its bisimilarity quotient). By Lemma 18 and Theorem 5, there exists C ∈ Ω(M,N )
such that βC1 (M,N ) > 0. Therefore there exists a path (m0, n0) . . . (mp, np) in G(C1), such
that `(mi) = α(ni) (for i = 0..h) and γC1 (mp, np) = 0.

Note that for arbitrary m ∈M and n ∈ N such that γC1 (m,n) = 0, the following hold

0 = γC1 (m,n) =
∑
u∈M

∑
v∈N γ

C
1 (u, v) · C(m,n)(u, v) .

Therefore, for any u ∈M and v ∈ N we have that C(m,n)(u, v) > 0 implies γC1 (u, v) = 0.
Let R ⊆M×N be the set of states reachable from (mp, np) in G(C1). By γC1 (mp, np) = 0

and what have been said before we have that (m,n) ∈ R implies thatm ∼ n. Let G = (V,E)
be a bottom strongly connected component of G(C1) such that V ⊆ R.

Consider now the graphs G1 = (V1, E1) and G2 = (V2, E2) where

V1 = {m | (m,n) ∈ V } E1 = {(m,u) | τ(m)(u) > 0 and m,u ∈ V1}, (21)
V2 = {n | (m,n) ∈ V } E2 = {(n, v) | θ(n)(v) > 0 and n, v ∈ V1}. (22)



G. Bacci et. al. ??:17

SinceM andN are minimal andm ∼ n for all (m,n) ∈ V we have that for all (m,n), (u, v) ∈
V , C(m,n)(u, v) = τ(m)(u) = θ(n)(v). Therefore G1 and G2 are bottom strongly connected
components of G(M) and G(N ) respectively, and are isomorphic with each other.

Let now take the path (m0, n0) . . . (mh, nh) in G(C1) such that (mh, nh) ∈ V obtained by
appending extending the path (m0, n0) . . . (mp, np) by following a path (mp, np) . . . (mh, nh).
Note that such a path exists since (mh, nh) ∈ R and, `(mi) = α(ni) for all 0 ≤ i ≤ h.

There are two possible cases:

If ni /∈ V2 for all 0 ≤ i < h we have that

| {`(mi) | i < h} |+ |V1| = | {`(ni) | i < h} |+ |V2| ≤ | {ni | i < h} |+ |V2| ≤ |N | ≤ k .

If ni ∈ V2 for some 0 ≤ i < h. Let q < h be the smallest index such that nq ∈ V2. Since
C(mq, nq)(nq+1, nq+1) > 0 implies θ(nq)(nq+1) > 0 and G2 is a bottom strongly connected
component, we have that also nq+1 ∈ V . This shows that nq . . . nh is a path in G2. Since the
isomorphism between G2 and G1 preserves the labels (indeed, any n ∈ V2 is mapped with
the unique state m ∈ V1 such that m ∼ n) we can see that there exists a path vp . . . vh−1mh

in G1 such that `(mi) = `(vi) for all p ≤ i < h. For this we have that

| {`(mi) | i < h,@ a path vi . . . vh−1mh in G′ s.t ∀j. `(mj) = `(vj)} |+ |V1|
≤ | {`(ni) | i < p} |+ |V2| ≤ | {ni | i < p} |+ |V2| ≤ |N | ≤ k .

(⇐) Let M ′ = {m0, . . . ,mh}. Assume w.l.o.g. that M ′ ∩ V = {mh} (otherwise one can
consider a prefix of the path that enjoys the assumption). Let p ∈ {0, . . . , h} be the smallest
index such that there exists a path vp . . . vh−1mh in G′ with `(mj) = `(vj) for all p ≤ j < h.
To simplify the notation later on we will also use vh to refer to mh.

Let {l0, . . . , lq} = {`(mi) | i < p} and N ′ = {n0, . . . , nq}. Consider the chain N =
(N, θ, α) where N = N ′ ∪ V , and

θ(n) =
{
τ(n) if n ∈ V
µ if n ∈ N ′

α(n) =
{
`(n) if n ∈ V
li if n = ni for some 0 ≤ i ≤ q

where µ denotes the uniform distribution with support N , i.e., µ(n) = 1/|N | for all n ∈ N .
Note that θ is well defined because the support of τ(v) is included in V for all v ∈ V .

By construction states in N ′ have pairwise distinct labels, therefore we can define the
function f : M ′ → N as f(mi) = n if 0 ≤ i < p and n ∈ N ′ such that α(n) = `(mi);
and f(mi) = vi if p ≤ i ≤ h. In the following we will prove that for all mi ∈ M ′,
δ1(mi, f(mi)) < 1. We proceed by induction on r = h− i.

Base Case (i = h): One can readily show that δ1(mh,mh) = 0.
Inductive Step (i < h): Let n = f(mi) and n′ = f(mi+1) then the following hold

δ1(mi, f(mi)) = K(d)(τ(mi), θ(n)) (`(mi) = `)
≤
∑
u∈M

∑
v∈N τ(mi)(u) · θ(n)(v) · δ1(u, v) (τ(mi)� θ(n) ∈ Ω(τ(mi), θ(n)))

≤ τ(mi)(mi+1) · θ(n)(n′) · δ1(mi+1, n
′) + (1− τ(mi)(mi+1) · θ(n)(n′)) (δ1 v 1)

< 1 (δ1(mi+1, f(mi+1)) < 1 and τ(mi)(mi+1) · θ(n)(n′) > 0)

This proves that δ1(M,N ) = δ1(m0, f(m0)) < 1. By construction |N | ≤ k, therefore
〈M, k〉 ∈ SBA-1. J
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Proof of Lemma 18. We prove the equivalent statement γCλ = 1−βCλ . Consider the follow-
ing operator

GCλ(d)(m,n) =


0 if γCλ(m,n) = 0
1 if `(m) 6= `(n)
λ
∫
d dC(m,n) otherwise .

One can prove that GCλ has a unique fixed point and that γCλ = GCλ(γCλ). We will complete
the proof by showing that also 1 − βCλ is a fixed point for GCλ. Let m ∈ M and n ∈ N , if
γCλ(m,n) = 0 or `(m) 6= α(n) it trivially holds that 1 − βCλ(m,n) = GCλ(1 − βCλ)(m,n). If
γCλ(m,n) > 0 and `(m) = α(n), then the following equalities hold

GCλ(1− βCλ)(m,n) = λ
∫

(1− βCλ) dC(m,n) (by def. GCλ)
= λ− λ

∫
βCλ dC(m,n) (

∫
1 dC(m,n) = 1)

= 1− βCλ(m,n) (βCλ(m,n) = (1− λ) + λ
∫
βCλ dC(m,n))

J

Proof of Theorem 5. For any measurable set A ⊆ (M × N)ω, and C ∈ Ω(M,N ), we
denote by PCλ(A) the probability that a run of the chain Cλ belongs to A. To shorten the
notation, for B ⊆ (M ×N)∗ (resp. π ∈ (M ×N)∗) we write PC(B) (resp. PC(π)) to indicate
PCλ(B(M ×N)ω) (resp. PCλ(π(M ×N)ω)).

Racall that, βCλ(m0, n0) = PC(G) where G = (∼=∗(RC ∪ ⊥)) that is the probability that
Cλ generates a path with prefix in ∼=∗RC or ∼=∗⊥ starting from (m0, n0).

Consider the following inequalities

ln βC
′

λ (m0, n0)− ln βCλ(m0, n0) = ln PC′(G)
PC(G)

= ln
∑
π∈G PC′(G | π) · PC′(π)

PC(G) = ln
∑
π∈G

PC′(G | π) · PC′(π)
PC(G) · PC(π | G)

PC(π | G)

≥
∑
π∈G

PC(π | G) · ln PC′(G | π) · PC′(π)
PC(G) · PC(π | G) (by Jensen’s inequality)

= 1
βCλ(m0, n0)

∑
π∈G

PC(π) · ln PC′(π)
PC(π) = 1

βCλ(m0, n0)
(Q′ −Q)

where Q′ =
∑
π∈G PC(π) · lnPC′(π) and Q =

∑
π∈G PC(π) · lnPC(π). Rearranging we have

βCλ(m0, n0) ·
(

ln βC
′

λ (m0, n0)− ln βCλ(m0, n0)
)
≥ Q′ −Q . (23)

We have that ln βC′λ (m0, n0) − ln βCλ(m0, n0) ≥ 0 iff βC
′

λ (m0, n0) ≥ βCλ(m0, n0), therefore by
(25) we conclude that Q′ ≥ Q implies βC′λ (m0, n0) ≥ βCλ(m0, n0).

Thus, inequality 25 suggests that the best choice of C′ is that which maximizes Q′ as a
function of C′. Expanding the definition of Q′ we obtain

Q′ =
∑
π∈G

PC(π) · lnPC′(π) =
∑
π∈G

PC(π)
(

ln ι(π0) +
|π|−1∑
i=0

ln C′λ(πi)(πi+1)
)
,

where ι denotes the characteristic function for {(m0, n0)}.
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For each m,u ∈M and n, v ∈ N let Zm,nu,v : (M ×N)ω → N be the random variable that
counts the number of occurrences of the edge ((m,n)(u, v)) in a prefix in G of the given
path. Then Q′ can be rewritten as∑

π∈G
PC(π)

(
ln(ι(π0)) +

∑
m,u∈M

∑
n,v∈N

Zm,nu,v (π) ln C′λ(m,n)(u, v)
)
.

Therefore the coupling structure C′ that maximize the above is obtained as

argmax
c

∑
π∈G

PC(π)
∑

m,u∈M

∑
n,v∈N

Zm,nu,v (π) ln cm,nu,v (eliminating constants)

argmax
c

∑
m,u∈M

∑
n,v∈N

E[Zm,nu,v | C] · ln cm,nu,v

Since c has to range among coupling structures of the form C′ ∈ Ω(M,N ′) for some chain N ′
with the same states as N we conclude that an optimal solution of the following optimization
problem describes a coupling C′ such that Q′ ≥ Q.

maximize
∑
m,u∈M

∑
n,v∈N E[Zm,nu,v | C] · ln(cm,nu,v )

such that
∑
v∈N c

m,n
u,v = τ(m)(u) m,u ∈M , n ∈ N∑

u∈M cm,nu,v = θn,v m ∈M , n, v ∈ N
cm,nu,v ≥ 0 m,u ∈M , n, v ∈ N

As above said, this implies βC′λ (M,N ′) ≥ βCλ(M,N ). J
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