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Abstract—Different uses of a road network call for the
consideration of different travel costs: in route planning, travel
time and distance are typically considered, and green house
gas (GHG) emissions are increasingly being considered. Further,
travel costs such as travel time and GHG emissions are time-
dependent and uncertain.

To support such uses, we propose techniques that enable the
construction of a multi-cost, time-dependent, uncertain graph
(MTUG) model of a road network based on GPS data from
vehicles that traversed the road network. Based on the MTUG, we
define stochastic skyline routes that consider multiple costs and
time-dependent uncertainty, and we propose efficient algorithms
to retrieve stochastic skyline routes for a given source-destination
pair and a start time. Empirical studies with three road networks
in Denmark and a substantial GPS data set offer insight into the
design properties of the MTUG and the efficiency of the stochastic
skyline routing algorithms.

I. INTRODUCTION

Reduction in green house gas (GHG) emissions from
transportation is crucial in combating global warming. For
example, in the EU, emissions from transportation account
for nearly a quarter of all GHG emissions, and the EU has
committed to reduce emissions to 20% below the 1990 levels
by 2020.

To achieve politically agreed-upon reductions, and due to
an increasing public awareness of environmental protection,
fleet owners and individual drivers increasingly perform eco-
routing [1], taking into account GHG emissions, in addition
to travel time and distance, when planning routes. Eco-routing
calls for solutions that contend with three challenging charac-
teristics.

Multiple Costs: Multiple travel costs, e.g., travel times,
distances, and GHG emissions, need to be considered. A recent
study [2] suggests that neither the shortest nor the fastest routes
generally have the lowest GHG emissions. GHG emissions are
highly related to instantaneous velocities and accelerations [1]
and are only loosely correlated with travel times and distances.
Thus, eco-routing algorithms must be able to return routes that
consider multiple, loosely-correlated costs.

Time Dependence: Travel costs such as travel times and
GHG emissions are time-dependent. For example, traversing
a road during peak hours may take much longer than that
during off-peak hours. Further, different roads have different
traffic behaviors, with some roads having clear peak and off-
peak hours and some roads exhibiting nearly constant travel

times. Thus, to support eco-routing, time dependence must
be modeled appropriately and must be considered by routing
algorithms.

Uncertainty: Some travel costs are inherently uncertain.
For example, given the same road, aggressive driving may
generate more GHG emissions (but shorter travel time) than
does moderate driving. The resulting uncertainty may vary
across time. For instance, during peak hours, the uncertainty
of travel costs may be low because congestion forces drivers
to drive similarly, while during off-peak hours, drivers have
more freedom to drive fast or slow, thus increasing the travel
cost uncertainty. Effective routing algorithms must take into
account time-varying uncertainty.

We present techniques that enable the construction of
a multi-cost, time-dependent and uncertain graph (MTUG)
model of a road network that is capable of capturing mul-
tiple time-varying and uncertain travel costs. Specifically,
each cost on a road segment is modeled as a vector of
(interval , random variable) pairs. The proposed techniques
build an MTUG from a massive collection of GPS data
collected from vehicles traveling in the road network.

Based on the MTUG, we define the cost of a route, a
dominance relationship between routes based on their costs,
and a natural notion of a stochastic skyline route for a given
source-destination pair and a trip starting time. A stochastic
skyline route is a pareto-optimal route with the property that
no other route is better when considering all travel costs
of interest. Finally, we propose efficient methods to retrieve
stochastic skyline routes.

While existing routing services and navigation devices offer
alternative routes, they generally return routes based on a
single criterion (e.g., based on distance) or routes satisfying
some road type constraints (e.g., avoiding toll roads). None of
these provide a set of routes that takes into account multiple
travel costs, and they consider neither GHG emissions nor the
combination of time-dependence and uncertainty. We extend
existing routing functionality to support stochastic skyline
routes that consider multiple, time-varying and uncertain travel
costs.

Stochastic skyline routes are of interest to both individual
drivers and entities that control fleets of vehicles. For example,
FlexDanmark1, a large public fleet coordinator in Denmark,

1https://www.flexdanmark.dk/
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is interested in using the most eco-friendly routes while
considering travel times and distances.

To the best of our knowledge, this paper is the first
to propose a general framework that is able to effectively
solve stochastic skyline route planning in a transportation
network with multiple, time-varying and uncertain travel costs,
a real problem for which there previously was no practical
solution. Specifically, the paper makes four contributions. First,
it proposes the MTUG model of a road network with multiple,
time-varying, and uncertain travel costs. Second, it proposes
techniques that enable instantiation of the MTUG based on a
collection of GPS data that reflects real traffic behavior. Third,
it presents stochastic skyline route queries on the MTUG along
with efficient algorithms. Fourth, it reports on comprehensive
experiments that involve three road networks in Denmark and
a substantial GPS data set. These elicit design properties of
the MTUG and characterize the efficiency of the stochastic
skyline routing algorithms.

The remainder of the paper is organized as follows. Sec-
tion II covers related work. Section III defines the MTUG,
and Section V covers how to instantiate the MTUG. Section VI
describe the routing algorithms. Section VII reports on the em-
pirical evaluation. Finally, conclusions and research directions
are offered in Section VIII.

II. RELATED WORK

Existing route planning algorithms can be classified with
respect to the types of edge weights they support—see Table I.
This classification considers weight type (i.e., deterministic or
uncertain values), temporal variation (i.e., time-homogeneous
or time-varying values), and cardinality of costs (i.e., single
cost or multiple costs).

TABLE I. CLASSIFICATION OF ROUTING ALGORITHMS

Deterministic Uncertain

Time- A Real Number A Random Variable

Homog- Single Cost: [3], [4] Single Cost: [5]–[7]

eneous Multiple Costs: [8] Multiple Costs: [9]

Time- A Piece-Wise Linear (Interval, Random Variable)

Varying Function Pairs

Single Cost: [10]–[13] Single Cost: [14]–[16]

Multiple Costs: [17] Multiple Costs: [18], [19]

We consider the most general case: routing on a graph
with multiple time-varying and uncertain costs. We proceed
to compare with the two existing studies [18], [19] that also
consider this case. First, none of these studies consider GHG
emissions. Second, both studies use synthetic data to generate
edge weights, which may not reflect real-world traffic behavior.
For example, they use a single Gaussian distribution to model
the travel time distribution for each edge [18], [19]. In contrast,
we find that it is frequently impossible to fit the distributions
of travel times and GHG emissions to a single Gaussian
distribution, and we propose techniques that are able to learn
appropriate time-dependent, uncertain weights based on real
GPS data, thus reflecting real traffic behavior. Third, the ex-
isting studies rely on the assumption that edge weights follow
Gaussian distributions, with one study [18] assuming that each
edge has only one peak period and that travel times outside the
peak period are constant. We do not make such assumptions,
and we are able to support arbitrary distributions. Fourth, the
existing studies only encompass small-scale experiments, e.g.,
using road networks with less than 300 vertices. In contrast,

we report empirical studies on large road networks, one with
more than 667K vertices.

The route skyline query [8] is also relevant to our work.
Although it also considers multiple costs, the costs are time-
homogeneous and deterministic. The proposed pruning strate-
gies do not apply in our setting because time-varying uncertain
weights can yield non-FIFO graphs.

We employ stochastic dominance to measure the domi-
nance between two random variables. Although a stochastic
skyline [20] also uses stochastic dominance, it focuses on
vector spaces, not on the road network setting. Thus, existing
techniques cannot be used directly in our setting.

III. ROAD NETWORK MODELING

We cover basic concepts of road networks and trajecto-
ries, a graphical model that is able to model time-dependent
uncertainty, and the definition of a multi-cost, time-varying,
uncertain graph.

A. Road Networks, Trajectories, and Travel Costs

Definition 1: A road network is a directed graph M =
(V,E, F ), where V is a vertex set and E ⊆ V × V is an
edge set. A vertex vi ∈ V represents a road intersection
or an end of a road. An edge ek = (vi, vj) ∈ E models
a directed road segment, indicating that travel is possible
from its starting vertex vi to its ending vertex vj . Function
F : V ∪E → Geometries records geometrical information of
the road network M . In particular, it maps a vertex and an edge
to the point location of the corresponding road intersection and
to a polyline representing the corresponding road segment.

Fig. 1 shows a road network with 4 vertices and 5 edges.

e1

e3

e2 e5

e4

v1

v2

v3

v4

Fig. 1. A Road Network Example

A trajectory T = 〈p1, p2, . . . , pA〉 is a sequence of GPS
records pertaining to a trip, where each record pi specifies a
(location, time) pair of a vehicle, where pi.time < pj .time
if 1 6 i < j 6 A. Map matching [21] is used to map a GPS
record to a specific location on an edge in the underlying road
network.

Map matching transforms a trajectory T into a sequence
of cost records 〈l1, l2, . . . , lB〉. A record lj is of the form
(e, t,C), where e is an edge traversed by trajectory T , t
is the time when the traversal of edge e starts, and cost
vector C = 〈c1, c2, . . . , cN 〉 contains N distinct travel costs
associated with the traversal of edge e. For instance, to support
eco-routing, N = 3 cost types, including travel distance, travel
time, and GHG emissions, need to be considered.

The travel distances (i.e., lengths) of edges can be easily
derived from the geometrical information recorded in function
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M.F . Some travel costs, notably travel times, can be obtained
directly from GPS records; while other travel costs, e.g., GHG
emissions, can be derived from GPS records using vehicular
environmental impact models [1].

Some costs, notably travel distance, are deterministic and
time-homogeneous. Other costs, including travel time and
GHG emissions, are uncertain, and the uncertainty can vary
considerably across time. For example, in Fig. 2, we plot
the travel times of trips w.r.t. the starting times of the trips.
Fig. 2(a) shows data for an edge with clear morning and
afternoon peaks, around 8:00 and 16:00, respectively; and
the travel-time distribution differs across different intervals.
In contrast, the edge covered in Fig. 2(b) has no clear peak
periods, while its distribution of travel times also varies across
time.
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Fig. 2. Time-Dependent Uncertain Travel Times

B. Modeling Time-Dependent Uncertainty

To model time-dependent uncertainty, we model the n-

th travel cost of edge ei as a random variable C
(n)
ei that

is dependent on a temporal context random variable tc that
in turn describes the distribution of possible starting time
points of traversing the edge. The relationships among the cost
random variables and the temporal context random variables
are captured by the graphical model [22] shown in Fig. 3,
where circles indicate random variables and lines with arrows
indicate dependencies between random variables.

tc

... Ce|E|
(1)Ce1

(1)

Ce1
(2)

Ce1
(N)

Ce2
(1)
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Ce2
(N)

Ce|E|
(2)
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(N)

The 1st Cost

The 2nd Cost

The Nth Cost

...

...
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Edge e1 Edge e2
... Edge e|E|

Fig. 3. Temporal Context and Travel Cost Random Variables

When modeling time-homogeneous travel costs, e.g., travel
distance, the temporal context random variable is set to take
only one constant value. Thus, time-homogeneous travel costs
are unaffected by the temporal context. When modeling time-
varying travel costs, e.g., travel times and GHG emissions, the
temporal context random variable is set to take multiple values
that indicate different starting times. The travel cost random
variables are dependent on the temporal context random vari-

able, meaning that the distribution of the travel costs on an
edge generally vary across different starting times.

This model is fundamentally different from the indepen-
dency models that are employed extensively in studies of
routing with uncertain edge weights [6], [7], [9], [14], [15].
These models assume that the travel costs of different edges
are independent. For example, the travel time of an edge is
unrelated to the travel time of an adjacent edge.

In our model, the travel costs of different edges are
dependent through the temporal context random variables. For
example, consider a trip along edges e1 and e4 in Fig. 1. The
travel time random variable of edge e1 decides the probability
when the trip starts on edge e4 (captured by the temporal
context random variable tc), thus affecting the travel time and
GHG emissions random variables of edge e4.

C. Multi-Cost, Time-Dependent, Uncertain Graphs

To achieve the modeling shown in Fig. 3, Definition 2
proposes a multi-cost, time-dependent, uncertain graph.

Definition 2: A Multi-cost, Time-dependent, Uncertain
Graph (MTUG) G = (V,E,MM,W) is a directed, weighted
graph. V and E are the vertex and edge sets as stated in
Definition 1.

First, MM = 〈MM (1),MM (2), . . . ,MM (N)〉 is a vector

of functions, where function MM (n) : E → R
+ × R

+

maintains the minimum and maximum values of the n-th
cost type for all edges. For instance, MM (2)(ei) = (12, 15)
indicates that the minimum and maximum travel times of edge
ei are 12 and 15 minutes, respectively.

Second, W = 〈W (1),W (2), . . . ,W (N)〉 is a vector of

weight functions. Here, function W (n) : E → 2T×RV , where
T indicates the temporal domain of a day and RV is a set of
random variables, maintains the time-dependent distributions
of the n-th cost type for all edges.

For each edge ek ∈ E, W (n) maintains a set of tuples of
the form (I,X). Such a tuple indicates that the distribution of
the n-th cost of traversing edge ek during interval I ⊆ T is
described by a random variable X ∈ RV . According to the
model proposed in Section III-B, the probability function of

random variable X is P(C
(n)
ek |tc is in interval I).

To ease the presentation, we introduce important notation.

Given an edge ek, we let S
(n)
ek be the number of the intervals

for the n-th cost; we let I
(n)
ek,j

be the j-th interval for the n-th

cost, where 1 6 j 6 S
(n)
ek ; and we let X

(n)
ek,j

be a random
variable that captures the distribution of the n-th cost values

for edge ek during interval I
(n)
ek,j

.

For instance, if the travel time (when n = 2) on edge ek has

a single peak interval [8 : 00, 9 : 30) then S
(2)
ek = 3 intervals

need to be defined to cover a day: I
(2)
ek,1

= [0 : 00, 8 : 00),

I
(2)
ek,2

= [8 : 00, 9 : 30), and I
(2)
ek,3

= [9 : 30, 24 : 00). For

each j (where 1 6 j 6 S
(2)
ek = 3), a random variable X

(2)
ek,j

captures the distribution of the travel times observed during

interval I
(2)
ek,j

.
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Note that for different types of costs (i.e., for different

n), the number of intervals S
(n)
ek and the intervals themselves

may be different. For example, the travel time and GHG
emissions on the same edge may have different peak and off-
peak intervals.

To model time-homogeneous and deterministic cost types,
e.g., travel distance (when n = 1), the cardinality of the

intervals is set to 1. Thus, we have S
(1)
ek = 1 for each ek ∈ E.

For example, assume that the length of edge ek is 2.5 km. Then

W (1)(ek) = {(I
(1)
ek,1

, X
(1)
ek,1

)}, where I
(1)
ek,1

= [0 : 00, 24 : 00)

indicates a whole day, and random variable X
(1)
ek,1

= (2.5, 1.0)
indicates that the cost being 2.5 km with probability 1.0.

In the following discussions, we mainly use eco-routing
to illustrate route planning on an MTUG. Thus, we focus on
the case N = 3, where n = 1, 2, 3 indicate travel distance,
travel time, and GHG emissions, respectively. However, the
techniques proposed in the paper also apply to cases with
arbitrary N . Table II shows a set of example weights during
[8:00, 10:00) for the MTUG representing the road network
shown in Fig. 1, where the units of the costs are km, minutes,
and ml. Section V describes how to instantiate an MTUG from
a collection of GPS records.

IV. STOCHASTIC SKYLINE ROUTES ON MTUGS

A. Routes and Route Costs

Definition 3: A route R = 〈r1, r2, . . . , rp〉, where p > 1,
is a sequence of edges, where ri ∈ E and ri 6= rj if i 6= j, and
consecutive edges must share a vertex—the ending vertex of
edge ri is the same as the starting vertex of edge ri+1, where
1 6 i < p. The first a edges in route R constitute a pre-
route of route R, denoted as R(a) = 〈r1, r2, . . . , ra〉, where
1 6 a 6 p. The cardinally of route R, denoted as |R|, is the
number of edges in the route.

Example 1: Three different routes connect source v1 and
destination v4 in the road network in Fig. 1: R1 = 〈e1, e4〉
(where r1 = e1, r2 = e4), R2 = 〈e1, e3, e5〉, R3 = 〈e2, e5〉.

Route R1 has 2 pre-routes: R
(1)
1 = 〈e1〉 and R

(2)
1 = R1 =

〈e1, e4〉 with cardinalities |R
(1)
1 | = 1 and |R

(2)
1 | = |R1| = 2.

Definition 4: When starting travel on route R at time t, the
route cost RC (R, t) = 〈DI ,TT ,GE 〉 is a vector of random
variables, where random variable DI (TT , GE ) represents
the distribution of route R’s travel distance (travel time, GHG
emissions).

We consider one cost type at a time. Intuitively, the travel
cost random variable of a route is the sum of the travel cost
random variables of all the edges in the route. Thus, once
the travel cost random variable of each edge in the route is
determined, the travel cost random variable of the route can
also be determined.

Recall that the travel cost random variable of an edge
is dependent on the edge’s temporal context variable. Thus,
the key to determining the travel cost random variable of an
edge is to determine its corresponding temporal context. We
distinguish between two cases. (i) For the first edge r1 of
a route, the temporal context is the fixed start time t. (ii)
The remaining edges are more challenging. To determine the

temporal context of the k-th edge (k > 1), we must consider all
the travel time random variables of the proceeding k−1 edges
in the route, as they influence the possible starting times of the
edge. The detail of how to determine the temporal context are
covered later in this section.

According to our graphical model (Fig. 3), any two travel
cost random variables are conditionally independent if the
temporal context is given. When determining the travel cost
random variable of an edge in a route, the temporal context,
i.e., the possible starting times on the edge, has been deter-
mined based on all the previous edges’ travel time random
variables. Thus, the obtained travel cost random variables of
edges are independent of each other.

Let X and Y be two independent random variables with
probability functions X(z) and Y (z), and let random variable
Q = X + Y indicate the sum of the two random variables.
The probability function of Q is the convolution of X(z) and
Y (z) [23].

Q(z) = X
⊙

Y (z) =

∫ +∞

−∞

fX(τ) · fY (z − τ)dτ,

where
⊙

denotes the convolution operator. The intuition of
convolution is that the probability of Q having value z is the
sum of the probability of X having value τ multiplied with
the probability of Y having value z − τ “summed” over all
possible τ .

Thus, the probability function of the travel cost random
variable of route R is determined by the convolution of the
probability functions of the random variables of the edges in
the route. We next consider how to determine the probability
functions for the travel distance, travel time, and GHG emis-
sions random variables of a route.

1) Determining DI : As travel distances are time-
homogeneous, temporal contexts are irrelevant and thus ig-
nored. The distance random variable RC (R, t).DI is a deter-
ministic value, i.e., the sum of edge lengths in route R.

RC (R, t).DI =
( |R|∑

i=1

length(ri), 1.0
)

2) Determining TT : As travel times are time-varying, we
determine the temporal context variable of each edge in route
R as a precursor to determining the travel time random variable
of each edge. Let RC(ri, t).TT denote the travel time random
variable of edge ri in route R:

RC(ri, t).TT = P(tc) ·P(C(2)
ri
|tc) =

S(2)
ri∑

j=1

x
(2)
ri,j
·X

(2)
ri,j

Here, x
(2)
ri,j

is the probability that the temporal context tc falls

in edge ri’s travel time interval I
(2)
ri,j

; and X
(2)
ri,j

is edge ri’s

travel time random variable in I
(2)
ri,j

, as given in Definition 2.

Since the starting time on the first edge r1 is time t, the
temporal context is fixed and must be in a single travel time

interval. Thus, we have the following for each 1 6 j 6 S
(2)
r1 .

x
(2)
r1,j

=

{
1 if t is in interval I

(2)
r1,j

0 otherwise
(1)

For edge rk (k > 1), the temporal context may be in more
than one travel time interval. The possible starting time of edge
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TABLE II. EXAMPLES FOR MULTI-COST, TIME-DEPENDENT, UNCERTAIN WEIGHTS DURING PERIOD [8 : 00, 10 : 00)

Edges W (1) W (2)
MM

(2) W (3)
MM

(3)

e1 = {(I
(1)
e1,1 = [8 : 00, 10 : 00), {(I

(2)
e1,1 = [8 : 00, 8 : 30), X

(2)
e1,1), (2, 17) {(I

(3)
e1,1 = [8 : 00, 9 : 15), X

(3)
e1,1), (150, 600)

(v1, v2) X
(1)
e1,1 = (4, 1.0))} (I

(2)
e1,2 = [8 : 30, 10 : 00), X

(2)
e1,2)} (I

(3)
e1,2 = [9 : 15, 10 : 00), X

(3)
e1,2)}

e3 = {(I
(1)
e3,1 = [8 : 00, 10 : 00), {(I

(2)
e3,1 = [8 : 00, 9 : 15), X

(2)
e3,1), (1, 5) {(I

(3)
e3,1 = [8 : 00, 10 : 00), X

(3)
e3,1)} (50, 230)

(v2, v3) X
(1)
e3,1 = (1.3, 1.0))} (I

(2)
e3,2 = [9 : 15, 10 : 00), X

(2)
e3,2)}

e5 = {(I
(1)
e5,1 = [8 : 00, 10 : 00), {(I

(2)
e5,1 = [8 : 00, 9 : 00), X

(2)
e5,1), (3, 18) {(I

(3)
e5,1 = [8 : 00, 9 : 25), X

(3)
e5,1), (480, 600)

(v3, v4) X
(1)
e5,1 = (5.5, 1.0)} (I

(2)
e5,2 = [9 : 00, 9 : 30), X

(2)
e5,2), (I

(3)
e5,2 = [9 : 25, 10 : 00), X

(3)
e5,2)}

(I
(2)
e5,3 = [9 : 30, 10 : 00), X

(2)
e5,3)}

rk depends on the travel time of the pre-route R(k−1), i.e., the

k − 1 edges before edge rk. Thus, for each 1 6 j 6 S
(2)
rk :

x
(2)
rk,j

=

∫

I
(2)
rk,j

(
RC (R(k−1), t).TT (z) + t

)
dz (2)

Based on the above, the travel time random variable
RC (R, t).TT is the convolution of the travel time random
variables of the edges in R, as defined in Equation 3.

RC (R, t).TT (z) =

|R|⊙

i=1

RC(ri, t).TT (z). (3)

Example 2: Consider a traversal of R2 = 〈e1, e3, e5〉 at

t = 9:05. Since t falls in edge e1’s travel time interval I
(2)
e1,2

=
[8:30, 10:00) (see Table II), we have RC (e1, 9:05).TT =

RC (R
(1)
2 , 9:05).TT = X

(2)
e1,2

. According to the MM (2) col-
umn in Table II, the minimum and maximum travel times of
traversing edge e1 are 2 and 17 minutes, respectively, thus
placing the possible starting times on the second edge e3 in
interval [9:07, 9:22], which overlaps with both of e3’s travel

time intervals I
(2)
e3,1

=[8:00, 9:15) and I
(2)
e3,2

=[9:15, 10:00). The
probabilities that the starting time on edge e3 falls in intervals

I
(2)
e3,1

and I
(2)
e3,2

are computed as follows.

x
(2)
e3,j

=
∫
I
(2)
e3,j

(
RC (R

(1)
2 , 9:05).TT (z) + 9:05

)
dz

=
∫
I
(2)
e3,j

(
X

(2)
e1,2

(z) + 9:05
)

dz, where j = 1 or 2;

Fig. 4 illustrates the probability computation. Here, x
(2)
e3,1

and x
(2)
e3,2

are the areas of the regions between the curve

representing random variable X
(2)
e1,2

and the horizontal axis in
intervals [2,10] and [10, 17], respectively.

9:15 9:22

z

(travel time)

probability

Ie3,1
(2) Ie3,2

(2)

10:009:078:00

xe3,1
(2) xe3,2

(2)

RC(R2
(1),9:05).TT(z)

=Xe1,2
(2)(z)

20 1710

time

+  starting time t: 9:05

Fig. 4. Determining Probabilities on Different Travel Time Intervals

Next, we have

RC (R
(2)
2 , 9:05).TT = X

(2)
e1,2

⊙

S
(2)
e3

=2∑

j=1

x
(2)
e3,j

·X
(2)
e3,j

, and

RC (R2, 9:05).TT = X
(2)
e1,2

⊙

S
(2)
e3

=2∑

j=1

x
(2)
e3,j

·X
(2)
e3,j

⊙

S
(2)
e5

=3∑

j=1

x
(2)
e5,j

·X
(2)
e5,j

3) Determining GE : As GHG emissions are also time-
varying, the procedure for determining GE is similar to that
of determining TT . The GHG emission random variable of
route R is defined as follows.

RC (R, t).GE (z) =
⊙|R|

i=1 RC(ri, t).GE(z)

=
⊙|R|

i=1

(∑S(3)
ri

j=1 x
(3)
ri,j
·X

(3)
ri,j

(z)
)
,

where the x
(3)
ri,j

are defined as in Equations 1 and 2. The only

difference is to use GHG emissions intervals I
(3)
r1,j

and I
(3)
rk,j

instead of travel time intervals I
(2)
r1,j

and I
(2)
rk,j

.

Example 3: Consider the traversal of route R2 from Ex-
ample 2. The GHG emission random variable of the route is
defined as follows.

RC (R2, 9:05).GE = X
(3)
e1,1

⊙

S
(3)
e3

=1∑

j=1

x
(3)
e3,j

·X
(3)
e3,j

⊙

S
(3)
e5

=2∑

j=1

x
(3)
e5,j

·X
(3)
e5,j

B. Stochastic Skyline Routes

Given a source, a destination, and a travel start time, it
is of interest to identify a set of stochastic skyline routes
from the source to the destination that are no worse than any
other route according to the costs of interest. To define these
stochastic skyline routes, we use a concept called stochastic
dominance [24].

Definition 5: Let X and Y be random variables with
cumulative distribution functions FX(z) = P(X 6 z) and
FY (z) = P(Y 6 z). If FX(z) > FY (z) for all z ∈ R

+, X
stochastically dominates Y , denoted by X ≻ Y .

Definition 6: Given two routes Ri and Rj and a start
time t, Ri dominates Rj , denoted as Ri ≻t Rj , if for
every X ∈ {DI ,TT ,GE}, RC (Ri, t).X is not dominated
by RC (Rj , t).X , and RC (Ri, t).X ≻ RC (Rj , t).X for at
least one X ∈ {DI ,TT ,GE}.

Definition 7: Given a source vs, a destination vd, and a
start time t, the set of stochastic skyline routes is defined as
follows:

SKR(vs, vd, t) = {Ri ∈ RR | ¬∃Rj ∈ RR (Rj ≻t Ri)},

where RR is the set containing all routes from vs to vd.
Thus, the stochastic skyline routes are the routes that are
not dominated by any other routes, and they comply with
pareto-optimality. Given vs, vd, and t, a stochastic skyline
route query returns the set of stochastic skyline routes
SKR(vs, vd, t).
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C. Framework Overview

As shown in Fig. 5, the system consists of an off-line
component and an on-line component. In the former, a pre-
processing module takes as input a collection of trajectories
and a road network (e.g., obtained from OpenStreetMap2), and
it feeds a collection of cost records into the MTUG generation
module that assigns time-varying, uncertain weights to the
corresponding road network, thus producing an MTUG. In the
on-line phase, a user provides a source, a destination, and a
travel start time, in response to which a routing module returns
the stochastic skyline routes.
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Fig. 5. Framework Overview

V. MTUG GENERATION

The key to generating an MTUG is to assign a time-
dependent uncertain weight to each edge in a road network
based on a collection of trajectories from the road network.

A. General Procedure

Recall that map matching transforms trajectories into cost
records, as discussed in Section III-A. When assigning weights
to edge ek, we consider the cost records Lek = {li|li.e = ek}.
The minimum and maximum travel costs can be determined
easily based on Lek . Thus, function vector MM in the MTUG
is instantiated.

Next, we partition a day into D = ⌈ 24·60
α
⌉ intervals,

where parameter α specifies the finest-granularity interval of
interest in minutes. We may use α = 15 minutes, which is
typically the finest time granularity used in the transportation
area [25], thus obtaining 96 intervals per day. Given an interval
Ij , a subset of Lek has times that fall into the interval, i.e.,

L
Ij
ek = {li ∈ Lek | li.t ∈ Ij}. We then use the cost values in

L
Ij
ek to learn a random variable (represented by its probability

function) for each cost type in the interval. In particular, we
use a continuous, parametric representation to denote a random
variable, which is covered in Section V-B.

For each cost type, if the probability functions of the
random variables in two consecutive intervals are similar
(i.e., within a distance threshold thDis), the two intervals are
combined into a longer interval. Using the cost records in the
longer interval, a new random variable is learned. Any distance
function that is able to quantify the distance between two
distributions can be applied, e.g., the Kolmogorov-Smirnov
test [26] or Kullback-Leibler divergence [22].

This process is applied iteratively until no random variables
from consecutive intervals are similar enough to be combined.
In each iteration, the two random variables with the highest
similarity are combined. After combining similar random

2http://www.openstreetmap.org/

variables in consecutive intervals, the remaining random vari-
ables and their corresponding intervals are used as the time-
dependent, uncertain weights. Fig. 6 exemplifies the process
of combining distributions. Algorithm 1 describes the process
of generating an MTUG.
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Fig. 6. An Example of Combining Travel Time Random Variable on ek

Algorithm 1: MTUG Generation

Input : Cost Records: {li}; double: α;
1 int D = ⌈ 24·60

α
⌉;

2 Split a day into D intervals: I = {I1, I2, . . . , ID};
3 for each edge ek ∈ G.E do
4 for each interval Ij ∈ I do
5 for each cost type n ∈ {1 . . . N} do
6 CostMultiSet ←

⋃
li∈L

Ij
ek

li.cn;

7 Learn a random variable X
(n)
Ij

, i.e., the

probability function of the n-th cost in
interval Ij , based on CostMultiSet ;

8 for each cost type n ∈ [1 . . . N ] do

9 Combine random variable X
(n)
I1

, . . . , X
(n)
IA

as
shown in Fig. 6;

B. Representing A Random Variable

A random variable is represented by its probability func-
tion. A naive way to represent a random variable is to treat it
as a discrete random variable and then represent its probability
mass function by a histogram. For instance, assuming that we
have CostMultiSet = {{15, 7, 15, 12, 12, 12, 15, 15, 7, 15}}
(in line 6 in Algorithm 1), the histogram representation of
the random variable learned based on CostMultiSet is H =
〈(7, 0.2), (12, 0.3), (15, 0.5)〉.

Although this representation is simple, it has two weak-
nesses. First, it may miss some possible cost values. For
example, according to H , the probability of cost 10 is zero
because the sampled data set CostMultiSet does not con-
tain 10. However, in reality, it is likely to have cost 10
or any other value in range [7, 15]. Second, the convolution
of histogram-based probability functions becomes inefficient
when histograms contain large numbers of (cost , probability)
pairs, which occurs when computing travel costs for long
routes.

To overcome these drawbacks, we use a continuous,
parametric approach to represent a random variable. Since the
approach is continuous, it is able to return a probability for a
value that is not observed in CostMultiSet . Further, since the
approach is parametric, a probability function can be described
by a small number of parameters, allowing the convolution
operation to be performed efficiently using these parameters.
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The key challenge of using the continuous, parametric
approach is to choose an appropriate parametric probability
function, e.g., Gaussian, exponential, or Gamma distribution,
that best fits the data, i.e., the cost values in CostMultiSet .
Once the parametric probability function is chosen, learning a
random variable is equivalent to learning the parameters that
govern the probability function.

A careful analysis of the travel times and GHG emissions
obtained from more than 180 million GPS records leads us
to the conclusion that the distributions of both are complex
and that they can generally not be modeled well using any
single parametric probability function. Next, we observe that
by varying the number of Gaussian components and the mixing
coefficients, a Gaussian Mixture Model (GMM) is able to
approximate any complex probability functions [22]. Thus,
we choose to use a GMM to represent travel time or GHG
emissions distributions. In particular, the parameters of a GMM
are defined in Equation 4.

GMM (x) =

K∑

k=1

mk · N (x|µk, δ
2
k) (4)

A GMM is a weighted sum of K Gaussian distributions, each
of which is called a Gaussian component and is associated

with a mixing coefficient mk. These satisfy
∑K

k=1 mk = 1. A
Gaussian component is governed by a mean µk and a variance
δ2k.

Given CostMultiSet , if K, the number of Gaussian
components, is also given, basic clustering algorithms, e.g.,
Expectation-Maximization based K-Means [22], can be applied
directly to identify a GMM that best describes the distribution
of cost values in CostMultiSet . However, deciding an appro-
priate K in advance is difficult because different intervals have
different, arbitrary cost values. An overly small K may not
fully capture all the representative travel costs on the edge, thus
resulting in under-fitting; and an overly large K may capture
the travel costs over-specifically, yielding over-fitting, and also
reduces the efficiency when convoluting two distributions. We
thus apply a procedure that is able to select an appropriate K.
The procedure starts with K = 1 and increments K by 1 until
the benefit (e.g., likelihood) of using K is smaller than that of
using K−1. Due to the space limitation, we omit the detailed
algorithm, which is covered elsewhere [27].

Consider the travel times of the edge shown in Fig. 2(b).
We plot the percentage of traversals (on the y-axis) of the edge
with each cost value (on the x-axis) in Fig. 7(a). After applying
the GMM learning procedure, the GMM with 3 Gaussian
components in Fig. 7(b) is found to best describe the travel-
time distribution.
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Fig. 7. Fitting Travel Times Using a GMM

Next, we consider the convolution of two GMMs. The con-
volution of Gaussian distributions N (µ1, δ

2
1) and N (µ2, δ

2
2) is

a Gaussian distribution: N (µ1 + µ2, δ
2
1 + δ22) [28]. Based on

this, it is straightforward to prove that the convolution of two
GMMs is also a GMM, which is a weighted sum of the convo-
lutions of Gaussian components from each of the two GMMs.
The proof is omitted due to the space limitation. Algorithm 2
describes the procedure of convoluting two GMMs.

Algorithm 2: ConvolutionGMMs

Input : GMMs: gmm1, gmm2;
Output: GMM: gmm1 ⊙ gmm2;

1 GMM gmm← ∅;
2 int x← 1;
3 for each i in [1...gmm1.K] do
4 for each j in [1...gmm2.K] do
5 mx ← gmm1.mi · gmm2.mj ;
6 µx ← gmm1.µi + gmm2.µj ;

7 δ2x ← gmm1.δ
2
i + gmm2.δ

2
j ;

8 Create a new Gaussian distribution

mx · N (µx, δ
2
x) and add it as the x-th

component in gmm;
9 x++;

10 if x > thGMM then
11 Re-estimate a new GMM gmm with fewer

Gaussian components;

12 return gmm;

The convolution of two GMMs that have Ki and Kj

Gaussian components typically produces a GMM with Ki ·Kj

Gaussian components. As we need to continue convoluting
many GMMs when computing route costs, especially for long
routes, it may produce GMMs with a huge number of Gaussian
components, which significantly reduces the efficiency of the
convolution operation. However, in such cases, many Gaussian
components only have negligibly small mixing coefficients,
meaning that they are insignificant in describing the overall dis-
tribution. Thus, when the convolution of two GMMs have more
than thGMM Gaussian components, we draw a set of points
using the convoluted GMM, and re-estimate a new GMM
with fewer Gaussian components using the points (line 11 in
Algorithm 2). The number of Gaussian components of the new
GMM depends on the number of Gaussian components in the
original GMM whose mixing coefficients are not negligibly
small (e.g., exceed 0.1).

VI. STOCHASTIC SKYLINE ROUTE PLANNING

A pruning strategy and an efficient method for checking
stochastic dominance are proposed to support efficient stochas-
tic skyline route planning.

A. Routing Algorithms

A brute force approach is to enumerate all possible routes
from the source and the destination, compute their costs, and
check whether one route dominates another. This approach is
very inefficient and works only for very small road networks.
Instead, we propose a method that is able to return stochastic
skyline routes much more efficiently.
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In the following, we call a route that is from the source but
has not yet reached the destination a partially explored route,
and we call a route that has reached the destination a complete
route. The proposed method is able to estimate the best possi-
ble travel costs to the destination for partially explored routes.
If a partially explored route with its estimated travel cost is
dominated by a complete route, the partially explored route can
be disregarded, which considerably reduce the search space.
The proposed stochastic skyline route planning algorithm is
described in Algorithm 3.

Algorithm 3: StochasticSkylineRouteQueries

Input : Source: vs; Destination: vd; StartingTime: t;
Output: StochasticSkylineRoutes: SKR(vs, vd, t);
/* Facilitating route cost estimation. */

1 OneToAllSP(vd,DI ); OneToAllSP(vd,minTT );
OneToAllSP(vd,minGE );

2 SKR ← UpdateSKR(RDI);
SKR ← UpdateSKR(RTT );
SKR ← UpdateSKR(RGE)

3 Define a priority key and initialize a priority queue Q;

4 Q.enqueue
(
0, (〈vs, vs〉, (0, 1.0))

)
;

5 repeat
6 Rnext ← Q.dequeue();
7 v ← the last vertex of Rnext;
8 for each ek ∈ E if ek’s starting vertex is v and ek

is not in Rnext do
9 Rnext ← append ek to Rnext;

10 if Rnext reaches destination vd then
11 UpdateSKR(Rnext);

/* Applying the pruning strategy. */

12 else
13 furtherExplore ← true;
14 for each R∗ in SKR do
15 if R∗ dominates Rnext with its

estimated route cost R̂C (Rnext, t) then
16 furtherExplore ← false;
17 break;

18 if furtherExplore then

19 Q.enqueue
(
key , (Rnext,RC (Rnext, t))

)
;

20 until Q is empty;
21 return SKR;

Estimating the best possible travel costs for partially
explored routes: The algorithm starts by calling three one-
to-all shortest path queries (e.g., using Dijkstra’s algorithm)
from the destination on three graphs using distances, minimum
travel times, and minimum GHG emissions as their edge
weights, respectively (line 1). Thus, each vertex v can be
associated with the shortest distance (v.di), the fastest time
(v.tt), and the lowest GHG emissions (v.ge) to the destination.
This information is used when estimating the best possible
travel costs to the destination for a partially explored route.

Let vertex v be the last vertex of a partially explored route
R. R’s estimated route cost to the destination, denoted as

R̂C (R, t), is defined in Equation 5.

R̂C (R, t).X = RC (R, t).X
⊙

(v.x, 1.0), (5)

where X ∈ {DI ,TT ,GE} and random variable (v.x, 1.0)
corresponds to the shortest distance, the fastest time, and the
lowest GHG emissions from vertex v to the destination. For
instance, when X = TT , random variable (v.tt, 1.0) is used.

Pruning Strategy: Since we use the minimum cost values
to estimate route costs, it is clear that the estimated travel

cost random variable R̂C (R, t).X is the “best” (i.e., having
the shortest distance, the fastest travel time, and the least
GHG emissions) possible travel cost random variable for any
complete route R′ that has R as its pre-route. Equivalently,

we have R̂C (R, t).X stochastically dominates R̂C (R′, t).X .

Thus, if a partially explored route R with its estimated
route cost is dominated by a complete route R∗, the partially
explored route R can be disregarded because any complete
route that extends it will be dominated by the complete route
R∗ and thus can not become a stochastic skyline route. The
pruning strategy is described in lines 13–19 in Algorithm 3

The pruning strategy is facilitated by two fundamental data
structures. First, a set SKR = {(R,RC (R, t))} is maintained,
where each element represents a candidate stochastic skyline
route R along with its cost RC (R, t). A candidate stochastic
skyline route must be a complete route. As we keep identi-
fying new complete routes, set SKR is updated according to
Algorithm 4. Only complete routes that are not dominated by
other complete routes are kept.

Algorithm 4: UpdateSKR

Input : A Complete Route: R;
Output: A Updated SKR;

1 if SKR is empty then
2 SKR ← SKR ∪ (R, RC(R, t));

3 else
4 for each route Rskr ∈ SKR do
5 if Rskr dominates R then
6 return SKR;

7 for each route Rskr ∈ SKR do
8 if R dominates Rskr then
9 Remove Rskr from SKR;

10 SKR ← SKR ∪ (R, RC(R, t));

11 return SKR;

Second, we maintain a queue Q = (key , value) priori-
tized by the real valued key to manage partially explored
routes that may become stochastic skyline routes. In particular,
value = (R,RC (R, t)) represents a partially explored route
R and its route cost. The corresponding key is derived from
the route cost RC (R, t), e.g., the distance, the expected
travel time, or the expected GHG emissions. Since the routing
algorithm continues to explore routes based on the priority
queue, different instantiations of key yield different strategies
for exploring the search space.

Because the pruning strategy works only when there is at
least one complete route, Algorithm 3 initially inserts three
routes in SKR (line 2). Routes RDI , RTT , and RGE are
identified while running the three one-to-all shortest path
queries and are the routes with the shortest distance, the
possible shortest time, and the possible lowest GHG emissions,
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respectively.

B. Efficient Stochastic Dominance Checking

The most time consuming part of the stochastic skyline
route planning algorithm is to check the stochastic dominance
between two routes (line 15 in Algorithm 3 and lines 5
and 8 in Algorithm 4). Thus, we proceed to propose an
efficient stochastic dominance checking method. We note that
the proposed method is generally applicable to comparing
stochastic dominance between any two continuous random
variables, not only GMM random variables.

According to Definition 6, to check whether routeR1 dom-
inates route R2, we need to check the dominance relationship
between the cumulative distribution functions of the routes
for each travel cost random variable of interest. For a GMM
random variable whose probability density function (pdf) is
defined by Equation 4, its corresponding cumulative density
function (cdf) is defined as follows.

CDFGMM (x) =

K∑

k=1

mk

2
·
(
1 + erf (

x− µk√
2 · δ2k

)
)
,

where erf is the error function. Given two such cdfs, a naive
way to evaluate the stochastic dominance between them is
to compare the cumulative probabilities of all possible costs
in R

+. This is inefficient, as it involves a huge number of
comparisons. We instead propose a method that is able to avoid
considerable cumulative probability comparisons.

We consider one travel cost type at a time and denote the
cdf of the cost’s random variable on routeR by FR. Recall that
we maintain the minimum and maximum cost values for each
edge using the function vector MM in the MTUG. It is then
possible to obtain the minimum and maximum cost values,
Fmin
R and Fmax

R , for a route R by simply summing up the
minimum and maximum cost values of all edges. Although it
is improbable for a route to be associated with these minimum
or maximum cost values, to ensure the stochastic dominance
checking is correct, we cannot use larger minimum-cost or
smaller maximum-cost values.

Next, we distinguish three cases, and we assume that
Fmin
R1

6 Fmin
R2

.

Disjoint case: If Fmax
R1

6 Fmin
R2

, FR1
stochastically dom-

inates FR2
. As shown in Fig. 8(a), for any possible cost

in [Fmin
R1

, Fmax
R1

], its cumulative probability on R1 always
exceeds that on R2 (which is actually 0).
Covered case: If Fmin

R1
< Fmin

R2
and Fmax

R2
< Fmax

R1
, the

one cdf cannot stochastically dominate the other. As shown in
Fig. 8(b), when the cost value is Fmin

R2
, route R1 has a higher

cumulative probability; however, when the cost value is Fmax
R2

,
it is route R2 that has a higher cumulative probability.
Overlapping case: Two cdfs that do not satisfy the disjoint or
covered conditions belong to the overlapped case. Dominance
may occur (e.g., FR1

≻ FR2
in Fig. 8(c)) or may not occur

(e.g., no dominance in Fig. 8(d)).

To determine whether dominance occurs in the overlapping
case, we partition the possible travel costs into three intervals.
First interval [Fmin

R1
, Fmin

R2
): A cost c in the first interval has

a larger cumulative probability on route R1 than on route R2

because FR1
(c) > 0 and FR2

(c) = 0.
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Fig. 8. Three Cases for Determining Stochastic Dominance

Second interval (Fmax
R1

, Fmax
R2

]: The same conclusion holds
because FR1

(c) = 1 and FR2
(c) < 1. Thus, FR1

stochasti-
cally dominates FR2

in the first two intervals.
Third interval [Fmin

R2
, Fmax

R1
]: For every possible cost in the

interval, if its cumulative probability on R1 always exceeds
that on R2 then FR1

≻ FR2
(e.g., Fig. 8(c)); otherwise,

no dominance between the two cdf is found (e.g., Fig. 8(d)).
Instead of comparing cumulative probabilities for each possible
cost, we propose an efficient algorithm that is able to check
sub-intervals of possible costs, as described in Algorithm 5.

Algorithm 5: DominaceCheck

Input : CDFs: FR1
, FR2

; Double(Integer):
Fmin
R2

, Fmax
R1

;
Output: DominanceRelationship dom;

1 noDom ← false;
2 R1DomR2 ← false;R2DomR1 ← false;
3 Initialize a queue Q where an element in the queue

indicates a range [l, u];
4 Q.enqueue([Fmin

R2
, Fmax

R1
]);

5 repeat
6 lb ← Q.dequeue().l; ub ← Q.dequeue().u;
7 I1 ← [FR1

(lb), FR1
(ub)];

I2 ← [FR2
(lb), FR2

(ub)];
8 if I1 intersects I2 then

9 mid ← lb+ub

2 ;
10 if [lb,mid ] > ǫ then
11 Q.enqueue([lb,mid ]);

Q.enqueue([mid , ub);

12 else
13 if I1.l > I2.u then
14 R1DomR2 ← true;

15 if I2.l > I1.u then
16 R2DomR1 ← true;

17 if R1DomR2 ∧ R2DomR1 then
18 noDom ← true;
19 break;

20 until Q is empty;
21 return DomTest(noDom,R1DomR2 ,R2DomR1 );

Since a cdf FR is monotonically non-decreasing, given
a cost interval [l, u], its corresponding cumulative probability
interval is [FR(l), FR(u)]. The cumulative probability intervals
of the two cdfs may be disjoint. For example, this occurs when
FR1

(l) > FR2
(u), in which case FR1

dominates FR2
in the

interval, because the smallest possible cumulative probability
of FR1

is greater than the largest possible cumulative probabil-
ity of FR2

. Otherwise, the interval are split into sub-intervals,
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and the sub-intervals are checked.

Based on the above, Algorithm 5 uses a queue Q to
maintain all the cost intervals that need to be checked (lines 3–
4). When checking, if two cumulative probability intervals
overlap, the cost interval is split into two sub-intervals that are
inserted into the queue Q if they are longer than a threshold ǫ
that controls the finest granularity of interest for cost intervals.
For instance, ǫ can be set to one second or one minute for travel
times (lines 9–11).

If two cumulative probability intervals are disjoint, dom-
inance can be determined (lines 12–16). If FR1

≻ FR2
for

some cost sub-intervals and FR2
≻ FR1

for some other cost
sub-intervals, there is no dominance relation between the two
cdfs (lines 17–19). Finally, the dominance relationship between
FR1

and FR2
is returned (line 21).

Consider an example for the case shown in Fig. 8(c).
For cost interval [Fmin

R2
, Fmax

R1
], the corresponding cumulative

probability intervals I1 and I2 overlap, as shown in Fig. 9(a).
Then the cost interval is split into two. For each sub-interval,
the corresponding cumulative probability intervals are disjoint
(I1 and I2 for [Fmin

R2
,mid ]; I ′1 and I ′2 for [mid , Fmax

R1
]), which

means that FR1
dominates FR2

. See Fig. 9(b).
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Fig. 9. A Running Example of Algorithm 5

VII. EMPIRICAL STUDIES

We report on empirical studies of the effectiveness and
efficiency of the paper’s proposals.

A. Experimental Setup

GPS Records: We use more than 180 million GPS records
collected at 1 Hz (i.e., one GPS record per second) in Denmark
during week days in 2007 and 2008. The data is from an
experiment where young drivers start out with a rebate on
their car insurance and then are warned if they speed and are
penalized financially if they continue to speed.

Road Networks: We obtain the road networks of Aal-
borg (AA), North Jutland (NJ), and Jutland (JU) from the
OpenStreetMap. AA has 4,981 vertices and 12,614 edges, NJ
has 68,318 vertices and 163,546 edges, and JU has 667,876
vertices and 1,622,974 edges. Since Aalborg is the largest city
in North Jutland, and North Jutland is one of the regions in
Jutland, AA is part of NJ, and NJ is part of JU. The majority
of the GPS records are collected from NJ.

Travel Costs: We consider three commonly used travel
costs for eco-routing: travel distance (DI), travel time (TT),
and GHG emissions (GE). The travel distances of edges
are computed based on the coordinates of the corresponding
vertices that are recorded in OpenStreetMap. Travel times are
obtained as the difference between the times of the last and

first GPS records of trajectories on an edge. We use the VT-
micro model [29] to estimate the GHG emissions based on
instantaneous velocities and accelerations, which are derived
from the available GPS records. A recent benchmark [1]
indicates that VT-micro is appropriate for this purpose.

Queries: We consider stochastic skyline route queries with
three different combinations of travel costs: (i) DI+TT, (ii)
DI+GE, and (iii) DI+TT+GE.

The sizes of the three road networks are different. The
shortest distances between the two furthest apart vertices in
networks AA, NJ, and JU are 8 km, 113 km, and 313 km, re-
spectively. We generate different groups of source-destination
pairs for the different road networks. In each group, the
shortest distances between the source-destination pairs are
chosen according to a pre-defined distance range, as shown in
Table III. For instance, the shortest travel distances of source-
destination pairs in the third group in AA are between 2 km
and 3 km. We randomly choose 50 source-destination pairs
for each group, and each pair is associated with a randomly
chosen trip starting time.

TABLE III. DISTANCE RANGES FOR SOURCE-DESTINATION PAIRS

Distance Range (km)

AA (0, 1], (1, 2], (2, 3], (3, 4], (4, 5], (5, 6]

NJ (0, 2], (2, 5], (5, 10], (10, 15], (15, 20], (20, 50], (50, 100]

JU (0, 50], (50, 100], (100, 150], (150, 200], (200, 250], (250, 300]

Implementation Details: Threshold thGMM used in Al-
gorithm 2 is set to 10,000. Threshold ǫ used in Algorithm 5
is set to 30 s and 100 ml for TT and GE, respectively. The
priority queue used in Algorithm 3 is prioritized by distance.

All algorithms are implemented in Java using JDK 1.7. To
ease the management of Gaussian mixture models, the jEMF
package3 is applied. A computer with Windows 7 Enterprise,
a 3.40GHz Intel Core i7-2600 CPU, and 16 GB main memory
is used for all experiments.

B. MTUG Generation

We distinguish between “hot” and “cold” edges when gen-
erating an MTUG. Hot edges are covered by GPS records, and
we run Algorithm 1 to obtain the time-dependent, uncertain
weights for these edges. Specifically, in Algorithm 1, we set
α = 15 minutes thus yielding 96 intervals per day and we
apply KL divergence to measure the similarity between two
distributions. When the KL divergence between two distribu-
tions of travel costs in adjacent intervals is below 0.1 (i.e.,
setting the threshold thDis used in Section V-A to 0.1), the
two intervals are combined.

For all three road networks, the largest numbers of TT and
GE intervals for an edge are 65 and 72, respectively, while the
smallest numbers are 1 for both TT and GE. Fig. 10 shows
the average number of TT and GE intervals on the three road
networks, respectively. The figure indicates that the travel times
and the GHG emissions of the edges in AA and NJ have more
substantial temporal variations than for JU. The reason is two-
fold. First, AA is the largest city in NJ, and the traffic in AA
is much more dynamic than the traffic in other parts of NJ.
Second, the majority of the GPS records are collected from NJ,

3http://www.lix.polytechnique.fr/∼nielsen/MEF/
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Fig. 13. # SKR, JU

and the traffic in other parts of JU is captured more sparsely
by the GPS records.

Cold edges are not covered by any GPS records. Such
edges are less likely to have much traffic and traffic variation,
or the vehicles in the GPS data set do not cover the edges. For a
cold edge, a travel time value is derived by dividing the length
of the edge by the speed limit of the edge; and a GHG emission
value is estimated using the SIDRA-Running model [1] based
on the length and speed limit of the edge. Next, as the edge’s
TT and GE weights, we generate a Gaussian random variable
with the derived cost value as the mean and the square of
one fifth of the mean as the variance. Advanced methods for
dealing with cold edges are beyond the scope of the paper, but
can be found elsewhere [30].

The MTUG generation for the largest network JU took al-
most 5 hours (specifically, 17,977 seconds). MTUG generation
occurs off-line and is not time-critical.

C. Stochastic Skyline Route Queries

Number of stochastic skyline routes: We first study the
average number of the stochastic skyline routes (# SKR)
returned by different queries. The results for AA, NJ, and JU
are reported in Fig. 11, Fig. 12, and Fig. 13, respectively. As
the number of travel costs considered increases, the number
of the stochastic skyline routes also increases. The number
of stochastic skyline routes returned by the queries with
DI+TT+GE generally exceed those returned by the queries
with DI+TT and DI+GE.

Specifically, the number of stochastic skyline routes with
DI+TT are smaller than those with DI+GE. This is because
the travel times are quite correlated with the travel distances
in our settings. In many cases, the shortest routes are also
the fastest. In contrast, the correlation between distances and
GHG emissions are weaker, thus yielding larger numbers of
stochastic skyline routes for the queries with DI+GE. The
queries with DI+TT+GE have the largest number of stochastic
skyline routes because neither the shortest path nor the fastest
path has the least GHG emissions in many cases.

To further illustrate stochastic skyline routes, we show
a concrete example of a query with DI+TT+GE in the NJ
network. Three routes, R1, R2, and R3, are identified as
stochastic skyline routes for the query, where the travel dis-
tances are 94,849, 106,216, and 91,382 meters, respectively.
Obviously,R3 is the shortest route. According to the cdfs of TT
and GE, as shown in Fig. 14 (a) and Fig. 14 (b), respectively,
R1 dominates R3 and R2 in terms of TT, and R2 dominates
R1 and R3 in terms of GE. None of the routes is able to
dominate the others in all three travel costs, so are all stochastic
skyline routes for the query.

Fig. 14 also suggests that the correlation between DI and
TT is more obvious than that between DI and GE. Specifically,
since R1 and R3 have similar distances, which are much
shorter than that of R2, both have similar travel times, which
are also much faster than that of R2. In contrast, the longest
route R3 takes the longest travel time but generates the lowest
GE. This is consistent with the finding that the numbers of
stochastic skyline routes returned by queries with DI+TT are
generally smaller than those returned by queries with DI+GE,
as shown in Figs.11, 12, and 13.
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Fig. 14. Results on AA

Runtime: The average run time per stochastic skyline route
query is reported in Figs. 15, 16, and 17. As the number
of travel costs considered in stochastic skyline route queries
increases, the runtime also increases. Next, the longer the dis-
tance between source-destination pairs, the longer the runtime.
The longest runtime per query (i.e., DI+TT+GE queries for
source-destination pairs that are located more than 250 km in
the biggest network JU) is below 5 seconds, and most queries
can be returned in less than 2 seconds, which is acceptable
for real-time use. The experiments on runtime do not include
the existing methods [18], [19] because (1) one method [18]
took more than 2 minutes for a query in the smallest AA
network, which is unacceptable for on-line use, and (2) the
other method [19] does not work in our setting because it
relies on Gaussian distributions.

Next, we show the effect of the proposed pruning strategy.
We compare the proposed method with the brute force method
described in Section VI-A. The brute force method cannot
return stochastic skyline routes in less than 30 minutes, even
for the queries in the shortest group (0, 2] on the smallest
network (AA), regardless of whether naive or advanced dom-
inance checking is applied. This is because the naive method
has to compute route costs for all possible routes connecting
the source and the destination. This suggests that the pruning
strategy is quite effective.

Finally, we show the effect of the proposed advanced
dominance checking (Algorithm 5) by comparing it with the
naive method when using the routing algorithm with the
pruning strategy. Fig. 18 reports the average runtime for all
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queries on the three networks. The advanced method always
outperforms the naive one. On large networks, the benefits of
using the advanced method become more substantial, since
long routes require more dominance check—see the last two
bars of JU in Fig. 18.

VIII. CONCLUSIONS AND OUTLOOK

We propose and study stochastic skyline route queries
in road networks with multiple travel costs that are time
dependent and uncertain. We provide techniques for gener-
ating a multi-cost, time-dependent, uncertain graph based on
a collection of GPS records. We also propose an effective
pruning strategy and an efficient stochastic dominance check-
ing method to support the efficient computation of stochastic
skyline route queries. Empirical studies with three real road
networks and a large collection of GPS records suggest that
the proposed methods are effective and efficient.

In future work, it is of interest to incorporate drivers’ pref-
erence profiles to further reduce the travel cost uncertainties
for different types of drivers, and it is of interest to rank the
skyline routes for individual drivers.
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