An Abstract Interpretation Framework for Semantics and Diagnosis of Functional Logic Programs

Giovanni Bacci

supervisor: Marco Comini

Dipartimento di Matematica e Informatica
University of Udine

15 March 2012, Udine
Motivations

Context: lazy declarative languages
- Purely Functional (**Haskell**)
- Functional Logic (**Curry, TOY**)

Goal: efficacious semantic-based program manipulation tools
- Static Analysis
- Abstract Diagnosis
- Synthesis of Specifications

We need a semantics which is (at the same time)
- fully-abstract w.r.t. I/O observations
- goal-independent
- “condensed” (as concise as possible)

no such semantics in literature
Motivations

Context: lazy declarative languages
- Purely Functional (Haskell)
- Functional Logic (Curry, TOY)

Goal: efficacious semantic-based program manipulation tools
- Static Analysis
- Abstract Diagnosis
- Synthesis of Specifications

We need a semantics which is (at the same time)
- fully-abstract w.r.t. I/O observations
- goal-independent
- “condensed” (as concise as possible)

no such semantics in literature
Motivations

Context: lazy declarative languages
- Purely Functional (*Haskell*)
- Functional Logic (*Curry*, *TOY*)

Goal: efficacious semantic-based program manipulation tools
- Static Analysis
- Abstract Diagnosis
- Synthesis of Specifications

We need a semantics which is (at the same time)
- fully-abstract w.r.t. I/O observations
- goal-independent
- “condensed” (as concise as possible)

no such semantics in literature
Motivations

Context: lazy declarative languages
+ Purely Functional (Haskell)
+ Functional Logic (Curry, TOY)

Goal: efficacious semantic-based program manipulation tools
+ Static Analysis
+ Abstract Diagnosis
+ Synthesis of Specifications

We need a semantics which is (at the same time)
+ fully-abstract w.r.t. I/O observations
+ goal-independent
+ “condensed” (as concise as possible)

no such semantics in literature
Functional Logic Paradigm

- nested expressions
- higher-order features
- lazy evaluation

\[
\begin{align*}
\text{nested expressions} & \quad \text{higher-order features} \\
\text{functional paradigm} & \\
\text{lazy evaluation} &
\end{align*}
\]

Operational mechanism:

\[\text{REWWRITING}\]

sub-expressions are rewritten according to program rules
Functional Logic Paradigm

+ nested expressions
+ higher-order features
+ lazy evaluation

+ logical variables
+ partial data structures
+ built-it search

Operational mechanism:

\[\text{VARIABLE INSTANTIATION} + \text{REWRITING} = \text{NARROWING} \]

variables are instantiated so that sub-expressions can be rewritten according to program rules
Functional Logic Paradigm

+ nested expressions
+ higher-order features
+ lazy evaluation
+ logical variables
+ partial data structures
+ built-it search

\[
\begin{align*}
\text{VARIABLE INSTANTIATION} &+ \text{REWRITING} = \text{NARROWING} \\
\text{variables are instantiated so that sub-expressions can be rewritten according to program rules}
\end{align*}
\]
equation solving & built-in search:

\[0 + x = x \quad 0 \leq y = \text{True} \]
\[(S \, x) + y = S \, (x + y) \quad (S \, x) \leq 0 = \text{False} \]
\[\text{double} \, x = x + x \quad (S \, x) \leq (S \, y) = x \leq y \]

the goal \((x + x) \leq 0\) where \(x\) free returns 2 solutions,
namely \(\{x \rightarrow 0\}\) True and \(\{x \rightarrow S \, x’\}\) False

non-deterministic operations:

overlapping rules are allowed \(\Rightarrow\) non-confluent programs

\[
\text{coin} = 0
\]
\[
\text{coin} = S \, 0
\]

\text{coin} returns 2 solutions, namely \(\{\}\) 0 and \(\{\}\) S 0
equation solving & built-in search:

\[
\begin{align*}
0 + x &= x & 0 &\leq y &= True \\
(S\ x) + y &= S\ (x + y) & (S\ x) &\leq 0 &= False \\
double\ x &= x + x & (S\ x) &\leq (S\ y) = x &\leq y
\end{align*}
\]

the goal \((x + x) \leq 0\) where \(x\) free returns 2 solutions, namely \(\{x \rightarrow 0\}\) True and \(\{x \rightarrow S\ x'\}\) False

non-deterministic operations:

overlapping rules are allowed \(\Rightarrow\) non-confluent programs

\[
\begin{align*}
\text{coin} &= 0 \\
\text{coin} &= S\ 0 \\
\text{coin} \text{ returns 2 solutions, namely } &\{\} \ 0 \text{ and } \{\} \ S\ 0
\end{align*}
\]
lazy evaluation

delays the evaluation of sub-expressions until it is not demanded

A subtle aspect of nondeterministic operations is their treatment if they are passed as arguments:

\begin{align*}
\text{coin} &= 0 \\
\text{double } x &= x + x \\
\text{coin} &= S
\end{align*}

need-time choice: the choice for the desired value of an operation is made when it is demanded

\begin{align*}
\text{double } \text{coin} &\Rightarrow \text{coin} + \text{coin} \Rightarrow 0 + \text{coin} \Rightarrow \text{coin} \Rightarrow S
\end{align*}

call-time choice the choice for the desired value of a operation is made at call time (not the evaluation)

\begin{align*}
\text{double } \text{coin} &\Rightarrow \text{coin} + \text{coin} \Rightarrow 0 + 0 \Rightarrow 0
\end{align*}

sharing
A subtle aspect of nondeterministic operations is their treatment if they are passed as arguments:

\[
\text{coin} = 0 \quad \text{double } x = x + x
\]

\[
\text{coin} = S\ 0
\]

need-time choice: the choice for the desired value of an operation is made when it is demanded

\[
\text{double coin} \Rightarrow \text{coin} + \text{coin} \Rightarrow 0 + \text{coin} \Rightarrow \text{coin} \Rightarrow S\ 0
\]

call-time choice the choice for the desired value of a operation is made at call time (not the evaluation)

\[
\text{double coin} \Rightarrow \text{coin} + \text{coin} \Rightarrow 0 + 0 \Rightarrow 0
\]
lazy evaluation

delays the evaluation of sub-expressions until it is not demanded

A subtle aspect of nondeterministic operations is their treatment if they are passed as arguments:

\[
\begin{align*}
\text{coin} & = 0 \\
\text{coin} & = S \ 0 \\
\end{align*}
\]

need-time choice: the choice for the desired value of an operation is made when it is demanded

\[
\begin{align*}
\text{double coin} & \Rightarrow \text{coin} + \text{coin} \Rightarrow 0 + \text{coin} \Rightarrow \text{coin} \Rightarrow S \ 0 \\
\end{align*}
\]

call-time choice the choice for the desired value of a operation is made at call time (not the evaluation)

\[
\begin{align*}
\text{double coin} & \Rightarrow \text{coin} + \text{coin} \Rightarrow 0 + 0 \Rightarrow 0 \\
\end{align*}
\]
A subtle aspect of nondeterministic operations is their treatment if they are passed as arguments:

\[
\begin{align*}
\text{coin} &= 0 \\
\text{coin} &= S\ 0
\end{align*}
\]

need-time choice: the choice for the desired value of an operation is made when it is demanded

\[
\begin{align*}
\text{double } \text{coin} &\Rightarrow \text{coin} + \text{coin} &\Rightarrow 0 + \text{coin} &\Rightarrow \text{coin} &\Rightarrow S\ 0
\end{align*}
\]

call-time choice the choice for the desired value of a operation is made at call time (not the evaluation)

\[
\begin{align*}
\text{double } \text{coin} &\Rightarrow \text{coin} + \text{coin} &\Rightarrow 0 + 0 &\Rightarrow 0
\end{align*}
\]

sharing
A semantics adequate w.r.t. an observation ϕ

Requirements:

- fix-point characterization (i.e., $F[P] := \text{lfp } P[P]$)
- goal-independent & “condensed”
- fully-abstract w.r.t. a behavioral observation ϕ

Full-abstraction (EAGER languages):

- $F[P_1] = F[P_2] \iff B^{\phi}[P_1] = B^{\phi}[P_2]$

Full-abstraction (LAZY languages):

- $F[P_1] = F[P_2] \iff \forall Q \in \cup \mathbb{P}^2. B^{\phi}[P_1 \cup Q] = B^{\phi}[P_2 \cup Q]$
A semantics adequate w.r.t. an observation ϕ

Requirements:

+ fix-point characterization (i.e., $\mathcal{F}[P] := lfp P[P]$)
+ goal-independent & “condensed”
+ fully-abstract w.r.t. a behavioral observation ϕ

Full-abstraction (EAGER languages):

+ $\mathcal{F}[P_1] = \mathcal{F}[P_2] \iff B^\phi[P_1] = B^\phi[P_2]$

Full-abstraction (LAZY languages):

+ $\mathcal{F}[P_1] = \mathcal{F}[P_2] \iff \forall Q \in UP_{\Sigma}'. B^\phi[P_1 \cup Q] = B^\phi[P_2 \cup Q]$

using programs

can only define new operations
Computed Results Behavior

Computed result behavior of programs:

\[B^{cr}[P](e_0) := \left\{ (\sigma_1 \cdots \sigma_n) \upharpoonright_{e_0} \cdot e_n \mid e_0 \xrightarrow{\sigma_1}{p_1} \cdots \xrightarrow{\sigma_n}{p_n} e_n, e_n \in \mathcal{T}(C, V) \right\} \]

Problem: collecting computed results for every most general call leads to incorrect semantic denotations because of laziness

\[
f(x) = S(g(x)) \quad f(Sx) = S0
\]

\[
g(Sx) = 0 \quad g(Sx) = 0
\]

\(f(x)\) have the same computed results in both programs, namely

\[B^{cr}[P](f(x)) = \{\{x/s(x')\} \cdot s(0)\} \]

But for the goal \(g(f(x))\) the former program computes \(\varepsilon \cdot 0\) whereas the latter computes \(\{x/s(x')\} \cdot 0\).
Systematic design of semantics by A.I. [Cousot 77]

\[\mathcal{P}[P] \]

\[(\mathcal{C}, \sqsubseteq) \]

\[\alpha \]

\[(\mathcal{A}, \leq) \]

\[\mathcal{P}^\alpha[P] \]

Results from the A.I. theory:

\[\mathcal{P}^\alpha[P] := \alpha \circ \mathcal{P}[P] \circ \gamma \]

\[\mathcal{F}^\alpha[P] := \text{lfp} \mathcal{P}^\alpha[P] \]

\[\alpha(\mathcal{F}[P]) \leq \mathcal{F}^\alpha[P] \]

\[\alpha \text{ is precise } \implies \mathcal{F}^\alpha \text{ is a standard semantics} \]
Results from the A.I. theory:

- $\mathcal{P}^\alpha[P] := \alpha \circ \mathcal{P}[P] \circ \gamma$
- $\mathcal{F}^\alpha[P] := \text{lfp } \mathcal{P}^\alpha[P]$
- $\alpha(\mathcal{F}[P]) \leq \mathcal{F}^\alpha[P]$
- α is precise $\implies \mathcal{F}^\alpha$ is a standard semantics
We started from a (very) concrete semantics modeling the small-step behavior ("trace semantics")

\[
P[P] : \text{WSST}^{\text{MGC}} \rightarrow \text{WSST}^{\text{MGC}}
\]

\[
\mathcal{F}[P] = \text{lfp} \ P[P]
\]

Theorem

\[
\mathcal{E}[e]_{\mathcal{F}[P]} = \mathcal{B}^{\text{ss}}[P](e)
\]

where \(\mathcal{E} \) is the semantic evaluation function
We started from a (very) concrete semantics modeling the small-step behavior ("trace semantics")

\[
\mathcal{P}[P] : \text{WSST}^{\text{MGC}} \rightarrow \text{WSST}^{\text{MGC}}
\]

\[
\mathcal{F}[P] = \text{lfp} \mathcal{P}[P]
\]

Theorem

\[
\mathcal{E}[e] \mathcal{F}[P] = \mathcal{B}^{\text{ss}}[P](e)
\]

where \(\mathcal{E} \) is the semantic evaluation function
We started from a (very) concrete semantics modeling the small-step behavior (“trace semantics”)

\[\mathcal{P}[P] : \text{WSST}^{\text{MGC}} \rightarrow \text{WSST}^{\text{MGC}} \]

\[\mathcal{F}[P] = \text{lfp} \mathcal{P}[P] \]

\[\mathcal{E}[e]_{\mathcal{F}[P]} = \mathcal{B}^{\text{ss}}[P](e) \]

where \(\mathcal{E} \) is the semantic evaluation function.
We started from a (very) concrete semantics modeling the small-step behavior ("trace semantics")

\[\mathcal{P}[P] : WSST_{\text{MGC}} \rightarrow WSST_{\text{MGC}} \]

\[\mathcal{F}[P] = \text{lfp } \mathcal{P}[P] \]

Theorem

\[\mathcal{E}[e]_{\mathcal{F}[P]} = \mathcal{B}^{\text{ss}}[P](e) \]

where \(\mathcal{E} \) is the semantic evaluation function
...then, we proceed by successive abstractions

\[(\text{WSST}, \sqsubseteq) \xleftarrow{\partial^\gamma} (\text{ERT}, \preceq) \xrightarrow{\zeta^\gamma} (\text{WERS}, \prec) \]
We can observe differences in the computed results when evaluation introduces a new constructor.

IDEA: combine together all intermediate small steps that do not introduce a new constructor.

\[
\begin{align*}
f(x, g(y)) & \xrightarrow{\{x/A\}} f(A, g(y)) \xrightarrow{\xi} f(A, B) \xrightarrow{\xi} C(h(z)) \xrightarrow{\{z/B\}} C(A) \\
\end{align*}
\]
Evolving Result Abstraction

We can observe differences in the computed results when evaluation introduces a new constructor

IDEA: combine together all intermediate small steps that do not introduce a new constructor

\[
\begin{align*}
 f(x, g(y)) & \xrightarrow{\{x/A\}} f(A, g(y)) \xrightarrow{\varepsilon} f(A, B) \xrightarrow{\varepsilon} C(h(z)) \xrightarrow{\{z/B\}} C(A)
\end{align*}
\]
We can observe differences in the computed results when evaluation introduces a new constructor

IDEA: combine together all intermediate small steps that do not introduce a new constructor

\[
\begin{align*}
\varepsilon \cdot \varrho & \xrightarrow{\varrho} \{x/A\} \cdot C(\varrho_1) \xrightarrow{\varrho_1} \{x/A\} \cdot C(A) \\
\end{align*}
\]
We can observe differences in the computed results when evaluation introduces a new constructor

IDEA: combine together all intermediate small steps that do not introduce a new constructor

\[
\begin{align*}
 f(x, g(y)) \xrightarrow{\{x/A\}} f(A, g(y)) \xrightarrow{\xi} f(A, B) \xrightarrow{\xi} C(h(z)) \xrightarrow{\{z/B\}} C(A)
\end{align*}
\]
The **ERT** (Evolving Result Trees) domain: \(\text{ERT} := \partial(\text{WSST}) \)

\[
\varepsilon \cdot \varrho \xrightarrow{\varrho} \{x/Z\} \cdot y \\
\varepsilon \cdot \varrho \xrightarrow{\varrho} \{x/S(x_1)\} \cdot S(\varrho_1) \\
\varepsilon \cdot \varrho \xrightarrow{\varrho_1} \{x/S(Z)\} \cdot S(y) \\
\varepsilon \cdot \varrho \xrightarrow{\varrho_1} \{x/S(S(x_2))\} \cdot S(S(\varrho_2))
\]

infinite depth
Evolving Result semantics

\[(\text{WSST}, \sqsubseteq) \xleftarrow{\partial^{\gamma}} (\text{ERT}, \lhd) \xrightarrow{\zeta^{\gamma}} (\text{WERS}, \hat{\zeta})\]

The **ERT** (Evolving Result Trees) domain: \(\text{ERT} := \partial(\text{WSST})\)

```
\[\varepsilon \cdot \emptyset \rightarrow \{x/\emptyset, y/S(y_1)\} \cdot \text{True}\]
\[\emptyset \rightarrow \{x/S(\emptyset), y/S(S(y_1))\} \cdot \text{True}\]
\[\vdots\]
\[\emptyset \rightarrow \{x/S(S(x_1)), y/S(\emptyset)\} \cdot \text{False}\]
\[\emptyset \rightarrow \{x/S(x_1), y/\emptyset\} \cdot \text{False}\]
```

infinite width
Evolving Result semantics

\[(\text{WSST}, \sqsubseteq) \xleftrightarrow{\partial^\gamma} (\text{ERT}, \preceq) \xleftrightarrow{\zeta^\gamma} (\text{WERS}, \approx)\]

Induced optimal immediate consequence operator

\[\mathcal{P}^\partial[P]: \text{ERT}^{\text{MGC}} \rightarrow \text{ERT}^{\text{MGC}}\]

\[\mathcal{P}^\partial[P]_{\mathcal{I}^\partial} := (\partial \circ \mathcal{P}[P] \circ \partial^\gamma)(\mathcal{I}^\partial)\]

\[= \lambda f(\overrightarrow{x_n}). \bigg\{ \varepsilon \cdot \varrho \xrightarrow{\varrho} \mathcal{E}^\partial[r]_{\mathcal{I}^\partial}\{\overrightarrow{x_n}/\overrightarrow{t_n}\} \bigg| f(t) \rightarrow r \in P \bigg\}\]

Evaluation function over ERT

\[\mathcal{E}^\partial[x]_{\mathcal{I}^\partial}^{\sigma} := \sigma \cdot x\]

\[\mathcal{E}^\partial[\varphi(\overrightarrow{t_n})]_{\mathcal{I}^\partial}^{\sigma} := \mathcal{I}^\partial(\varphi(\overrightarrow{y_n}))[y_1/\mathcal{E}^\partial[t_1]_{\mathcal{I}^\partial}^{\sigma}] \ldots [y_n/\mathcal{E}^\partial[t_n]_{\mathcal{I}^\partial}^{\sigma}]\]

Theorem

\[\mathcal{F}^\partial[P] = \partial(\mathcal{F}[P])\]
Evolving Result semantics

$$(\text{WSST}, \sqsubseteq) \xrightarrow{\partial^\gamma} (\text{ERT}, \preceq) \xrightarrow{\zeta^\gamma} (\text{WERS}, \simeq)$$

Theorem (correctness)

$$\mathcal{F}^\partial[P_1] = \mathcal{F}^\partial[P_2] \implies \forall Q \in \mathbb{UP}_{\Sigma}' \cdot \mathcal{B}^{cr}[P_1 \cup Q] = \mathcal{B}^{cr}[P_2 \cup Q]$$

The converse implication doesn’t hold

Counterexample

Consider the programs P_1 and P_2

\[
\begin{align*}
f \ x &= A \ x \\
f \ x &= \text{id} \ (A \ (\text{id} \ x))
\end{align*}
\]

\[
\begin{align*}
\mathcal{F}^\partial[P_1](f(x)) &= \varepsilon \cdot \varrho \xrightarrow{\varrho} \varepsilon \cdot A(x) \quad \text{whereas} \\
\mathcal{F}^\partial[P_2](f(x)) &= \varepsilon \cdot \varrho \xrightarrow{\varrho_1} \varepsilon \cdot A(\varrho_1) \xrightarrow{\varrho_1} \varepsilon \cdot A(x).
\end{align*}
\]

Only when a substitution changes there is a visible effect in the behavior
Evolving Result semantics

\[(\text{WSST}, \sqsubseteq) \xleftrightarrow{\partial^\gamma} (\text{ERT}, \preceq) \xleftrightarrow{\zeta^\gamma} (\text{WERS}, \preceq)\]

Theorem (correctness)

\[
\mathcal{F}^{\partial}[P_1] = \mathcal{F}^{\partial}[P_2] \implies \forall Q \in \mathcal{UP}_\Sigma'. B^{\text{cr}}[P_1 \cup Q] = B^{\text{cr}}[P_2 \cup Q]
\]

The converse implication doesn’t hold

Counterexample

Consider the programs \(P_1\) and \(P_2\)

\[
\begin{align*}
f \ x &= A \ x \\
f \ x &= \text{id} \ (A \ (\text{id} \ x))
\end{align*}
\]

\[
\begin{align*}
\mathcal{F}^{\partial}[P_1](f(x)) &= \varepsilon \cdot \varrho \xrightarrow{\varrho} \varepsilon \cdot A(x) \text{ whereas} \\
\mathcal{F}^{\partial}[P_2](f(x)) &= \varepsilon \cdot \varrho \xrightarrow{\varrho_1} \varepsilon \cdot A(\varrho_1) \xrightarrow{\varrho_1} \varepsilon \cdot A(x).
\end{align*}
\]

Only when a substitution changes there is a visible effect in the behavior
IDEA: combine together all partial computed results that refer to the same substitution and lead to the same partial result

conceise representation: we denotes with $\sigma \cdot s_1 \sim s_2$ the set of partial computed results $\sigma \cdot s$ where $s_1 \preceq s \preceq s_2$.

\[
\begin{align*}
\varepsilon \cdot \varrho &\xrightarrow{\varrho} \varepsilon \cdot A(x) \\
\varepsilon \cdot \varrho_1 &\xrightarrow{\varrho_1} \varepsilon \cdot A(\varrho_2) \xrightarrow{\varrho_2} \varepsilon \cdot A(x)
\end{align*}
\]
Weakly Evolving Abstraction

\[(\text{WSST}, \sqsubseteq) \leftrightarrow_{\frac{\partial}{\partial}} (\text{ERT}, \preceq) \leftrightarrow_{\frac{\zeta}{\zeta}} (\text{WERS}, \hat{\preceq})\]

IDEA: combine together all partial computed results that refer to the same substitution and lead to the same partial result.

Concise representation: we denotes with \(\sigma \cdot s_1 \preceq s \preceq s_2 \) the set of partial computed results \(\sigma \cdot s \) where \(s_1 \preceq s \preceq s_2 \).

\[
\varepsilon \cdot \varrho \xrightarrow{\varrho} \varepsilon \cdot A(x) \quad \varepsilon \cdot \varrho_1 \xrightarrow{\varrho_1} \varepsilon \cdot A(\varrho_2) \xrightarrow{\varrho_2} \varepsilon \cdot A(x)
\]
Weakly Evolving semantics

\((WSST, \sqsubseteq) \xleftrightarrow{\partial^\gamma} (ERT, \preceq) \xleftrightarrow{\zeta^\gamma} (WERS, \hat{<}) \)

Induced immediate consequence operator

\[\mathcal{P}^\nu[P] : WERS^{MGC} \rightarrow WERS^{MGC} \]

\[\mathcal{P}^\nu[P] I^\nu = \lambda f(\overrightarrow{x}_n). \bigwedge \left\{ E^\nu[r] \{ \overrightarrow{x}_n/t_n \} \mid f(t) \rightarrow r \in P \right\} \]

Evaluation function over \(WERS \)

\[E^\nu[x]_{I^\emptyset} := \sigma \cdot \varphi - x \]

\[E^\nu[\varphi(t_n)]_{I^\emptyset} := I^\nu(\varphi(\overrightarrow{y}_n))[y_1/E^\nu[t_1]_{I^\emptyset}] \ldots [y_n/E^\nu[t_n]_{I^\emptyset}] \]

Theorem (full-abstraction)

1. \(\nu(E[e]_I) = E^\nu[e]_{\nu(I)} \)
2. \(\forall P \ F^\nu[P] = \nu(F[P]) \)
3. \(F^\nu[P_1] = F^\nu[P_2] \iff \forall Q \in \mathbb{UP}^{\Sigma'} \cup P_1 \cup Q \cup B^{cr}[P_1 \cup Q] = B^{cr}[P_2 \cup Q] \)
By a simple program transformation (Cnv) an Haskell program is transformed into a Curry semantic-equivalent version.

Theorem (Adequacy of Cnv)

Given P an Haskell program and e_0 ground expression.

$$
\begin{align*}
 e_0 \xrightarrow{p_1} \ldots \xrightarrow{p_n} e_n \text{ using } P & \iff e_0 \xrightarrow{\varepsilon} \ldots \xrightarrow{\varepsilon} e_n \text{ using } Cnv(P)
\end{align*}
$$

... all results apply to Haskell as well.
Abstraction Framework:

+ consider a **true** abstraction α
+ $(\text{WERS}, \lesssim) \xrightarrow{\gamma} (\mathcal{A}, \leq)$
+ abstract semantics \mathcal{F}_α can be effectively computed

Proposed case studies: $\text{depth}(k)$ and \mathcal{POS}

Applications:

+ Static Analysis
+ Abstract Debugging
+ Automatic Synthesis of algebraic Specifications
Application: Groundness Dependencies Analysis

first proposal in literature

Domain: \((\mathcal{POS}, \leq) \) set of positive formulas ordered by implication

Abstraction:
Collects \(\mathcal{POS} \) abstractions of (final) computed results only

\[
\begin{align*}
\Gamma_{\varrho}(S) & := \bigvee \{ \Gamma(\sigma\{\varrho/\nu\}) \mid \sigma \cdot t - \nu \in S, \ \nu \in \mathbb{T}(\mathcal{C}, \mathcal{V}) \} \quad \text{(WERS)} \\
\Gamma(\vartheta) & := \bigwedge_{y/t \in \vartheta} (y \leftrightarrow (\bigwedge_{x \in \text{var}(t)} x)) \quad \text{(substitutions)}
\end{align*}
\]

Examples:

\[
\begin{align*}
& x + y \triangleright \varrho \iff x \land (\varrho \leftrightarrow y) \\
& \quad \text{first argument ground, and result ground iff second argument ground} \\
& x \leq y \triangleright \varrho \iff \varrho \land (x \lor y) \\
& \quad \text{result ground, and at least one argument ground}
\end{align*}
\]
Abstract semantic functions

Induced optimal immediate consequence operator

\[\mathcal{P}^{gr}[P] := \alpha_\Gamma \circ \mathcal{P}^\nu \circ \gamma_\Gamma \]

\[= \lambda f(\vec{x}_n) \triangleright_\nu \phi \cdot \bigvee_{f(\vec{t}_n) \rightarrow r \in P} (\Gamma(\{\vec{x}_n / \vec{t}_n\}) \land \mathcal{E}^{gr}[r \triangleright_\nu \phi]_{\mathcal{I}^{gr}})(\vec{x}_n, \phi) \]

Evaluation function over \(\mathcal{G} \)

\[\mathcal{E}^{gr}[x \triangleright_\nu \phi]_{\mathcal{I}^{gr}} := \phi \leftrightarrow x \]

\[\mathcal{E}^{gr}[\phi(\vec{t}_n) \triangleright_\nu \phi]_{\mathcal{I}^{gr}} := \mathcal{I}^{gr}(\phi(\vec{q}_n) \triangleright_\nu \phi) \land \bigwedge_{i=1}^n \Phi_i \quad \vec{q}_n \text{ fresh} \]

where

\[\Phi_i := \begin{cases} \mathcal{E}^{gr}[t_i \triangleright_\nu \phi_i]_{\mathcal{I}^{gr}} & \text{if } \mathcal{I}^{gr}(\phi(\vec{q}_n) \triangleright_\nu \phi) \leq (\phi \rightarrow \phi_i) \text{ or } t_i \in \mathcal{T}(\mathcal{C}, \mathcal{V}) \\ true & \text{otherwise} \end{cases} \]
Program:

\[
\begin{align*}
[] ++ ys & = ys \\
(x:xs) ++ ys & = x : (xs ++ ys)
\end{align*}
\]

Analysis session:

\[
\begin{align*}
P^{gr}[P] \uparrow 0 & = \begin{cases}
xs ++ ys \triangleright \varrho & \mapsto false \\
\end{cases} \\
P^{gr}[P] \uparrow 1 & = \begin{cases}
xs ++ ys \triangleright \varrho & \mapsto xs \land (\varrho \leftrightarrow ys) \\
\end{cases} \\
P^{gr}[P] \uparrow 2 & = \begin{cases}
xs ++ ys \triangleright \varrho & \mapsto \varrho \leftrightarrow (xs \land ys) \\
\end{cases} \\
P^{gr}[P] \uparrow 3 & = P^{gr}[P] \uparrow 2 = P^{gr}[P] \uparrow \omega
\end{align*}
\]

...running tool
Program:

\([\] \,+\,\,ys = ys \)

\((x:xs) \,+\,\,ys = x : (xs++ys) \)

Analysis session:

\[\mathcal{P}^{gr} [P] \uparrow 0 = \begin{cases} \text{false} \end{cases} \]

\[\mathcal{P}^{gr} [P] \uparrow 1 = \begin{cases} xs \,+\,\,ys \downarrow \,\,\varrho \,\,\mapsto \,\,xs \wedge (\varrho \leftrightarrow ys) \end{cases} \]

\[\mathcal{P}^{gr} [P] \uparrow 2 = \begin{cases} \varrho \,\,\mapsto \,\,(xs \wedge ys) \end{cases} \]

\[\mathcal{P}^{gr} [P] \uparrow 3 = \mathcal{P}^{gr} [P] \uparrow 2 = \mathcal{P}^{gr} [P] \uparrow \omega \]

the result of ++ is ground if and only if both its argument are ground

...running tool
Application: Abstract Diagnosis

Automatic Debugging

Input: program P + specification S

Goal: automatically locate bugs in P

in general it is **undecidable**

How to deal with this problem?

+ **Declarative Debugging** \implies partial inspection of the symptomatic *computation tree*

+ **Abstract Diagnosis** \implies use a correct approximation of the semantics which is finitely representable
Application: Abstract Diagnosis

Automatic Debugging

Input: program P + specification S

Goal: automatically locate bugs in P

in general it is **undecidable**

How to deal with this problem?

+ Declarative Debugging

+ Abstract Diagnosis

There are some cons:

+ symptom driven
+ semi-automatic
+ can’t ensure that a property holds for P
Application: Abstract Diagnosis

Automatic Debugging

Input: program P + specification S

Goal: automatically locate bugs in P

In general it is **undecidable**

How to deal with this problem?

- **Declarative Debugging**
- **Abstract Diagnosis**

There are some cons:

- symptom driven
- semi-automatic
- can’t ensure that a property holds for P
The main idea

(Abstract Diagnosis)

\((\mathbb{C}, \subseteq, \cup, \cap, \bot_{\mathbb{C}}, \top_{\mathbb{C}})\)
Complete Lattice

\((\mathbb{A}, \leq, \lor, \land, \bot_{\mathbb{A}}, \top_{\mathbb{A}})\)
Noetherian Complete Lattice

\(S\)

\(\mathcal{F}[P]\)

\(\alpha\)

\(S^\alpha\)

\(\alpha(\mathcal{F}[P])\)
The main idea

\((\mathcal{C}, \subseteq, \sqcup, \sqcap, \bot_{\mathcal{C}}, \top_{\mathcal{C}})\)
Completeness Lattice

\((\mathbb{A}, \leq, \lor, \land, \bot_{\mathbb{A}}, \top_{\mathbb{A}})\)
Noetherian Complete Lattice

\(\mathcal{F}[\mathbb{P}]\)

\(\mathcal{S}\)

\(\alpha\)

\(\mathcal{F}^{\alpha}[\mathbb{P}]\)
Let P be a program and α a property

1. (abstract) **partially correct** w.r.t. S^α: $\alpha(\mathcal{F}[P]) \leq S^\alpha$

2. (abstract) **complete** w.r.t. S^α: $S^\alpha \leq \alpha(\mathcal{F}[P])$

Problem: interference between incorrectness and uncovered errors **can be symptomless**

\[\Downarrow\]

Declarative Diagnosis **cannot** reveal all errors **simultaneously**
Let P be a program and α a property

- (abstract) **partially correct** w.r.t. S^α: $\alpha(F[P]) \leq S^\alpha$
- (abstract) **complete** w.r.t. S^α: $S^\alpha \leq \alpha(F[P])$

Problem: **interference** between incorrectness and uncovered errors **can be symptomless**

\Downarrow

Declarative Diagnosis **cannot** reveal all errors **simultaneously**
Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

\[\mathcal{P}^\alpha[P]S^\alpha \leq S^\alpha \]

- \(e \leq \mathcal{P}^\alpha[\{l \rightarrow r\}]S^\alpha \) and \(e \not\in S^\alpha \) (abstractly incorrect rule)

- \(e \land \mathcal{P}^\alpha[P]S^\alpha = \bot \) and \(e \leq S^\alpha \) (abstractly uncovered elem.)
Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

\[P^\alpha [P] S^\alpha \leq S^\alpha \]

using \(S^\alpha \),
\[l \rightarrow r \]
produces \(e \)…

+ \(e \leq P^\alpha [\{ l \rightarrow r \}] S^\alpha \) and \(e \notin S^\alpha \) (abstractly incorrect rule)

+ \(e \land P^\alpha [P] S^\alpha = \bot \) and \(e \leq S^\alpha \) (abstractly uncovered elem.)
Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

\[\mathcal{P}^\alpha [P]_{S^\alpha} \overset{?}{\leq} S^\alpha \]

+ \(e \leq \mathcal{P}^\alpha [\{l \rightarrow r\}]_{S^\alpha} \) and \(e \notin S^\alpha \) (abstractly incorrect rule)

+ \(e \wedge \mathcal{P}^\alpha [P]_{S^\alpha} = \bot \wedge \) and \(e \leq S^\alpha \) (abstractly uncovered elem.)

using \(S^\alpha \),

\(l \rightarrow r \)

produces \(e \). . .

. . . but \(e \) was not expected by \(S^\alpha \)
Abstract Diagnosis Framework

Based on **abstract version of Park’s Induction Principle**:

\[P^\alpha[P]_{S^\alpha} \leq S^\alpha \]

- using \(S^\alpha \), \(l \rightarrow r \) produces \(e \)...

- \(e \leq P^\alpha[l \rightarrow r]_{S^\alpha} \) and \(e \not\in S^\alpha \) (abstractly incorrect rule)

- but \(e \) was not expected by \(S^\alpha \)

- using \(S^\alpha \), \(P \) can’t produce \(e \)...

- \(e \wedge P^\alpha[P]_{S^\alpha} = \bot_A \) and \(e \leq S^\alpha \) (abstractly uncovered elem.)
Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

\[\mathcal{P}_\alpha[P] \leq S_\alpha \]

using \(S_\alpha \), \(l \to r \) produces \(e \)...

\[+ \ e \leq \mathcal{P}_\alpha[l \to r] S_\alpha \text{ and } e \nsubseteq S_\alpha \] (abstractly incorrect rule)

\[\text{using } S_\alpha, \ P \text{ can’t produce } e \ldots \]

\[+ \ e \land \mathcal{P}_\alpha[P] S_\alpha = \bot_A \text{ and } e \leq S_\alpha \] (abstractly uncovered elem.)

\[\ldots \text{but } e \text{ was not expected by } S_\alpha \]

\[\ldots \text{but } e \text{ was expected by } S_\alpha \]
Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

\[P^\alpha \llbracket P \rrbracket_{S^\alpha} \leq S^\alpha \]

...but \(e \) was not expected by \(S^\alpha \)

\[e \leq P^\alpha \llbracket \{ l \rightarrow r \} \rrbracket_{S^\alpha} \text{ and } e \notin S^\alpha \]

(abstractly incorrect rule)

\[e \land P^\alpha \llbracket P \rrbracket_{S^\alpha} = \bot_A \text{ and } e \leq S^\alpha \]

(abstractly uncovered elem.)

Pros:
+ Static test (requires just one \(P^\alpha \llbracket P \rrbracket \) step on \(S^\alpha \))
+ reveal all abstract errors regardless of symptoms interference

Cons:
+ imprecision of \(\alpha \) can lead to false positives:
Case study: $\textit{depth}(k)$

Program: $R: \text{from } n = n : \text{from } n$

Specification: with $\kappa = 3$

$$S^\kappa := \left\{ \text{from}(n) \mapsto \{ \varepsilon \cdot \varrho - n : S(\hat{x}_1) : \hat{x}_2 : \hat{x}_3 \} \right\}$$

We detect that rule R is abstractly incorrect since

$$\mathcal{P}^\kappa \left[\{ R \} \right]_{S^\kappa} = \left\{ \text{from}(n) \mapsto \{ \varepsilon \cdot \varrho - n : n : \hat{x}_1 : \hat{x}_2 \} \right\} \nsubseteq S^\kappa$$
Goal:
Automatically infer a set of equations of the form $e_1 = e_2$ relating program calls to their behavior.

in general it is **undecidable**

+ Black-Box approach \Rightarrow works only by running the executable on a (automatically generated) set of tests from which the specification is inferred.
 - ✓ no restrictions on the considered language
 - ✗ cannot guarantee the correctness of the results

+ Glass-Box approach \Rightarrow assumes that the source code of the program is available.
 - ✗ language-dependent
 - ✓ the inference can be semantic-based \Rightarrow the inferred equations can be correct
Program:

not True = False
not False = True
or True _ = True
or False x = x

and True x = x
and False _ = False
imp False x = True
imp True x = x

what kind of expression one would expect?
the lazy nature of the language makes this aspect not so trivial . . .
Contextual Equiv. states that two terms have the same computed results for any context $C[\]$

$$or \ x \ y =_C \ \text{imp} \ (not \ x) \ y$$
$$not \ (not \ (not \ x)) =_C \ \text{not} \ x$$

Computed-result Equiv. states that two terms have the same computed results

Ground Equiv. states that two terms have the same outcome for every ground instance.
Contextual Equiv. states that two terms have the same computed results for any context $C[]$

$$e_1 =_C e_2 \iff \mathcal{E}^\nu e_1 \mathcal{F}^\nu P = \mathcal{E}^\nu e_2 \mathcal{F}^\nu P$$

Computed-result Equiv. states that two terms have the same computed results

or

$$\text{not (and } x \ y) =_{CR} \text{ imp } x \ (\text{not } y)$$

Ground Equiv. states that two terms have the same outcome for every ground instance.
Contextual Equiv. states that two terms have the same computed results for any context $C[]$

$$e_1 =_C e_2 \iff \mathcal{E}^\nu[e_1]_{\mathcal{F}^\nu[P]} = \mathcal{E}^\nu[e_2]_{\mathcal{F}^\nu[P]}$$

Computed-result Equiv. states that two terms have the same computed results

$$e_1 =_{CR} e_2 \iff cr(\mathcal{E}^\nu[e_1]_{\mathcal{F}^\nu[P]}) = cr(\mathcal{E}^\nu[e_2]_{\mathcal{F}^\nu[P]})$$

Ground Equiv. states that two terms have the same outcome for every ground instance.

$$x =_G \lnot(\lnot x)$$
and x (and y $z) =_G$ and ($and x$ y) z

not (or x $y) =_G$ and (not x) (not y)
Contextual Equiv. states that two terms have the same computed results for any context $C[]$

$$e_1 =_C e_2 \iff \mathcal{E}^\nu[e_1]_{\mathcal{F}^\nu[P]} = \mathcal{E}^\nu[e_2]_{\mathcal{F}^\nu[P]}$$

Computed-result Equiv. states that two terms have the same computed results

$$e_1 =_{cr} e_2 \iff cr(\mathcal{E}^\nu[e_1]_{\mathcal{F}^\nu[P]}) = cr(\mathcal{E}^\nu[e_2]_{\mathcal{F}^\nu[P]})$$

Ground Equiv. states that two terms have the same outcome for every ground instance.

$$e_1 =_G e_2 \iff g(cr(\mathcal{E}^\nu[e_1]_{\mathcal{F}^\nu[P]})) = g(cr(\mathcal{E}^\nu[e_2]_{\mathcal{F}^\nu[P]}))$$
Equations Kinds

(Contextual Equiv.) states that two terms have the same computed results for any context $C[]$

$$e_1 =_C e_2 \iff \mathcal{E}^{\nu}[e_1]_{\mathcal{F}^{\nu}[P]} = \mathcal{E}^{\nu}[e_2]_{\mathcal{F}^{\nu}[P]}$$

(Computed-result Equiv.) states that two terms have the same computed results

$$e_1 =_{CR} e_2 \iff cr(\mathcal{E}^{\nu}[e_1]_{\mathcal{F}^{\nu}[P]}) = cr(\mathcal{E}^{\nu}[e_2]_{\mathcal{F}^{\nu}[P]})$$

(Ground Equiv.) states that two terms have the same outcome for every ground instance.

$$e_1 =_G e_2 \iff g(cr(\mathcal{E}^{\nu}[e_1]_{\mathcal{F}^{\nu}[P]})) = g(cr(\mathcal{E}^{\nu}[e_2]_{\mathcal{F}^{\nu}[P]}))$$

Specification in AbsSpec:

A set of equations $e_1 =\{C,CR,G\} e_2$ where $e_1, e_2 \in \mathcal{T}(\Sigma^r, \mathcal{V})$
Classification = “a set of pairs of the form \(\langle S, \{ e_1, \ldots, e_n \} \rangle \)”
Inference Process

Program → Compute (abstract) Semantics → Generation of \(=_c \) classification → Equations generation → Transformation of the Semantics → Spec.

- \(\text{compute } \mathcal{F}^\alpha[P] \)
- \(S_f(\vec{x}_n) := \mathcal{F}^\alpha[P](f(\vec{x}_n)) \) for every \(f \in \Sigma^r \)
- \(C_0 := \{ \langle S_f(\vec{x}_n), \{ f(\vec{x}_n) \} \rangle \mid f \in \Sigma^r \} \)
Inference Process

Program

API: \(\Sigma^r \)

max_size

Inference Process

- **Compute (abstract) Semantics**
- **Generation of \(=_C \) classification**
- **Equations generation**
- **Transformation of the Semantics**
- **Spec.**

Inference Process

Program

API: \(\Sigma^r \)

max_size

Inference Process

1. **iterate** `max_size` times
 1. take \(f \in \Sigma^r \) and \(\langle S_1, E_1 \rangle, \ldots, \langle S_k, E_k \rangle \in \mathcal{C}_h \)
 2. compute \(S = S_{f(x_n)}[x_1/S_1] \ldots [x_n/S_n] \)
 3. update \(\mathcal{C}_h \) inserting \(\langle S, \{ f(e_n) \} \rangle \) where \(e_i = \text{min } E_i \)

2. \(\mathcal{C} := \mathcal{C}_{max_size} \) and print the equations \(e_1 =_C \cdots =_C e_n \) for each \(\langle S, \{ e_1, \ldots, e_n \} \rangle \in \mathcal{C} \)
Inference Process

Program

API: Σ^r

Compute (abstract) Semantics

Generation of $=_{C}$ classification

Equations generation

Transformation of the Semantics

Spec.

Inference Process

Program

API: Σ^r

Compute (abstract) Semantics

Generation of $=_{C}$ classification

Equations generation

Transformation of the Semantics

Spec.

associated to every $f(\overrightarrow{e_n})$

for any $\overrightarrow{e_n} \in E_1 \times \cdots \times E_n$

+ iterate max_size

+ take $f \in \Sigma^r$ and $\langle S_1, E_1 \rangle, \ldots, \langle S_k, E_k \rangle \in C_h$

+ compute $S = S_f(\overrightarrow{x_n})[x_1/S_1] \cdots[x_n/S_n]$

+ update C_h inserting $\langle S, \{f(\overrightarrow{e_n})\} \rangle$ where $e_i = \min E_i$

+ $C := C_{\text{max_size}}$ and print the equations $e_1 =_{C} \cdots =_{C} e_n$ for each $\langle S, \{e_1, \ldots, e_n\} \rangle \in C$.

Classification = "a set of pairs of the form $\langle S, \{e_1, \ldots, e_n\} \rangle$"
Inference Process

(Automatic Synthesis of Specifications)

Inference Process

<table>
<thead>
<tr>
<th>Compute (abstract) Semantics</th>
<th>Generation of $=_{c}$ classification</th>
<th>Equations generation</th>
<th>Transformation of the Semantics</th>
</tr>
</thead>
</table>

- Program
- API: Σ^r
- max_{size}

Compute $=_{cr}$ equations
- $C_{CR} = \text{gather}(\langle cr(S), \{min\ E\} \rangle | \langle S, E \rangle \in C)$
- Print the induced $=_{cr}$-equations

Compute $=_{g}$ equations
- $C_{G} = \text{gather}(\langle g(S), \{min\ E\} \rangle | \langle S, E \rangle \in C_{CR})$
- Print the induced $=_{g}$-equations
Discussion on the results

+ **Summary**
 + Fix-point semantic characterization:
 ✓ models the typical features of F/FL languages
 ✗ does not handle H.O. and Residuation
 ✓ goal-independent & “condensed”
 ✓ fully-abstract w.r.t. computed result behavior

+ **Applications**
 + Static Analysis
 + Abstract Debugging
 + Automatic Synthesis of Specifications

+ **Future work**
 + applying this techniques on more interesting abstract domains
 + extend our results to Higher-Order and Residuation
Collaborations:

- I’ve been invited for CHR working-week in Ulm (Germany)
- Collaborated with the ELP group at Universidad Politcnica de Valencia (Spain)

Technical Reports:

