
Developing a DataBlade for a New Index

Rasa Bliujūtė SimonašSaltenis Giedrius Slivinskas Christian S. Jensen
Department of Computer Science, Aalborg University

Fredrik Bajers Vej 7E, 9220 Aalborg, Denmark
frasa, simas, giedrius, csjg@cs.auc.dk

Abstract

In order to better support current and new applications,
the major DBMS vendors are stepping beyond uninterpreted
binary large objects, termed BLOBs, and are beginning to
offer extensibility features that allow external developers to
extend the DBMS with, e.g., their own data types and ac-
companying access methods. Existing solutions include DB2
extenders, Informix DataBlades, and Oracle cartridges. Ex-
tensible systems offer new and exciting opportunities for re-
searchers and third-party developers alike. This paper re-
ports on an implementation of an Informix DataBlade for the
GR-tree, a new R-tree based index. This effort represents a
stress test of the perhaps currently most extensible DBMS, in
that the new DataBlade aims to achieve better performance,
not just to add functionality. The paper provides guidelines
for how to create an access method DataBlade, describes
the sometimes surprising challenges that must be negotiated
during DataBlade development, and evaluates the extensi-
bility of the Informix Dynamic Server.

1. Introduction

Advanced applications continuously emerge that pose
new requirements to database management systems, includ-
ing the need for efficient handling of the complex types
of data inherent to geographical, multimedia, medical, and
other advanced applications. Such data include images,
videos, documents, as well as data with temporal and spatio-
temporal references. Most relational DBMSs provide binary
large objects, which may be used for storing such data, but
this is generally not satisfactory because the internal struc-
ture of data is invisible to the DBMS, which then cannot
provide efficient access to the data. Support for new data
types can also be introduced at the application level. But
this does not provide efficient access, and it is also not eco-
nomic for the many applications that need similar support to
reimplement similar ad-hoc solutions.

New complex data types, including efficient querying ca-
pabilities on them, should be supported by the DBMS. Be-

cause new applications will continue to appear that require
support for new kinds of data, the DBMS should be exten-
sible, allowing the users themselves to extend the DBMS’s
functionality. This alleviates the vendors from attempting to
keep up with the demands for new data types, and it allows
users to obtain support for very specific kinds of data, for
which there is only a very small market; the vendors have
little incentive to develop support for such data.

Indeed, over the last couple of years, major DBMS ven-
dors have come up with new technology that allows the users
themselves to extend the DBMS’s functionality. Examples
include DB2extenders, Informix DataBlades, and Oracle
cartridges. Extenders, DataBlades, and cartridges can be de-
veloped separately and plugged into the appropriate DBMS.

This technology allows application developers to add
new functionality to a DBMS according to their concrete
needs, as well as gives third-party vendors an opportunity
to make products targeting a specific application area. In ad-
dition, extensible database technology reduces the gap be-
tween real products and new techniques proposed by the
research community, because these techniques can be inte-
grated into DBMSs more easily. This facilitates dissemi-
nation of research results and the transition from research
results to products.

The paper describes a prototype implementation of a new
access method, termed the GR-tree [4], as an Informix Data-
Blade. Based on the R�-tree [3] (an improved version of
the R-tree originally proposed by Guttman [7]), this tree in-
dexes now-relative bitemporal data, which is data with as-
sociated valid-time and transaction-time values [14]. Many
real-world databases contain a significant portion of this type
of data.

The paper reports the experiences gained from develop-
ing the DataBlade. It provides systematic guidelines for how
to create an access method DataBlade, while also pointing
out issues—expected as well as unexpected—that proved to
be particularly challenging when building the DataBlade. In-
formix was chosen because it provides the possibility to add
advanced user-defined data types as well as user-defined ac-
cess methods for these new data types. The paper covers is-

©1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.

All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

sues related to the design of the required new data type that
accompanies the new access method; it discusses the design
of the functions used internally in the access method and
the functions that may appear in WHERE clauses of SQL
queries and that trigger the use of the access method; and
it addresses issues related to concurrency control and recov-
ery. The coverage of the actual implementation effort en-
compasses the available development tools and the specific
coding tasks.

The presentation is structured as follows. Section 2 ex-
plains what bitemporal data is and how it may be repre-
sented. Section 3 briefly describes the GR-tree. On this
background, Section 4 presents the general steps needed to
develop an access method DataBlade. Section 5 reports on
specific challenges encountered when these steps were per-
formed to create the GR-tree DataBlade, and Section 6 de-
scribes the implementation. Section 7 concludes and offers
observations about Informix’s applicability for the imple-
mentation of new access methods.

2. Bitemporal Data

In this section, we introduce bitemporal data, showing
that the time associated with bitemporal data can be viewed
as two-dimensional regions, which suggests that bitemporal
data may be indexed using adapted spatial indices.

Two temporal aspects of database tuples, termed valid
and transaction time, have proven to be of interest in a wide
range of database applications. The valid time of data cap-
tures when the data is true in the modeled reality, while the
transaction time is the time during which the data is current
in the database [14]. These two aspects are orthogonal in that
each could be independently recorded, and each has specific
properties associated with it. The valid time of a tuple can be
in the past or in the future (allowing a database to store in-
formation about the past and the future) and can be changed
freely. In contrast, the transaction time of a tuple cannot ex-
tend beyond the current time and cannot be changed. Data
having associated both valid and transaction time is termed
bitemporal data. Bitemporal data is now-relative if the end
of valid time or the end of transaction time is not fixed, but
instead tracks the current time and continuously extends as
time passes.

Table 1 exemplifies now-relative bitemporal data, which
is represented using TQuel’s four-timestamp format [20].
With this format, each tuple has four time attributes. Now-
relative tuples are represented using UC (denoting ”until
changed”) and NOW variables [6] for transaction- and valid-
time end attributes, respectively. The time granularity is a
month, and the current time is assumed to be 9/97.

Tuple (1) records that the information “John works in
Advertising” was true from 3/97 to 5/97 and that this was
recorded during 4/97 and is still current. Tuple (3) records
that “Jane works in Sales” from 5/97 until the current time,

Employee Department TT1 TT2 VT1 VT2
(1) John Advertising 4/97 UC 3/97 5/97
(2) Tom Management 3/97 7/97 6/97 8/97
(3) Jane Sales 5/97 UC 5/97 NOW
(4) Julie Sales 3/97 7/97 3/97 NOW
(5) Julie Sales 8/97 UC 3/97 7/97
(6) Michelle Management 5/97 UC 3/97 NOW

Table 1. The EmpDep Relation

that we recorded this belief on 5/97, and that this remains
part of the current database state.

The temporal aspect of a tuple can be represented graph-
ically by a two-dimensional (“bitemporal”) region in the
space spanned by valid and transaction time. Cases 1–5 in
Figure 1 illustrate thebitemporal regionsof Tuples (1–4) and
(6), respectively.

Case 1 Case 2
TTCT

VT VT

TTCT

Case 5

VT

Case 3
TTCT

VT

Case 6
TTCT

VT

Case 4
TTCT

VT

 4/97 CT TT 3/97 7/97

9/97

5/97

3/97

1/97

9/97

8/97

6/97

1/97

9/97

5/97

1/97

9/97

7/97

3/97

1/97

9/97

3/97

1/97

9/97

2/97

1/97

 5/97 3/97 7/97

 5/97 5/97 7/97

Figure 1. Bitemporal Regions

A now-relative transaction-time interval yields a rectan-
gle that “grows” in the transaction time direction as time
passes (Tuple (1), Case 1). Having both transaction- and
valid-time intervals being now-relative yields a stair-shaped
region growing in both transaction time and valid time as
time passes (Tuple (3), Case 3). Information can be recorded
in the database after it becomes true in the modeled reality.
In this situation, having both the transaction- and valid-time
intervals being now-relative yields a stair-shape with a high

first step (Tuple (6), Case 5).
It is also possible to record information in the database

before it becomes true in the modeled reality (Tuple (2),
Case 2). If, at some time, a tuple is logically deleted (its
transaction-time end value UC is changed to the fixed value
‘current time’�1), the bitemporal region stops growing (Tu-
ples (2), (4); Cases 2, 4, 6).

Two-dimensional bitemporal regions can be indexed us-
ing adapted spatial indices. An essential challenge in index-
ing bitemporal data is to properly handle now-relative inter-
vals. The next section briefly presents the GR-tree [4] which
contends well with this requirement and outperforms other
indices for now-relative bitemporal data. A description of
the implementation of the GR-tree as an Informix DataBlade
follows next.

3. The GR-Tree Index

The GR-tree is based on the R�-tree [3], which is a spa-
tial index consisting of nodes organized in a tree structure. A
node contains a number of entries and is stored in one disk
page. Spatial objects are bounded with minimum bound-
ing rectangles, which are stored in leaf-node entries together
with pointers to data tuples containing the spatial objects.
All entries of each non-root node are also bounded with a
minimum bounding rectangle, that, together with a pointer
to the node, composes an entry of a parent node. Figure 2(a)
shows minimum bounding rectangles of spatial objects.

When a query asking to retrieve all spatial objects that
overlap with a given query region is issued, the tree is tra-
versed down from the root looking for entries that encode
rectangles overlapping with the bounding rectangle of the
query region. The list of qualifying entries is obtained, and
then the spatial objects are retrieved from the corresponding
data tuples. The last step is to check using the exact ge-
ometry whether the query region actually overlaps with the
retrieved spatial objects.

Because the R�-tree cannot handle the growing bitempo-
ral regions presented in Section 2, it was modified, leading
to the GR-tree [4]. Variables UC and NOW were introduced
in node entries at all tree levels, making it possible to record
the exact geometry and the temporal behavior of the bitem-
poral regions in leaf-node entries. Entries in non-leaf nodes
store minimum bounding regions of the child nodes. These
minimum bounding regions can be either rectangles or stair-
shapes. Minimum bounding regions grow when the regions
inside them grow. Figure 2(b) illustrates minimum bound-
ing regions of the GR-tree. Note that node 2 is bounded
with a stair-shape because none of its included regions ex-
tend above the line VT= TT.

The layout of a GR-tree node does not differ significantly
from the layout of an R�-tree node. A leaf-node entry con-
tains four timestamps encoding a bitemporal region and a
pointer to the actual bitemporal data stored in the database.

(a) (b)
CT TT

VT

Bounding
rectangle rectangle

Bounding

Bounding
stair-shape

1

2

3

x

y

Spatial object

Figure 2. Graphical Representation of (a) R �-
Tree and (b) GR-Tree

A non-leaf node entry contains four timestamps, a flag
“Rectangle ,” a flag “Hidden ,” and a pointer to a child
node. Here, timestamps represent a minimum bounding re-
gion that encloses all child-node regions. The “Rectan-
gle ” flag denotes whether timestamps of the form (tt1, UC,
vt1, NOW) represent a stair-shapeor a rectangle growing
in both transaction and valid time. The “Hidden ” flag is
used to track growing stair-shapes that are placed in a larger
bounding rectangle having a fixed valid-time end (that is big-
ger than the current time).

The algorithms to accompany the GR-tree structure are
based on the R�-tree algorithms, which are modified to
contend with growing regions encoded using the flags and
timestamp variables. The GR-tree algorithms resolve vari-
ables UC and NOW according to the current time. New in-
sertion algorithms that take into account the varying shapes
of the bitemporal regions were designed for the GR-tree.
Reference [4] contains in-depth descriptions of the algo-
rithms and performance tests, showing that the GR-tree out-
performs the other proposed indices for general bitemporal
data.

4. The Steps Needed to Implement an Access
Method DataBlade

In this section, we give guidelines for how to implement
an access method DataBlade module in Informix Dynamic
Server with Universal Data Option (the abbreviation “In-
formix Server” will be used throughout). Section 5 presents
the GR-tree-specific design considerations, and Section 6
describes the implementation.

The GR-tree DataBlade was developed using the C and
C++ programming languages, and using the DataBlade
API [9], the Virtual-Table Interface API [12], and the
Virtual-Index Interface API [11] of the Informix Server.

In Informix terms, asecondary access methodis an index
type, e.g., the B+-tree. Meanwhile, avirtual indexis a spe-
cific indexinstanceof adeveloper-definedsecondary access
method. A developer can define a secondary access method

Task Access Method Purpose Functions

Creating and dropping an index. am create() , am drop()
Opening and closing an index. am open() , am close()
Scanning an index for records that meet the qualifications
of a query.

am beginscan() , am endscan() ,
am rescan() , am getnext()

Adding, deleting, and updating records in an index. am insert() , am delete() , am update()
Determining the cost for a scan of an index. am scancost()
Updating statistics. am stats()
Checking an index consistency. am check()

Table 2. Tasks of Access Method Purpose Functions

(“access method” for short) by providing a set of functions
that will be used by the Informix Server to access and ma-
nipulate instances of the access method, i.e., virtual indices.
By creating a new access method, an alternative indexing
strategy for specialized data can be provided.

Thus, to enable usage of the GR-tree in Informix, a GR-
tree access method has to be created. Then, any number
of GR-trees can be created using this access method. To
accomplish this, a total of six steps, described below, must
be completed. Steps 1–4 create an access method, and Steps
5–6 create a virtual index using the access method.

Step 1: Create new data types if needed.
Informix allows a DataBlade developer to define new data
types to support new kinds of data. In addition, a developer
can (1) write functions implementing operations, e.g., arith-
metic or comparison, to be used on the new data type and
(2) provide casts for data conversions between the new data
types and existing data types. A discussion about the choice
of data type for time extents in the GR-tree DataBlade is
given in Section 5.1.

Step 2: Create access method purpose functions.
Access method purpose functions (“purpose functions” for
short) manipulate an index structure. These functions are
data-type independent and implement the skeleton of the ac-
cess method; additional logic necessary for the data types
that the access method is to support is added via opera-
tor classes (see Step 4). The purpose functions are to be
coded in C/C++, compiled, and registered using theCRE-
ATE FUNCTIONstatement (the path and name of the file
where the executable code of a function resides have to be
known). The following example registers a purpose function
which will be used in the GR-tree access method.
CREATE FUNCTION grt_open(pointer)
RETURNING int
EXTERNAL NAME "src/grtree.bld(grt_open)"
LANGUAGE c;

Table 2 lists and briefly describes the generic purpose
functions that may be specified for an access method. Only
theam getnext() function is mandatory.

If the Informix Server determines that a table specified
in an SQL statement should be accessed via a virtual in-

dex, it dynamically loads and executes the appropriate pur-
pose functions. Figure 3 shows which purpose functions are
called if the Informix Server determines that a virtual in-
dex should be used when processingINSERT andSELECT
statements, respectively.

am_insert()

am_open()

(a)

NO MORE ROWS

ROWRESULT =

am_close()

am_getnext()

am_scancost()

am_beginscan()

am_open()

am_endscan()

(b)

am_close()

Figure 3. Access Method Purpose Functions
Called for (a) INSERT and (b) SELECT

A number of structures, termeddescriptors, are used in
the purpose functions. The descriptors contain the informa-
tion that the purpose functions need to perform a scan, an
insertion, an update, or a deletion in a virtual index. The
Informix Server fills in most of the data of a descriptor and
passes it to the purpose functions. For instance, when the In-
formix Server invokesam beginscan() , it passes as an
argument a so-calledscan descriptor, which contains infor-
mation about the qualification condition. Descriptors can
also contain user-defined data. Data in the descriptors is ac-
cessed using specific functions.

Step 3: Register the access method.
The purpose functions have to be registered as part of
the access method using theCREATE SECONDARY AC-
CESSMETHODstatement. An example of how to register
thegrtree amaccess method is given below (value"S"
for am sptype means that virtual indices will be created in
sbspace , see Section 5.3).

CREATE SECONDARY ACCESS_METHOD grtree_am
(am_create = grt_create,

am_open = grt_open,
am_getnext = grt_getnext,
am_close = grt_close,
am_drop = grt_drop,
am_sptype = "S");

Step 4: Create operator classes.
The purpose functions manipulate the index structure, but
are not data-type specific. In contrast, an operator class is a
set of functions that allows an access method to manipulate
values of particular data types. An operator class consists of
functions implementing those operations on the data types
that are supported by the access method. In general, there
can exist several operator classes for the same access method
(see Figure 4), but normally one is enough. More are needed
when a different access method behavior has to be specified;
the situations where this can occur are considered below. An
”off-the-shelf” access method DataBlade always contains at
least one operator class.

STRATEGY FUNCTIONS
SUPPORT FUNCTIONS

OPERATOR CLASS

STRATEGY FUNCTIONS
SUPPORT FUNCTIONS

OPERATOR CLASS

...

...

...

ACCESS METHOD

ACCESS METHOD
PURPOSE FUNCTIONS

Figure 4. Association Between an Access
Method and Operator Classes

Operator class functions have to be written, compiled,
and registered as user-defined routines (UDRs) using the
CREATE FUNCTIONstatement. These functions are di-
vided into two categories: strategy and support func-
tions. Strategy functions specify the interface between
SQL and the access method. These boolean functions are
typically used in WHERE clauses of SQL statements by
the application programmer. An example strategy func-
tion for the R-tree access method isOverlap() . Func-
tions GreaterThan() andLessThanOrEqual() are
among the strategy functions of the B-tree operator class.

When the query optimizer meets a function in the
WHERE clause of an SQL statement, it determines if a
virtual index is applicable for the processing of the SQL
statement by checking if a virtual index exists for the col-
umn involved in the function and if this function is declared
as a strategy function in the operator class of the corre-
sponding access method. When processing the SQL state-
ment, the purpose functions are invoked as shown in Fig-
ure 3(b). Functionam getnext() dynamically resolves
which strategy function is used and invokes that function on

index entries to find the qualifying regions.

To enhance an existing access method with support for a
new data type, new additional strategy functions with the
same names, but new argument types, should be written
and registered. This way, the existing operator class is ex-
tended. A new operator class must be created when there
is a need to employ new strategy functions or to redefine
the existing ones. For instance, creating a new operator
class for the R-tree access method, the new strategy function
Neighbour() —which finds all objects that are close to
the query region, but do not overlap with it—can be added.
When an existing operator class is extended or a new one is
created, the purpose functions do not require any modifica-
tions.

Support functions are used only internally by the access
method to maintain the index structure and are usually not
invoked from SQL, but they are visible to the programmer
since they are registered as UDRs and declared in the op-
erator class of the access method. An example of a sup-
port function for the R-tree access method isIntersec-
tion() , which computes the intersection of two minimum
bounding rectangles. In the same way as for strategy func-
tions, the purpose functions dynamically resolve and invoke
appropriate support functions. Support functions for new
data types may be registered, extending an existing operator
class; or redefined support functions can be employed reg-
istering a new operator class. The latter can be exemplified
as follows. The B+-tree operator class contains a support
functioncompare() , which compares two values of sev-
eral data types. The natural order for integers is -2, -1, 0, 1,
2, but the programmer may want to change this order to 0,
-1, 1, -2, 2. Then a substitute function forcompare() has
to be written, and a new operator class with the new func-
tion name instead of the old one has to be registered for the
B+-tree.

Alternatively, support functions can be “hard-coded,” i.e.,
they can be statically linked together with the purpose func-
tions, not registered as UDRs and not declared in any oper-
ator class of the access method, but explicitly invoked from
the purpose functions where appropriate. This way, the pro-
grammer does not know about their existence, cannot add
support for new data types by extending the existing oper-
ator class, and cannot substitute the ”hard-coded” support
functions with the redefined ones via a new operator class.
Similarly, strategy functions can also be “hard-coded” in the
am getnext() purpose function. Unlike “hard-coded”
support functions, “hard-coded” strategy functions must still
have corresponding registered UDRs so that these can be in-
voked when an SQL statement is processed without using a
virtual index. These UDRs must also be declared in an oper-
ator class so that the optimizer knows when a virtual index
can be used. But since the purpose functions explicitly in-
voke ”hard-coded” strategy functions, the support for new

data types cannot be added by extending the existing opera-
tor class, and new or redefined strategy functions cannot be
employed via new operator classes.

In general, it depends on the specifics of an access method
whether it makes sense to offer a future possibility to extend
existing or create new operator classes. The cost of this ex-
tensibility is the overhead of dynamic resolution and execu-
tion of strategy and support functions. For general access
methods, such extensibility may be a desirable option. If an
access method is targeted for some specific data type and a
specific set of strategy and support functions or if simpler
and more efficient code is preferred, it may be more reason-
able to internally “hard code” all function invocations.

An operator class for an access method is created using
theCREATE OPCLASSstatement. The following example
shows how the operator class for thegrtree am can be
created (the GR-tree operator class and its functions are de-
scribed in Section 5.2).
CREATE OPCLASS grt_opclass FOR grtree_am
STRATEGIES(grt_overlap, grt_contains,

grt_containedin, grt_equal)
SUPPORT(grt_union, grt_size,

grt_intersection);

Step 5: Create storage space for a virtual index.
The space for a virtual index has to be created using theon-
spaces command, see Section 5.3.

Step 6: Create a virtual index.
A virtual index is created using theCREATE INDEXstate-
ment. When creating a virtual index on a single column or
on a number of columns, the operator class has to be spec-
ified for each column. The following example shows how
a virtual index is created in storage spacespc using the
grtree amaccess method.
CREATE INDEX grt_index

ON employees(column1 grt_opclass)
USING grtree_am
IN spc;

5. Design Considerations for Implementing the
GR-Tree DataBlade

Implementing the GR-tree DataBlade according to the
steps outlined in the previous section, a number of techni-
cal design issues had to be resolved; some solutions were
not straightforward. This section reveals some of the hidden
challenges that a DataBlade developer should be prepared to
face. Section 5.1 discusses the choice of a new data type for
now-relative bitemporal data. Section 5.2 presents the GR-
tree operator class. Section 5.3 provides insights into the
possible index storage options. Deletions and the handling
of the database variables UC and NOW are discussed in the
full version of the paper [5].

5.1. Physical Representation of a Time Extent

The GR-tree indexes the time extents associated with the
database records. We have so far assumed that each of the
four timestamps is in a separate column (see Section 2). In
this section, we also consider other options for the imple-
mentation, i.e., we discuss what number of columns and
what data types should be used in an Informix physical table
to represent the time extents.

In general, three alternatives for representing time ex-
tents are natural: using four columns, two columns, or one
column. Informix has a set of built-in data types and al-
lows the user to construct new data types. The built-in data
typesDATEandDATETIMEare suitable for representation
of time. These would make it possible to store time extents
of records in four columns of a table—one column for each
of TT1, TT2, VT1, andVT2—and values in these columns
would be of typeDATEor DATETIME. But, since we want
to use the special values UC and NOW forTT2 andVT2,
respectively, the built-in data types are not suitable. To be
able to interpret UC and NOW, a new date type must be con-
structed, which would not be interpreted by Informix. Func-
tions interpreting this type must be provided. This kind of
data type is termed anopaquedata type.

As an alternative to having four columns for a time extent,
two columns could be used: one representing an interval of
valid time and another representing an interval of transac-
tion time. Yet another possibility would be to have only one
column, completely representing the time extent of a record.
As for the four-column alternative, opaque types have to be
constructed for these two alternatives. This could be done
in two ways. One way is to construct an opaqueDate type
supporting values UC and NOW, and then to use acollection
data type with two (for intervals) or with four (for a whole
time extent) members of the opaqueDatetype. Another way
is to directly construct an opaque typeIntervalor Extent, not
using a collection data type.

Issues related to the specifics of querying time extents and
declaring operator class strategy functions affect the choice
of how to represent time extents.

In order to correctly decode a time extent of a tuple, all
its four time values must be interpreted together. This re-
stricts the design alternatives. To illustrate, consider the
record in Table 3, whose corresponding bitemporal region is
shown in Figure 5. Consider the query “Who worked in the
Sales department during 7/97 according to the knowledge
we had during 5/97?” issued at the current time, 9/97. If
the valid- and transaction-time intervals are considered sep-
arately when answering this query, the answer will include
Julie. But this would be incorrect, becauseVT2 is NOW
and Julie’s bitemporal extent is a stair-shape, which does
not overlap with the given query region. Our “bitemporal”
function cannot be replaced by two functions that consider
transaction- and valid-time intervals separately.

Name Department TT1 TT2 VT1 VT2

Julie Sales 3/97 7/97 3/97 NOW

Table 3. The EmpDep Relation

query
9/97

7/97

3/97

1/97

3/97 7/97 CT

VT

TT

Figure 5. Time Extent of the Julie Record

Functions registered with theCREATE FUNCTION
statement can be used in SQL statements. If a function is
also declared as a strategy function in an operator class of
an access method, an index can be used (if it exists) pro-
cessing the SQL statement involving that function. If the
index is used, the Informix Server passes the relevant part of
the WHERE clause to the index interface in a special struc-
ture called aqualification descriptor(which is a part of the
scan descriptor). This structure is restricted to accommo-
date only single-column predicates, which implies that only
single-column functions can be declared as strategy func-
tions, i.e., can be supported by a virtual index.

According to this, to enable virtual index usage process-
ing an SQL statement with a WHERE clause including a
bitemporal function (requiring four time extent values), this
function must be a single-column function. A time extent
of a record thus cannot be represented using four or two
columns, so we represent it as one column, and the values
in this column are of our newly created opaque data type,
GRTTimeExtent t .

The last issue to consider about date types in the GR-tree
is the time granularity. For our prototype implementation,
we chose a granularity of days, as provided by theDATE
type. Many other possibilities exist, one being fractions of a
second, as provided by theDATETIMEtype.

5.2. The GR-tree Operator Class

In the default operator class of the R-tree access method,
the strategy functions includeOverlap() , Equal() ,
Contains() , andWithin() , and the support functions
include Union() , Size() , and Inter() . When the
query optimizer examines a WHERE clause that involves
some function on some column, it checks if this column has
an R-tree defined on it. If it does, and if the function is one
of the strategy functions of the operator class of the R-tree
access method, the optimizer can choose to use the R-tree to
process the SQL statement (see Section 4).

In a similar manner, strategy functions in the GR-tree ac-
cess method operator class areOverlaps() , Equal() ,
Contains() , and ContainedIn() . Having a table
Employees with columns Name, Department , and
Time Extent and having a GR-tree index on the
Time Extent column, consider the following query.

SELECT Name
FROM Employees
WHERE Overlaps(Time_Extent,

"12/10/95, UC, 12/10/95, NOW")

Function Overlaps() takes two GRTTime-
Extent t objects as input and returns a boolean value.
The Informix Server examines the WHERE clause of this
query as described above and decides whether or not to use
the index. If the index is not used,Overlaps() is invoked
for each table record. If the index is used, the function
must be invoked traversing the index from the root, looking
for entries that have regions overlapping with the region
specified by"12/10/95, UC, 12/10/95, NOW" .

Recall that the four timestamps in an internal-node en-
try do not uniquely identify the shape of the region (see
Section 3). This means that another function (let us call
it OverlapsInternal()) should be used to determine
whether the given region overlaps with a region encoded by
an internal-node entry. IfOverlapsInternal() is reg-
istered as a UDR, a type for internal-node regions should
also be registered as an opaque type. In the following, we
discuss three alternatives for designing the GR-tree opera-
tor class. The alternatives differ in the extensibility they
provide and in the simplicity and efficiency of the access-
method code.

The first and simplest alternative is not to create a new
opaque type for internal-node regions. To avoid this, all
strategy and support functions that take as arguments or re-
turn as results internal-node regions must be “hard coded.”
Hard coding makes it impossible to extend the existing op-
erator class or to create new ones. For example, if we
do not register a new opaque type and hard codeOver-
lapsInternal() , a new operator class, whereOver-
laps() is replaced by a new strategy function, cannot be
defined. Implementing a new version ofOverlaps()
would mean that a newOverlapsInternal() should
be implemented, and this cannot be done, because the old
hard-coded version ofOverlapsInternal() is called
from the purpose functions.

The second alternative is to create a new opaque data
type for internal-node regions. Then a function oper-
ating on internal-node regions (such asOverlapsIn-
ternal()) could be registered as a UDR under the
same name as the corresponding function operating with
GRTTimeExtent t objects, e.g.,Overlaps() . Fol-
lowing this approach, implementing a new strategy function
would mean additionally implementing its ”internal” func-

tion for internal-node regions. This way, the operator class
would be extended for internal-node regions.

Yet another approach would be to have a single type
GRTTimeExtent t that would encode both the internal-
node regions and the bitemporal regions stored in database
tables and leaf-nodes of an index. To use space efficiently,
this opaque data type can be declared to have a variable
length. The main requirement is that theOverlaps()
function should be able to determine whether its arguments
are real bitemporal regions or internal-node regions. This
approach is followed by Informix in its R-tree access method
implementation.

The latter two approaches make it possible to extend the
existing operator class and to create new ones with new or re-
defined functions. The cost for such extensibility is the over-
head of dynamic resolution and execution of strategy and
support functions. Since the GR-tree is an access method
for a quite specific data type, the hard-coding approach is
used in the GR-tree DataBlade implementation.

One of the shortcomings of Informix’s operator class
framework and the UDR framework in general is that there
are rather limited means of telling the query optimizer about
associations between UDRs. To illustrate this, consider this
situation: the GR-tree operator class contains a strategy
functionOverlap() , but does not contain a strategy func-
tion Equal() . If a user asks in a query for regions that
are equal with a given region, the virtual index will not be
used. However, the optimizer could use the index to find all
regions that overlap with the given region and then check
whether or not they are equal (significantly less regions will
have to be retrieved from disk). But there is no way of
telling the optimizer that if two regions do not overlap, they
cannot be equal, because Informix only allows to specify
that one function is a negator of another function (returns
the opposite, given the same set of values, e.g.,Equal()
and NotEqual()) or that one function is a commutator
of another function (returns the same result when its argu-
ments are passed in reverse order, e.g.,GreaterThan()
andLessThanOrEqual()).

5.3. Storage Options, Concurrency, and Recovery

In this section, we consider the possibilities available for
index storage. The choice of storage mechanism has impor-
tant implications for concurrency control and recovery.

A developer of an access method DataBlade has two op-
tions for the storage of an index. One possibility is to store
index data outside the Informix data space, e.g., in a regu-
lar operating system file. Another possibility is to store the
index as one or several large objects, in a so-called smart-
blob space, abbreviatedsbspace. Table data as well as data
for built-in access methods such as B+-trees or R-trees are
stored indbspacesin the Informix Server. We do not con-
sider this latter option for an access-method DataBlade be-

cause there is no public interface for accessing dbspaces.
Before investigating each of the two available options, we
first briefly recall the proposals for concurrency control and
recovery in tree-based index structures.

The simplest solution to concurrency problems in a tree-
based index structure is to lock the entire tree or the subtree
that needs to be modified. The upper levels of the subtree are
locked so that only readers can access them [2]. To achieve
much higher levels of concurrency, B-link trees [18] and R-
link trees [15] were proposed, and Kornacker et al. [16] gen-
eralized the ideas of R-link trees to apply to a broader class
of tree-based access methods. Using the link-based concur-
rency control protocols, a lock on a parent node can be re-
leased before visiting a child node. To use this protocol in
an access-method DataBlade, either the Informix Server or
the DataBlade developer must provide the full management
of locks on the tree nodes. The recovery protocol proposed
by Kornacker et al. in addition calls for special types of log
records and a logical undo capability.

Informix’s own predefined R-tree access method stores
its indices in dbspaces, the Informix page manager pro-
vides the appropriate concurrency control, and the Informix
log manager provides the appropriate recovery mechanisms.
Thus, the R-tree access method can implement the above-
mentioned R-link mechanism.

For sbspaces, Informix provides automatic two-phase
locking at the large-object level. Locks are acquired upon
opening a large object for reading or writing and, depend-
ing on the lock mode and the isolation level of a transaction,
are released either upon closing the object or at the end of
a transaction. The DataBlade developer may vary the num-
ber of large objects used for storing index data. Possibilities
range from storing the whole index in one large object, hav-
ing the least possible concurrency, to storing each index node
in a separate large object. The latter option has the serious
drawback that the large-object handles that should be stored
in the internal nodes of a tree (as pointers to child nodes) are
relatively large. In addition, opening and closing large ob-
jects can be time consuming. It may be worth investigating
design options in-between these two extremes, where large
objects do not store single nodes, but several nodes, e.g.,
subtrees. Such a design would require policies for assigning
nodes to large objects and for migrating them between large
objects. In our implementation, we chose a single large ob-
ject for the whole index.

A developer of an access-method has no control over the
locking of large objects, nor over logging and recovery. For
example, it is not possible to unlock a large object storing
some internal node while traversing a tree. If the repeatable-
read isolation level is set, even the shared locks on large ob-
jects will be released only when a transaction commits. This
implies that the concurrency control and recovery protocols
of Kornacker et al. cannot be implemented using large ob-

jects.
Storing index data in a regular operating system file im-

plies that all concurrency control and recovery protocols
must be implemented by the access-method developer. It
seems that it is possible to implement concurrency con-
trol integrated with the transaction management of Informix
Server using transaction-end callbacks. However, there are
no means to integrate the access-method recovery with the
Informix Server’s recovery subsystem. Although, using
an operating system file, the developer has the freedom to
implement any desirable concurrency control and recovery
protocols, their implementation are complicated and time-
consuming tasks. Neither the DataBlade API nor the Virtual
Index Interface API provide any low-level services to assist.

Summarizing, sbspaces provide too high-level and too in-
flexible services for storing index data, rendering “industrial
strength” concurrency control and recovery impossible. On
the other hand, the external-file option is also not attractive
because the APIs provide very little support for implement-
ing concurrency control and recovery.

6. Implementation

In this section, we briefly describe the tools used and the
main implementation tasks that were necessary developing
the GR-tree DataBlade. More details about these subjects,
as well as some hints about the coding guidelines and testing
options are given in the full version of the paper [5].

6.1. Tools Used

Informix provides a set of tools, called the DataBlade
Developer’s Kit, that support DataBlade development. The
core tool is BladeSmith, a GUI tool that allows a developer
to define and manage different types of DataBlade objects,
such as data types and routines [10]. Based on the defini-
tions of these objects, BladeSmith automatically generates
C source code (type-support functions and skeletons of all
routines), SQL scripts, test files, and installation files for a
DataBlade.

The DataBlade developer has to flesh out the provided
skeletons and to compile the code, building a shared li-
brary (or a dynamic link library under Microsoft Windows)
that will be loaded by the server when the DataBlade is
used. The SQL scripts contain the code for registering
and un-registering all DataBlade objects and their interre-
lationships in the system catalog tables. The scripts are
run by BladeManager—a GUI tool for registering and un-
registering DataBlade for databases in the Informix Server.

6.2. Tasks Performed

The tasks performed when implementing the GR-tree
DataBlade are given in Table 4. They required a total of
about 4.5 person-months of efforts, but the access-method

core was implemented in C++ beforehand. The access
method purpose functions turned into a layer connecting the
already-implemented access-method core to the Informix
Server.

All purpose functions were implemented except
am scancost() , am stats() , and am check() ;
these three are not necessary for an access method to be
operational. Most of the implemented purpose functions
required only little coding because their main tasks were to
invoke already-implemented GR-tree-core functions. The
areas that required more additional coding were the manip-
ulation of BLOBs, the large object storing the index, and the
manipulation of the qualification descriptor. The main de-
sign tasks for the writing of the purpose functions included
considerations on how to re-use search information during
the index scan (am getnext() returns one qualifying row
at a time) and how to implement deletions [5].

Being quite useful for addition of new data types, Blade-
Smith provides virtually no support for developing access
method DataBlades. The purpose functions and operator-
class functions are defined as regular routines in a Blade-
Smith’s project. Thus, only their prototypes were generated
in a C source file. Function bodies and the SQL code for
registering and un-registering an access method and opera-
tor classes have to be hand-written by the developer.

7. Conclusions

Prompted by the need for the effective and efficient man-
agement of new kinds of complex data, the major DBMS
vendors are proposing solutions that enable the users them-
selves to extend the DBMS. In the Informix Server, user-
defined access methods can be created as DataBlades. We
implemented the GR-tree index for now-relative bitemporal
data as a DataBlade prototype with the goals of assessing
the applicability of Informix for such a task; of identifying
the weaknesses and strengths of the Informix Server archi-
tecture and its APIs and services supporting user-defined ac-
cess methods; and of measuring the required development
efforts.

Our experience shows that a prototype of an access
method DataBlade can be developed relatively fast, provided
that the index structure and algorithms are already in place.
One of the obstacles that any access-method DataBlade de-
veloper currently faces is the lack of good documentation on
the topic. As of this writing, the ”Virtual-Table Interface
Programmer’s Manual” [12] is on hold, and the ”Virtual-
Index Interface Programmer’s Manual” [11] is access re-
stricted.

A major technical challenge developing a tree-based ac-
cess method DataBlade is the implementation of efficient
concurrency control and recovery mechanisms. Currently,
Informix provides two possibilities for index storage: an in-
dex can be stored as a regular operating system file or as

Task Complexity LOC

Adapting the existing code to the DataBlade coding guidelines. low —
Defining the structure of the opaque type. average —
Including UC and NOW handling in opaque-type support functions. low 30
Writing operations on the opaque type. low 30
Designing the operator class framework. high —
Writing access method purpose functions. high 1020
Writing BLOB manipulation functions. average 280
Writing functions manipulating the qualification descriptor. average 120

Table 4. Tasks, their Complexity, and Required Lines of Code

one or several so-called large objects inside Informix. While
the first option is too “low-level,” leaving implementation of
all concurrency control and recovery mechanisms to the de-
veloper, the second is too “high-level,” providing automatic
locking for large objects that is unlikely to be efficient in a
multi-user environment for access methods.

The operator class framework makes it possible to use
several variations of the same access method, but it is not
easy to understand, and may be improved. Different op-
tions concerning the usage of operator classes (cf. Sections 4
and 5.2) are not immediately clear and are not adequately
discussed in the documentation. Strategy functions can take
only single-column arguments; in our case, this restriction
forced us to define the bitemporal extent of a tuple as one
data type.

We feel that the existing framework for extending the In-
formix DBMS kernel with user-defined access methods rep-
resents a great advance, but it is still only a first step. Fol-
lowing the ideas of Hellerstein et al. [8] and Aoki [1], a
generic, extendible tree-based access method with “indus-
trial strength” concurrency control and recovery protocols
could be integrated into the kernel of the DBMS. Such a
generic access method would support a broad class of tree-
based access methods by providing a simple, high-level ex-
tension interface that isolates the primitive operations re-
quired to construct new access methods [1]. It is also pos-
sible to implement a generic access method as a DataBlade
and use specially designed operator classes to extend it.

Acknowledgements

This research was supported in part by the Danish Tech-
nical Research Council through grant 9700780, by the
Chorochronos project, funded by the European Commission
DG XII, contract no. FMRX-CT96-0056, and by a grant
from the Nykredit Corporation.

References

[1] P. M. Aoki. Generalizing “Search” in Generalized Search
Trees.Proceedings of ICDE, pp. 380–389 (1998).

[2] R. Bayer and M. Schkolnick. Concurrency of Operations on
B-Trees.Acta Inf., 9:1–21 (1977).

[3] N. Beckmann et al. The R�-Tree: An Efficient and Robust
Access Method for Points and Rectangles.Proceedings of
ACM SIGMOD, pp. 322–331 (1990).

[4] R. Bliujute, C. S. Jensen, S. Saltenis, and G. Slivinskas. R-
Tree Based Indexing of Now-Relative Bitemporal Data.Pro-
ceedings of VLDB, pp. 345–356 (1998).

[5] R. Bliujute, S. Saltenis, G. Slivinskas, and C. S. Jensen. De-
veloping a DataBlade for a New Index. TIMECENTERTech-
nical Report TR-29 (1998).

[6] J. Clifford et al. On the Semantics of “NOW” in Databases.
ACM TODS, 22(2):171–214 (1997).

[7] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching.Proceedings of ACM SIGMOD, pp. 47–57 (1984).

[8] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized
Search Trees for Database Systems.Proceedings of VLDB,
pp. 562–573 (1995).

[9] INFORMIX-Universal Server DataBlade API User’s Guide.
(1997)

[10] INFORMIX. DataBlade Developers Kit User’s Guide.
(1997)

[11] INFORMIX. Virtual-Index Interface Programmer’s Manual
(1997).

[12] INFORMIX. Virtual-Table Interface Programmer’s Manual
(1997).

[13] C. S. Jensen and R. Snodgrass. Semantics of Time-Varying
Information.Information Systems, 21(4):311–352 (1996).

[14] C. S. Jensen et al. A Consensus Glossary of Tempo-
ral Database Concepts. InTemporal Databases: Research
and Practice, O. Etzion, S. Jajodia, and S. Sripada (eds),
Springer-Verlag, pp. 367–405, (1998).

[15] M. Kornacker and D. Banks. High-Concurrency Locking in
R-Trees.Proceedings of VLDB, pp. 134–145 (1995).

[16] M. Kornacker, C. Mohan, and J. M. Hellerstein. Concurrency
and Recovery in Generalized Search Trees.Proceedings of
ACM SIGMOD, pp. 62–72 (1997).

[17] A. Kumar, V. J. Tsotras, and C. Faloutsos. Designing Access
Methods for Bitemporal Databases.IEEE TKDE, 10(1):1–20
(1998).

[18] P. Lehman and S. Yao. Efficient Locking for Concurrent Op-
erations on B-Trees.ACM TODS, 6(4):650–670 (1981).

[19] B. Salzberg and V. J. Tsotras. A Comparison of Access Meth-
ods for Temporal Data. TimeCenter TR-18 (1997). To appear
in ACM Computing Surveys.

[20] R. T. Snodgrass. The Temporal Query Language TQuel.
ACM TODS, 12(2):247–298 (1987).

[21] R. T. Snodgrass et al.The TSQL2 Temporal Query Language.
Kluwer Academic Publishers (1995).

