
On Decidability of Bigraphical Sorting

Giorgio Bacci1? Davide Grohmann2??

1 Dept. of Mathematics and Computer Science, University of Udine
giorgio.bacci@uniud.it

2 Programming, Logic and Semantics Group, IT University of Copenhagen
davg@itu.dk

Abstract. Bigraphs are a general framework for mobile, concurrent, and
communicating systems. They have been shown to be suitable for rep-
resenting several process calculi formalisms, but despite their expressive
power, in many cases some disciplines on the structure of bigraphs are
needed to faithfully encode the computational model at hand. Sortings
have been proposed as an abstract technique to discipline bigraphs.
In this paper, we study the decidability problem of bigraphical sorting:
to decide whether a bigraph belongs to some sorted bigraph category.
Whilst the general problem is undecidable, we propose a decidable sub-
class of bigraphical sortings, named match predicate sortings, which are
expressive enough to capture homomorphic sortings and local bigraphs.

1 Introduction

Bigraphical Reactive Systems (BRSs) [15] have been proposed as a promising
meta-model for ubiquitous and mobile systems. The states of a BRS are bigraphs.
Like an ordinary graph, a bigraph has nodes and edges connecting nodes, but
unlike an ordinary graph, the nodes can be nested inside one another, hence
they allow to represent both locality relationship between entities and (channel)
connections. The dynamics of agents are represented by a set of rewrite rules on
this semi-structured data.

Notably, Bigraphs and BRSs have been used for representing many domain-
specific calculi and models: programming languages, calculi for concurrency and
mobility, context-aware systems and web-services [11,12,3,9,5].

Process models (for example CCS, π-calculus, Ambient calculus) define pro-
cesses syntactically, and in many cases it turns out that the encoding of processes
into bigraphs is not exact, because bigraphs have too many degrees of freedom.
This problem is usually overcome introducing “specialized versions” of bigraphs.
For example, binding bigraphs [11] have been introduced to encode scoping for
binding inputs in π-calculus: they allow for restricting name scope to a specific
portion of a bigraph’s locations. Many other variants have been proposed in liter-
ature, and almost all of them uses sorting techniques in achieving this. Example
of sortings are homomorphic [15] and many-one sortings [12].

? Work funded by MIUR PRIN project “SisteR”, prot. 20088HXMYN.
?? Work partially funded by CosmoBiz project supported by ITU of Copenhagen and

the Danish Research Council for Technology and Production. Grant no. 274-06-0415.



The main drawback in using sorting techniques is that each time a sorting
is introduced, the theory of bigraphs must be redefined anew. Recently, Debois
and coauthors [4] generalized the ad hoc constructions providing the definition
of a class of sorted categories for which the behavioral theory of pure bigraphs
is preserved, the so called predicate sortings. Intuitively predicate sortings rule
out bigraphs that do not satisfy the predicate P .

Although using predicate sortings provides a general construction which sus-
tain the behavioural theory of bigraphs, this technique has a main drawback:
the systematic construction makes sorted categories very difficult to handle, due
to the fact that their objects are defined as pairs of sets of morphisms from
the original category, closed by prefix and suffix composition, and most of the
difficulties arise when one wants to implement effectively such construction.

In order to overcome these difficulties, but at the same time keeping the
technique as general as possible (we do not want to define sortings by hand),
we propose to look at predicate sortings from a different point of view. The
sorted category will not be constructed at all, but we will use sortings as a
way of (automatically) checking if a morphism of the original category has a
“counterpart” in the sorted category and, more importantly, if compositions in
the non-sorted category are admissible in its sorted variant.

The aim of this paper is to investigate the decidability of the proposed check-
ing procedure for sortings. It turns out that this procedure is undecidable in gen-
eral, even if we restrict only on bigraphical sortings. For this reason we propose a
decidable subclass of bigraphical predicate sortings, named match predicate sort-
ings, for which there exists an effective algorithm to check if a bigraph “belongs”
to the sorted category.

The key idea relies on the factorization theorem [4], which characterizes de-
composable predicates as those that disallow factorisation by a given set of mor-
phisms. Intuitively, given a predicate P such that P (f) holds, there must exists
a set Φ of morphism such that f cannot be decomposed in a form f = g ◦ ψ ◦ h
where ψ is in Φ. Intuiticely, P disallows occurrences of ill-formed morphisms,
which are exactly those in Φ. In bigraphs it turns out to be much more intuitive
to identify occurrences as matches. In this way, (some) decomposable predicates
can be expressed as a set of ill-patterns which cannot be matched in well-sorted
bigraphical morphisms. This choice permits to apply the bigraphical matching
procedure to check whether a (pure) bigraph has a counterpart in the match
sorted category, hence this class is decidable. Notably, this sub-class of sort-
ings captures a good variety of sortings proposed in the literature, for example
homomorphic sortings [15] and local bigraphs [14,16].

Synopsis The paper is structured as follows. In Sections 2 and 3 we recall the
theory of bigraphs and (bigraphical) sortings. In Section 4 we prove the unde-
cidability of the (bigraphical) sorting problem in the general setting. After that,
in Section 5 the class of match predicate sortings is introduced and analyzed for
decidability. In Section 6 we show how to express two relevant sortings intro-
duced in literature as match predicate sortings. Finally, conclusions and ideas
for further developments are in Section 7.



RESOLVING A BIGRAPH INTO PARTS

GP : m→n

roots . . .

sites . . .

GL : X →Y

bigraph

place graph link graph

G : 〈m, X〉→〈n, Y 〉

. . . inner names

. . . outer names

v2

v3

0 1

v0

v1

v1

v0

v2

0

v3

1

v1

v3
v0

v2

1

2

x0 x1

y0 y1

21

y0 y1

0

0 x0 x1

22

Fig. 1. Bigraph = Place graph + Link graph (picture taken from [15]).

2 Bigraphs

In this section we recall Milner’s bigraphs [15]. Intuitively, a bigraph represents
an open system: it has an inner and an outer interface to “interact” with sub-
systems and the surrounding environment (see Figure 1). The width of the outer
interface describes the roots, that is, the various locations containing the sys-
tem components; the width of the inner interface describes the sites, that is, the
holes where other bigraphs can be inserted. On the other hand, the names in the
interfaces describe the free links, that is, end points where links from the inner
parameters or/and the external environment can be pasted, creating new links
among nodes. We refer the reader to [15] for a longer description of bigraphs.

In this paper, we use the following terminology and notation. Natural num-
bers are frequently treated as finite ordinals, that is, m = {0, 1, . . . ,m− 1}. We
write S]T for the union of sets assumed to be disjoint. For two functions f and g
with disjoint domains S and T we write f ]g for the function with domain S]T
such that (f ]g) � S = f and (f ]g) � T = g. We write idS for the identity func-
tion on the set S. In defining bigraphs we assume that names, node-identifiers
and edge-identifiers are drawn from three infinite sets, respectively X , V and E ,
disjoint from each other.

The bigraphical category is defined over a signature K of controls with arity
function ar : K → N which identifies the ports ar(k) of a control k ∈ K.

Definition 1 (Interface). An interface is a pair 〈m,X〉 where m is a finite
ordinal (named width) and X is a finite set of names.

Definition 2 (Bigraphs). A bigraph G : 〈m,X〉 → 〈n, Y 〉 compounds a place
graph GP and a link graph GL which describe the nesting of nodes and the



(hyper-)links among nodes, respectively.

G = (V,E, ctrl, GP , GL) : 〈m,X〉 → 〈n, Y 〉 (bigraph)

GP = (V, ctrl, prnt) : m→ n (place graph)

GL = (V,E, ctrl, link) : X → Y (link graph)

where V , E are (finite) sets of nodes and edges respectively; ctrl : V → K is
the control map, assigning a control to each node; prnt : m ] V → V ] n is
the (acyclic) parent map; link : X ] P → E ] Y is the link map, where P =∑
v∈V ar(ctrl(v)) is the set of ports.

Definition 3 (Bigraph category). The category of bigraphs over a signature
K, denoted as Big(K), has interfaces as objects and bigraphs as morphisms.

Given two bigraphs G : 〈m,X〉 → 〈n, Y 〉, H : 〈n, Y 〉 → 〈k, Z〉, the composi-
tion H ◦G : 〈m,X〉 → 〈k, Z〉 is defined by composing their place and link graphs:

HP ◦GP = (V, ctrl, (idVG
] prntH) ◦ (prntG ] idVH

)) : m→ k

HL ◦GL = (V,E, ctrl, (idEG
] linkH) ◦ (linkG ] idPH

)) : X → Z,

where V = VG ] VH , ctrl = ctrlG ] ctrlH , and E = EG ] EH .

An important operation on bigraphs, is the tensor product. Intuitively, this
operator puts “side by side” two bigraphs, i.e., given G : 〈m,X〉 → 〈n, Y 〉 and
H : 〈m′, X ′〉 → 〈n′, Y ′〉, their tensor product is G ⊗ H : 〈m + m′, X ] X ′〉 →
〈n+ n′, Y ] Y ′〉 defined when name sets X,X ′ and Y, Y ′ are pairwise disjoint.

As shown in [15], all bigraphs can be constructed by composition and tensor
product from a set of elementary bigraphs:

– 1: 〈0, ∅〉 → 〈1, ∅〉 is the barren (i.e., empty) root.
– mergen : 〈n, ∅〉 → 〈1, ∅〉 merges n roots into a single one.
– γm,n : 〈m + n, ∅〉 → 〈n + m, ∅〉 is a symmetry, that swaps the first m roots

with the following n roots.
– /x : 〈0, {x}〉 → 〈0, ∅〉 is a closure, that is it maps x to an edge.
– y/X : 〈0, X〉 → 〈0, {y}〉 substitutes the names in X with y, i.e., it maps the

whole set X to y. Notice that X can be the empty set, i this way y is linked
to nothing and it is said to be idle.

– K~x : 〈1, ∅〉 → 〈1, {x1, . . . , xn}〉 is a control which may contain other bigraphs,
and it has ports linked to the name in ~x = x1, . . . , xn.

A bigraph is said a renaming if it is of the form x1/{y1} ⊗ · · · ⊗ xn/{yn}
(abbreviated to ~x/~y, where ~x = x1, . . . , xn and ~y = y1, . . . , yn); a permutation if
it is formed by composition and tensor product of symmetries; a prime when it
has no inner names and its outer width is 1, a discrete when its link map is a
bijection. Two useful variants of tensor product can be defined using tensor and
composition: the parallel product, denoted as G ‖ H, merges shared outer names
of G and H, the merge product written G | H, which moreover merges all roots
in a single one is defined as mergen ◦ (G ‖ H) (with n outer width of G ‖ H).



3 Sortings

When one is adopting the bigraphical framework for defining algebraic models
or programming languages, it turns out that such framework is too general and
one has to discipline it with some constraints to fit precisely the problem at
hand. To this end, general and powerful techniques, named sortings, have been
developed by Debois and coauthors in [4].

Definition 4 (Sortings). A sorting of a category C is a functor F : X → C,
that is faithful and surjective on objects. We call X sorted category.

Intuitively, a sorting functor F defines X by refining the category C. The ob-
jects (i.e., interfaces) of X carry more information than the original ones, thus
morphism (i.e., system) composition turns out to be finer-grained. This yields
back a category X where morphisms are more informative than those in C in
the sense that, some compositions in C no longer hold in X.

Due to the very general nature of sorting refinements needed by each par-
ticular application, it could be tricky to construct a sorting directly using the
definition above. Moreover, each time a sorting is adopted the behavioral the-
ory of bigraphs must be redeveloped. Debois observed that most sortings in the
literature on bigraphs are actually means of banning particular morphisms from
the original category. In each of these cases, it is possible to identify a predi-
cate on the morphisms of the category in question, which holds precisely at the
morphisms in the image of the sorting functor. Unfortunately a predicate on
morphisms might not give rise to a subcategory, indeed we might have compos-
able morphisms which individually satisfy the predicate, but whose composite
does not. Debois proved that for the construction of such a sorted category it is
sufficient that the predicate is decomposable.

Definition 5 (Decomposable predicate). A predicate P on morphisms of a
category is decomposable iff P holds on identities and P (f ◦ g)⇒ P (f)∧ P (g).

Notably, the class of decomposable predicates can be characterized as those
morphisms that disallow factorization by a given set of morphisms.

Theorem 1 (Factorization, [4, Proposition 14]). A predicate P on mor-
phisms of a category C is decomposable iff there exists a set of morphisms Φ
such that P (f) holds iff for any g, ψ, h we have f = g ◦ ψ ◦ h implies ψ /∈ Φ.

In [4] it is also given a method to systematically construct a well-behaved
sorting for any decomposable predicate.

Definition 6 (Predicate Sorting). Let C be a category and let P be a decom-
posable predicate on the morphisms of C. The predicate sorting SP : X→ C is
defined as follows. The category X has pairs (X,Y ) as objects, where, for some
object C of C, X is a set of C-morphisms with codomain C and Y is a set of
C-morphisms with domain C, subject to the following conditions.

idC ∈ X
idC ∈ Y

f ∈ X ∪ Y ⇒ P (f)

f ∈ X, g ∈ Y ⇒ P (g ◦ f)

g ◦ f ∈ X ⇒ g ∈ X
g ◦ f ∈ Y ⇒ f ∈ Y .



There is a morphism f : (X,Y )→ (U, V ) whenever the following holds.

f ∈ Y ∩ U x ∈ X ⇒ f ◦ x ∈ U v ∈ V ⇒ v ◦ f ∈ Y .

Proposition 1. Let P be a decomposable predicate on a category C. The image
of the predicate sorting SP is precisely the set of morphisms satisfying P .

All the above definitions and results apply naturally to the bigraph category.

4 Undecidability of bigraphical sortings

In this section, we focus our attention on the undecidability issues of predicate
sortings and in particular for the case of bigraphical sortings.

Looking at the Definition 6, it is obvious that an exhaustive construction of
a predicate sorted category is unfeasible (one must quantify on all morphisms
to construct an object of the sorted category). Instead, what can be done is not
to establish the decidability of the construction of the category, but looking at
the problem of checking if a given morphism f from the base category has a pre-
image in the sorted one. The key idea behind this approach is to “simulate” the
existence of the sorted category, and checking that each morphism that comes
into play is actually well-sorted.

When a predicate sorting SP : X → C is used, the existence of the pre-
image x = SP (f) in the sorted category X is garanteed whenever P (f) holds by
Proposition 1. Unfortunately, decidability cannot be assumed neither for general
predicate P nor for decomposable predicates, even if we restrict to consider only
decomposable predicates over bigraphical morphisms.

Let us define a decomposable predicate over bigraphs which will be proved to
be undecidable by a reduction from the Post Correspondence Problem (PCP) [17].
We use α, β, γ for words in Σ = {a, b}∗, and ε for the empty word. An instance of
PCP is a set of pairs of words {(α1, β1), . . . , (αn, βn)} over the two-letter alpha-
bet {a, b} (that is, αi, βi ∈ Σ). The question is whether there exists a sequence
i0, i1, . . . , ik (1 ≤ ij ≤ n for all 0 ≤ j ≤ k) such that αi0 · . . . ·αik = βi0 · . . . · βik ,
where · denotes word concatenation.

Let K = {list : 0, pair : 0, a : 0, b : 0} be a bigraphical signature of 0-arity con-
trols. Any word γ ∈ Σ can be represented in Big(K) by means of the encoding
wrd : Σ → Big(K), pairs of words by pair : Σ ×Σ → Big(K) and n-length lists
of word pairs by lstn : (Σ ×Σ)n → Big(K) defined as follows:

wrd(ε) = 1, wrd(a · γ) = a ◦ wrd(γ), wrd(b · γ) = b ◦ wrd(γ),

pair(α, β) = pair ◦ (wrd(α) | wrd(β)),

lstn((α1, β1), . . . , (αn, βn)) = list ◦ (pair(α1, β1) | · · · | pair(αn, βn)).

Proposition 2. Let ΦPCP be the following a set of morphisms in Big(K):

ΦPCP = {lstn((α1, β1), . . . , (αn, βn)) | (α1, β1), . . . , (αn, βn) ∈ PCP}



then the set U below is a decomposable and undecidable predicate over Big(K).

U = {f morphism of Big(K) | ∀g, φ, h. f = g ◦ φ ◦ h⇒ φ /∈ ΦPCP }

Proof. By Theorem 1, U is a decomposable predicate. Let us prove its undecid-
ability. By contradiction, assume U to be decidable, hence the characteristic func-
tion PU for U , defined as P (u) = 1 if u ∈ U , P (u) = 0 otherwise, must be com-
putable. This obviously contradicts the fact that PCP is undecidable, since an al-
gorithm for PU will decides also PCP because for u = lstn((α1, β1), . . . , (αn, βn)),

PU (u) = 0 ⇐⇒ u /∈ U ⇐⇒ ((α1, β1), . . . , (αn, βn)) ∈ PCP

Notice that u has an obvious occurrence of a morphism ψ ∈ ΦPCP , that is, ψ = u
since u = id ◦ u ◦ id. ut

Theorem 2. Let SP : X→ C be a predicate sorting over a decomposable pred-
icate P . The problem of checking if a given morphism f in C has a pre-image
x = SP (f) in the sorted category X is undecidable.

Proof. It follows immediately from Propositions 1 and 2. ut

As a corollary, checking the existence of a sorted pre-image is undecidable.

Corollary 1. Let S : X → C be sorting. The problem of checking if a given
morphism f in C has a pre-image x = S(f) in X is undecidable.

5 Match predicate sortings

In this section, we introduce a characterization of a decidable class of bigraphical
sortings, which turns out to be a proper subclass of the predicate sortings.

Following the observations that drove the definition of predicate sortings
of Debois and coauthors, that is, that most sortings in literature are actually
defined for banning particular ill-formed patterns, we propose to identify the
notion of pattern occurrence with that of pattern match occurrence. A bigraph
G has a match within a bigraph H if and only if H = F ◦ (G⊗ idX)◦E for some
name set X and bigraphs F,E. The problem of finding a match of a bigraph
into another was investigated in [2] where and inductive characterization of this
problem was proposed and a resolutive algorithm is given.

This scenario suggests the definition of a family of decomposable predicates
based on the bigraphical matching problem.

Definition 7 (Match predicate). Let R be a recursive set of bigraphs. We
say that PR is a match predicate with respect to the set R, if for every bigraph
G, PR(G) holds iff every R ∈ R does not have a match in G.

Proposition 3. Any match predicate is a decomposable predicate.



Proof. Let R be a set of redexes and P its match predicate. Now, suppose
by absurdity that P is not decomposable. So there exist two bigraphs such
that P (G ◦H) holds and one between P (G) or P (H) does not. Suppose P (H)
does not hold (the other case is analogous), this means that there exist C,D
such that H = (id ⊗ C) ◦ (id ⊗ R) ◦ D, for some R ∈ R. Therefore G ◦ H =
(G◦(id⊗C))◦(id⊗R)◦D is a match of R in G◦H, an absurd by hypothesis. ut

Hence, the class of match predicates is a proper subclass of decomposable pred-
icates, and it is decidable by means of the matching algorithm.

Proposition 4 (Decidability). Any match predicate is decidable.

Proof (Sketch). Let G : 〈m,X〉 → 〈n, Y 〉 be a bigraph, we give a decidable deci-
sion procedure for PR(G). Since R is a generic recursive set, it could be infinite
in general, hence it is not be possible to check for all elements of R whether they
have a match within the given bigraph G. Note, however, that G is finite, that
is, it has finite node and edge sets, and finite interfaces as well. Let KG be the
set of controls used by nodes in G, and S the set of bigraphs using only controls
taken from KG and such that they have at most |VG| nodes, |EG| edges, |X|
inner names, |X|+ |P | outer names (where P is the set of ports, hence depends
on the chosen set of nodes and controls), and m, n inner and outer width.

Since the set of nodes VG is finite, KG must be finite (|KG| ≤ |VG|); by a
similar argument also S is finite. The set S contains all the possible bigraphs
such that they have a match in G (the proof is by contradiction and omitted
due to lack of space), by the finiteness of S and by the hypothesis that R is
recursive, the set R∩S is computable and finite. It is not difficult to prove that
PR(G) holds iff R does not have a match in G, for all R ∈ R ∩ S, hence, since
the bigraphical matching problem is decidable [8], PR is decidable as well. ut

Now we specialize the Factorization Theorem 1 in the following sense: given
a recursive set of bigraphs M , the set Φ of unwanted bigraphs is defined from
M as Φ = {m⊗ idX | m ∈M ∧X is a set of names}.
Theorem 3 (Factorization). A predicate P is a match predicate iff there
exists a recursive set of morphisms M such that P (f) holds iff for any g, ψ, h
and any set of names X we have f = g ◦ (ψ ⊗ idX) ◦ h implies ψ /∈M .

Proof. Direct consequence of Proposition 3 and Theorem 1. ut

In this way, deciding if a bigraph G is well-sorted is reduced to decide if no
m ∈ M has a match into G. Moreover, we can use the Proposition 3 in combi-
nation with the Definition 6 to define the bigraphical sorted category. We call
this class of sortings match predicate sortings. Consequence of the decidability
of any match predicate is that the set M is recursive, indeed it is essential to
not contradict Proposition 4. Although not forbidden, M is supposed to con-
tain no identities, otherwise (almost) all bigraphs are sorted out, resulting in a
useless sorting strategy. Finally, our match predicate sortings work up-to tensor
product with identities, i.e., the unwanted bigraphical structures are “homset
independent”, indeed a match can be found in any context, so we cannot force
the decomposition to work only with some particular interfaces.



6 Sortings in literature and their decidability

In order to investigate the expressive power of our decidable class of sortings,
we analyze some sortings introduced in literature. We focus our attention on the
sortings shown in [7, Table 6.1], which are replaceable by a predicate sorting.
In particular, we consider homomorphic sortings [15] and the bigraph’s variant
known as local bigraphs [14,16]. In this section we show that each decomposable
predicate used in [7] can be characterized as a match predicate of Definition 7.
Notice that the construction of the sorted category is left unchanged because
match predicates are decomposable by Proposition 3.

6.1 Homomorphic sortings and CCS

Firstly, we recall homomorphic sortings as given in [15] with the variants of [7]3.
In order to exemplify the use of the match predicate sortings, we also recall the
encoding of CCS [13] into bigraphs proposed by Milner in [15] which adopts a
particular homorphic sorting.

We start giving the definition of place-sorted bigraph.

Definition 8 (Place-sorted interface). Let Θ be a set of sorts. An interface
I = 〈m,X〉 is Θ-place-sorted if it is enriched by ascribing a sort to each place
i ∈ m. If I is place-sorted, we denote its underlying unsorted interface by U(I).

We denote by Big(K, Θ) the category in which the objects are place-sorted
interfaces, and each morphism G : I → J is a bigraph G : U(I)→ U(J).

Such definition refines only the objects of the bigraph category, the next one is
cutting down some morphisms (i.e., bigraphs).

Definition 9 (Place-sorting). A place-sorting is a triple Σ = {K, Θ, Φ},
where Φ is a condition on the place graph of Θ-sorted bigraphs over K. The con-
dition Φ must be satisfied by identities and preserved by composition and tensor.

A bigraph in Big(K, Θ) is Σ-place-sorted if it satisfies Φ. The Σ-sorted bi-
graphs form a sub-category of Big(K, Θ) denoted by Big(Σ).

Notably, Milner in [15, Proposition 10.3] shows that U can be extended to a
functor U : Big(Σ) → Big(K, Θ) which is surjective on objects and faithful,
and hence a sorting by Definition 4.

Due to the very general nature of place-sorting, Milner defines a particular
class of such sortings, named homomorphic sortings.

Definition 10 (Homomorphic sorting). A place-sorting Σ = {K, Θ, Φ} is
an homomorphic sorting if the condition Φ assigns a sort θ ∈ Θ to each control
in K by means of a surjective function sort : K → Θ and it also defines a parent
map prntΘ : Θ → Θ over sorts. (We impose that Θ has a least two elements4.)

In a bigraph G, via its control map, the sort assignment to K determines a
sort for each node. The Φ requires that, for each site or node w in G with sort θ:

3 The variants are quite technical and do not change the resulting sorted categories.
4 Otherwise the homomorphic sorting sorts out no bigraph, hence it is useless.



alt
get

alt

send get

x y

Fig. 2. A bigraph encoding the CSS process x.0 | (x̄.0 + y.0).

1. if prntG(w) is a node then its sort is prntΘ(θ);
2. if prntG(w) is a root then its sort is θ.

As already mentioned, the translation of (finite) CCS in bigraphs provides
a interesting non-trivial example of homomorphic sorting. Suppose a universal
set of name N and let x, y, z, . . . range over N , whilst P,Q range over processes
and A over summations. The CCS syntax is

P ::= (νx)P | P | P | A
A ::= 0 | x.P | x̄.P | A+A .

Intuitively 0 denotes termination. (νx)P means that the name x is restricted in
P . x.P and x̄.P are the input and output actions respectively. Finally, | is the
parallel composition and + the non-deterministic choice. The set of free names
is composed by all names of the process not under the scope of a ν. In [15]
processes are taken up-to the following structural equivalence (≡): it contains
the α-equivalence on processes, | and + are commutative and associative under
≡, and the following rules hold

A+ 0 ≡ 0 (νx)(A+ α.P ) ≡ A+ α.(νx)P if α ∈ {y, ȳ} and x 6= y

(νx)(νy)P ≡ (νy)(νx)P (νx)P ≡ P if x /∈ fn(P )

(νx)(P | Q) ≡ P | (νx)Q if x /∈ fn(P ) .

Notice that P | 0 6≡ P , but we can prove that they are bisimilar.
Now we introduce the homorphic sorting for encoding CCS into bigraphs.

ΣCCS = ({a, p}, {alt : 0, get : 1, send : 1}, Φ)

where a, p are types representing “summations” and “processes”. The control alt
encodes a summation and the controls get and send denote input and output
actions. The condition Φ assigns the type a to alt and p to both get and send. Φ
also imposes an alternation of controls of type a and p in the place graphs, i.e.,
prntΘ(a) = p and prntΘ(p) = a. Both composition and tensor preserves Φ.

The translation of a CCS process into a bigraphs is defined as follows. We map
processes into ground homset having a single root typed with p, i.e., ε→ 〈p, X〉,
and analogously summations into ε → 〈a, X〉. In order to do this we define two



alt
alt

kk′

xy

k, k′ ∈ {get, send}

Fig. 3. The ill-bigraphs used to define a match predicate sorting for the CCS.

translation operators PX [·] and AX [·] each indexed on a (finite) set of names X.
They are defined by mutual recursion:

PX [(νx)P ] = /y ◦ PX]{y}[P{y/x}] AX [0] = X | 1
PX [P | Q] = PX [P ] | PX [Q] AX [a.P ] = (getx | idX) ◦ PX [P ] (x ∈ X)

PX [A] = (alt | idX) ◦ AX [A] AX [ā.P ] = (sendx | idX) ◦ PX [P ] (x ∈ X)

AX [A+B] = AX [A] | AX [B] .

As an example consider the CSS process x.0 | (x̄.0 + y.0), its translation in a
bigraph is depicted in Figure 2.

In order to construct a predicate from a homomorphic sorting, it is sufficient
to restrict the condition of Φ to consider just 1. and dropping 2., indeed we can
focus only on constraining the internal components (i.e., nodes) of the bigraph.
The roots belong to the interfaces, and those are refined automatically by the
predicate sortings (see Definition 6).

The predicate constructed by Debois in [7] is the following.

Definition 11. Let Σ = {K, Θ, Φ} be a homomorphic sorting, and let prntΘ be
the parent maps on sorts defined by Φ. The predicate PΣ holds on a bigraph G
iff whenever the control of a node v in G has sort θ ∈ Θ and w = prntG(v) is a
node, then the control of w has sort prntΘ(θ).

On such definition, it is easy to yield a “negative” version of the predicate by
means of the Factorization Theorem 1: the set of unwanted bigraphs Φ can be
constructed by complementing the condition 1.. This observation also suggests
a way of deriving a match predicate by means of our Factorization Theorem 3.

Definition 12. Let Σ = {K, Θ, Φ} be a homomorphic sorting, and let prntΘ be
the parent maps on sorts defined by Φ. The match predicate P (MΣ) for Σ can
be defined on the set of bigraphs MΣ below and by using the Theorem 3.

MΣ , {(K~x ⊗ id~y) ◦ (H~y ⊗ id1) | K,H ∈ K ∧ prntΘ(sort(H)) 6= sort(K)} (1)

It is trivial to prove that the meaning of the two predicates coincides, indeed if a
match exists condition 1. is violated, otherwise it does not hold. It is important
for decidability to notice that the set MΣ defined in equation (1) is finite.



In the case of CCS, the set of undesired graph MΣCCS
must contain the

bigraphs which has ill-nested controls. In particular, we should forbid the nesting
of a a-typed control into another a-typed one (analogously for the type p). In
other words this means that we do not allow the nesting of two consecutive alt
nodes or two send and/or get nodes. Formally, the set of ill-formed bigraphs for
the match predicate sorting are defined below and depicted in Figure 3.

MΣCCS
=


alt ◦ (alt⊗ id1),

(getx ⊗ id{y}) ◦ (gety ⊗ id1), (getx ⊗ id{y}) ◦ (sendy ⊗ id1),

(sendx ⊗ id{y}) ◦ (gety ⊗ id1), (sendx ⊗ id{y}) ◦ (sendy ⊗ id1)

 .

The following result follows directly from the above considerations.

Theorem 4. Homomorphic sortings correspond exactly to match predicate sort-
ings over the predicate MΣ.

Proof. It follows from the characterization given in [7, Section 6.3] and by the
fact that PΣ = MΣ . ut

Remarkably, homomorphic sortings are of particular interest in the setting of
bigraphical encoding of process algebras, in fact, they have been employed in the
encoding of π-calculus variants [18] (cfr. Jensen [10]), but also in the definition
of variants pure bigraphs, e.g. kind bigraphs [6].

Corollary 2. Homomorphic sortings are decidable.

Proof. Direct consequence of Theorem 4 and Proposition 4. ut

6.2 Local bigraphs

In this section first we recall Milner’s local bigraphs [14,16] and then we discuss
how to use a match predicate sorting on (pure) bigraphs to catch local bigraphs.

Intuitively, a local bigraph is like a standard (pure) bigraph but it has names
which are deeply connected with placing, i.e., there is a precise scoping rule:
linking must respect the nesting of nodes. An example of a local bigraph is
shown in Figure 4, Note that inner names are “localized” on the bigraph’s sites
and outer names on the roots.

Let K be a binding signature of controls and ar : K → N × N be the arity
function. The arity pair (h, k) consists of the binding arity h and the free arity
k, indexing respectively the binding ports and the free ports of a control.

Definition 13. A local interface is a list (X0, . . . , Xn−1), where n is the width
and Xis are disjoint sets of names. Xi represents the names located at i.

Definition 14. A local bigraph G : ( ~X) → (~Y ) is defined as a (pure) bigraph

Gu : 〈| ~X|,
⋃ ~X〉 → 〈|~Y |,

⋃ ~Y 〉 satisfying certain locality conditions. Let π1 and π2
be the canonical projections of pair components, let P =

∑
v∈V π1(ar(ctrl(v)))

be the set of ports, and let B =
∑
v∈V π2(ar(ctrl(v))) be the set of bindings

(associated to all nodes), the link map is link : X ] P → E ]B ] Y .
The locality conditions are the following:



z0 z1 z2

0

v0

v1

0

y0

1

y1

1

v3v2

2

y2

G : ({y0}, {y1}, {y2}) → ({z0}, {z1, z2})

Fig. 4. An example of a local bigraph.

1. if a link is bound, then its inner names and ports must lie within the node
that binds it;

2. if a link is free, with outer name x, then x must be located in every region
that contains any inner name or port of the link.

Definition 15. The category Lbg(K) of local bigraphs over a binding signature
K has local interfaces as objects, and local bigraphs as morphisms. Composition
and tensor product are defined analogously as for (pure) bigraphs.

Local bigraphs have been introduced in literature by Milner for encoding the
λ-calculus [1] into bigraphs and investigating confluence properties for bigraph-
ical reactive systems [16].

In [7] it is given the predicate that follows, and it is proven that predicate
sortings can be replaced with the category of local bigraphs.

Definition 16 ([7, Definition 6.22]). Let Σ be a binding signature. Define
PΣ to be the predicate on the morphisms of Big(U(Σ)) given by PΣ(f) iff in f

“all ports linked to a binding port of a node v lie under v”.

It is straightforward to prove that such predicate is decomposable, but we
want to characterize it as a matching predicate, that is, provide a recursive set of
unwanted redex patterns. Fortunately the predicate PΣ is very simple to falsify,
indeed it is enough to find a match of a redex with the form in (2) below (see also
Figure 5). We denote a node as K(~x)~y, which means that the node has control
K, its free ports are linked to the outer names in ~y, and the inner names ~x are
linked to its binding ports.

(K(~xw~y)~z ‖ id〈1,~b~c〉) ◦ (id〈1,~xw~y〉 ‖ N(~a)~bw~c) (2)

for all controls K,N ∈ Σ. Intuitively, if a bigraph has a match for a redex
with the form in (2), that match is a counterexample for PΣ (the binding port
targeted by w of the K-node has as peer the port linked to w of the another
node N which is not beneath the K-node).

Now we can define the binding match predicate.



0

K
0

1

N
1

Fig. 5. A (simplified) example of ill-formed bigraph.

Definition 17. Let Σ be a binding signature and let Rbind be the following set
of bigraphs:

Rbind = {(K(~xw~y)~z ‖ id〈1,~b~c〉) ◦ (id〈1,~xw~y〉 ‖ N(~a)~bw~c) | K,M ∈ Σ}

Then define MΣ as the match predicate defined on the (recursive) set Rbind.

Theorem 5. The category of local bigraphs corresponds to the one obtained by
applying the match predicate sorting on MΣ over the morphisms of Big.

Proof. It follows immediately from the characterization given in [7, Section 6.4]
and by the fact that PΣ = MΣ . PΣ ⊆ MΣ can be proved noticing that any
match of a redex from RΣ in a bigraph f of Big(U(Σ)) is a counterexample
for PΣ(f); whereas MΣ ⊆ PΣ follows immediately from the fact that RΣ has a
redex for any pair of controls in Σ and for any binding port. ut

7 Conclusions

In this paper, we have investigated the decidability problem of (bigraphical) sort-
ings. In particular, we have shown the undecidability of Debois and coauthors’
predicate sortings and then we have identified a proper sub-class of them, named
match predicate sortings, which turned out to be decidable. For the match pred-
icate sortings, we have proposed a characterization that induces the definition
of a decision procedure to check if a given morphism in the unsorted category
has a pre-image into the sorted one, which holds independently from the cho-
sen predicate. The procedure is based on the bigraphical matching problem, for
which a decision algorithm was proposed in [2].

Notably, our match predicate sortings preserve many interesting properties
of predicate sortings, such as the possibility of describing unwanted bigraphs
by means of BiLog formulae. Moreover, we have shown that the match predi-
cate sortings are powerful enough to capture two important bigraphical sortings
proposed in literature: homomorphic sorting and local bigraphs.

As possible future developments, we plan to investigate if other decidable
classes of sortings exist and if there are other (possibly) more efficient algorithms
to decide if a bigraph belongs to a sortings (remark that the matching problem
for bigraphs is NP-complete). Finally, another interesting future work is the
analysis of the problem in a more general setting, not focusing only on bigraphs.



References

1. H. Barendregt. The lambda calculus: its syntax and its semantics. Studies in Logic
and the Foundations of Mathematics. North-Holland, 1984.

2. L. Birkedal, T. C. Damgaard, A. J. Glenstrup, and R. Milner. Matching of bi-
graphs. Electr. Notes Theor. Comput. Sci., 175(4):3–19, 2007.

3. L. Birkedal, S. Debois, E. Elsborg, T. Hildebrandt, and H. Niss. Bigraphical models
of context-aware systems. In L. Aceto and A. Ingólfsdóttir, editors, Proc. FoSSaCS,
volume 3921 of Lecture Notes in Computer Science, pages 187–201. Springer, 2006.

4. L. Birkedal, S. Debois, and T. T. Hildebrandt. Sortings for reactive systems. In
C. Baier and H. Hermanns, editors, CONCUR, volume 4137 of Lecture Notes in
Computer Science, pages 248–262. Springer, 2006.

5. M. Bundgaard, A. J. Glenstrup, T. T. Hildebrandt, E. Højsgaard, and H. Niss. For-
malizing higher-order mobile embedded business processes with binding bigraphs.
In D. Lea and G. Zavattaro, editors, COORDINATION, volume 5052 of Lecture
Notes in Computer Science, pages 83–99. Springer, 2008.

6. S. Ó. Conchúir. Kind bigraphs. Electr. Notes Theor. Comput. Sci., 225:361–377,
2009.

7. S. Debois. Sortings and Bigraphs. PhD thesis, IT University of Copenhagen, 2008.
http://www.itu.dk/people/debois/pubs/thesis.pdf.

8. A. Glenstrup, T. Damgaard, L. Birkedal, and E. Højsgaard. An implementation
of bigraph matching. IT University of Copenhagen, 2007. http://www.itu.dk/

~tcd/docs/implBigraphMatching.pdf.
9. D. Grohmann and M. Miculan. Reactive systems over directed bigraphs. In

L. Caires and V. T. Vasconcelos, editors, Proc. CONCUR 2007, volume 4703 of
Lecture Notes in Computer Science, pages 380–394. Springer, 2007.

10. O. H. Jensen. Mobile Processes in Bigraphs. PhD thesis, University of Aalborg,
2008. To appear.

11. O. H. Jensen and R. Milner. Bigraphs and transitions. In Proc. POPL, pages
38–49, 2003.

12. J. J. Leifer and R. Milner. Transition systems, link graphs and petri nets. Mathe-
matical Structures in Computer Science, 16(6):989–1047, 2006.

13. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer, 1980.

14. R. Milner. Bigraphs whose names have multiple locality. Technical Report 603,
University of Cambridge, CL, Sept. 2004.

15. R. Milner. Pure bigraphs: Structure and dynamics. Information and Computation,
204(1):60–122, 2006.

16. R. Milner. Local bigraphs and confluence: Two conjectures. In Proc. EXPRESS
2006, volume 175(3) of Electronic Notes in Theoretical Computer Science, pages
65–73. Elsevier, 2007.

17. E. L. Post. Recursively enumerable sets of positive integers and their decision
problems. Bulletin of the American Mathematical Society, 50:284–316, 1944.

18. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2001.

http://www.itu.dk/people/debois/pubs/thesis.pdf
http://www.itu.dk/~tcd/docs/implBigraphMatching.pdf
http://www.itu.dk/~tcd/docs/implBigraphMatching.pdf

	On Decidability of Bigraphical Sorting
	Giorgio Bacci   Davide Grohmann

