©1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder.

Developing a DataBlade for a New Index

Rasa Bliujte Simonasaltenis Giedrius Slivinskas Christian S. Jensen
Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7E, 9220 Aalborg, Denmark
{rasa, simas, giedrius, ¢gpcs.auc.dk

Abstract cause new applications will continue to appear that require
support for new kinds of data, the DBMS should be exten-
In order to better support current and new applications, sible, allowing the users themselves to extend the DBMS'’s
the major DBMS vendors are stepping beyond uninterpretetlinctionality. This alleviates the vendors from attempting to
binary large objects, termed BLOBs, and are beginning tdkeep up with the demands for new data types, and it allows
offer extensibility features that allow external developers tausers to obtain support for very specific kinds of data, for
extend the DBMS with, e.g., their own data types and acwhich there is only a very small market; the vendors have
companying access methods. Existing solutions include DB1tle incentive to develop support for such data.
extenders, Informix DataBlades, and Oracle cartridges. Ex- Indeed, over the last couple of years, major DBMS ven-
tensible systems offer new and exciting opportunities for redors have come up with new technology that allows the users
searchers and third-party developers alike. This paper rethemselves to extend the DBMS's functionality. Examples
ports on an implementation of an Informix DataBlade for theinclude DB2extenders Informix DataBlades and Oracle
GR-tree, a new R-tree based index. This effort represents@artridges Extenders, DataBlades, and cartridges can be de-
stress test of the perhaps currently most extensible DBMS, ifeloped separately and plugged into the appropriate DBMS.
that the new DataBlade aims to achieve better performance, Thjs technology allows application developers to add
not just to add functionality. The paper provides guidelinesyew functionality to a DBMS according to their concrete
for how to create an access method DataBlade, describgseeds, as well as gives third-party vendors an opportunity
the sometimes surprising challenges that must be negotiatgg make products targeting a specific application area. In ad-
during DataBlade development, and evaluates the extensgition, extensible database technology reduces the gap be-

bility of the Informix Dynamic Server. tween real products and new techniques proposed by the
research community, because these techniques can be inte-
1. Introduction grated into DBMSs more easily. This facilitates dissemi-

nation of research results and the transition from research

Advanced applications continuously emerge that posgesults to products.
new requirements to database management systems, includ-The paper describes a prototype implementation of a new
ing the need for efficient handling of the complex typesaccess method, termed the GR-tree [4], as an Informix Data-
of data inherent to geographical, multimedia, medical, and®lade. Based on the*Rree [3] (an improved version of
other advanced applications. Such data include image#e R-tree originally proposed by Guttman [7]), this tree in-
videos, documents, as well as data with temporal and spatielexes now-relative bitemporal data, which is data with as-
temporal references. Most relational DBMSs provide binarysociated valid-time and transaction-time values [14]. Many
large objects, which may be used for storing such data, bugal-world databases contain a significant portion of this type
this is generally not satisfactory because the internal strusf data.
ture of data is invisible to the DBMS, which then cannot The paper reports the experiences gained from develop-
provide efficient access to the data. Support for new datig the DataBlade. It provides systematic guidelines for how
types can also be introduced at the application level. Buio create an access method DataBlade, while also pointing
this does not provide efficient access, and it is also not ecout issues—expected as well as unexpected—that proved to
nomic for the many applications that need similar support tde particularly challenging when building the DataBlade. In-
reimplement similar ad-hoc solutions. formix was chosen because it provides the possibility to add

New complex data types, including efficient querying ca-advanced user-defined data types as well as user-defined ac-
pabilities on them, should be supported by the DBMS. Becess methods for these new data types. The paper covers is-

sues related to the design of the required new data type that | Employee | Department | TT1 | TT2 | VT1 | VT2
. L . John Advertising 4/97 | UC | 3/97 | 5/97
accompanies the new access method; it discusses the desi Tom Management | 3/07 | 7/97 | 6/97 | 8/97
of the functions used internally in the access method and (3) Jane Sales 5/97 | UC | 5/97 | NOW
the functions that may appear in WHERE clauses of SQL (4) Julie Sales 3/97 | 797 | 3/97 | NOW
fi nd that triager th f th method: and® Julie Sales 8/97 | UC | 397 | 797
queries and that trigger the use of the access method; a 6)| Michelle Management | 5/97 | UC [3/97 | NOW

it addresses issues related to concurrency control and recov-

ery. The coverage of the actual implementation effort en- Table 1. The EmpDep Relation

compasses the available development tools and the specific

codingtasks. , that we recorded this belief on 5/97, and that this remains
The presentation is structured as follows. Section 2 ®part of the current database state.

plains what bitemporal data is and how it may be repre- g temporal aspect of a tuple can be represented graph-

sented. Section 3 briefly describes the GR-tree. On th'%ally by a two-dimensional (“bitemporal®) region in the

background, Section 4 presents the general steps neededs{d, e spanned by valid and transaction time. Cases 1-5 in

develop an access method DataBlade. Section 5 reports @iy re 1 jllustrate theitemporal regionsf Tuples (1—4) and
specific challenges encountered when these steps were PES), respectively.

formed to create the GR-tree DataBlade, and Section 6 de-

scribes the implementation. Section 7 concludes and offers vr vt
observations about Informix’s applicability for the imple- g4, | oo |
mentation of new access methods. 1 o7 |

697 |

2. Bitemporal Data 597 |

97 |

In this section, we introduce bitemporal data, showing | 1
that the time associated with bitemporal data can be viewed " "+ "l
as two-dimensional regions, which suggests that bitemporal Casel Case2
data may be indexed using adapted spatial indices. vt vr

Two temporal aspects of database tuples, termed valid g5,] Bl
and transaction time, have proven to be of interest in a wide
range of database applications. The valid time of data cap- |
tures when the data is true in the modeled reality, while the *'+]
transaction time is the time during which the data is current | 97|
inthe database [14]. These two aspects are orthogonalinthat,; ‘ wl .
each could be independently recorded, and each has specific s T Ther e ot T
properties associated with it. The valid time of atuple canbe Cose3 - Cased
in the past or in the future (allowing a database to store in- |
formation about the past and the future) and can be changed”’+
freely. In contrast, the transaction time of a tuple cannotex- |
tend beyond the current time and cannot be changed. Data
having associated both valid and transaction time is termed o 1
bitemporal data. Bitemporal data is now-relative if the end 7T 207]
of valid time or the end of transaction time is not fixed, but ¥+ 4+ L E
. . . 5/97 cT T 597 7197 CT ™
instead tracks the current time and continuously extends as Case5 Case 6
time passes.

Table 1 exemplifies now-relative bitemporal data, which Figure 1. Bitemporal Regions
is represented using TQuel’s four-timestamp format [20].

With this format, each tuple has four time attributes. Now- A now-relative transaction-time interval yields a rectan-
relative tuples are represented using UC (denoting "untifgle that “grows” in the transaction time direction as time
changed”) and NOW variables [6] for transaction- and validpasses (Tuple (1), Case 1). Having both transaction- and
time end attributes, respectively. The time granularity is avalid-time intervals being now-relative yields a stair-shaped
month, and the current time is assumed to be 9/97. region growing in both transaction time and valid time as

Tuple (1) records that the information “John works intime passes (Tuple (3), Case 3). Information can be recorded
Advertising” was true from 3/97 to 5/97 and that this wasin the database after it becomes true in the modeled reality.
recorded during 4/97 and is still current. Tuple (3) recorddn this situation, having both the transaction- and valid-time
that “Jane works in Sales” from 5/97 until the current time,intervals being now-relative yields a stair-shape with a high

ot |

al

97|

VT .

first step (Tuple (6), Case 5). y ! | Bounding
It is also possible to record information in the database /[| | paidobjeat T % steir-shepe

before it becomes true in the modeled reality (Tuple (2), I U ey 1 rectangle ,_"‘7)/

Case 2). If, at some time, a tuple is logically deleted (its 7 ‘ D/:

transaction-time end value UC is changed to the fixed value T L

‘current time'—1), the bitemporal region stops growing (Tu- 1 : F !

ples (2), (4); Cases 2, 4, 6). 1 1)
Two-dimensional bitemporal regions can be indexed us- +,,,, .. T e

ing adapted spatial indices. An essential challenge in index- x cT T
ing bitemporal data is to properly handle now-relative inter- @ ®)

vals. The next section briefly presents the GR-tree [4] which
contends well with this requirement and outperforms other
indices for now-relative bitemporal data. A description of
the implementation of the GR-tree as an Informix DataBlade

Figure 2. Graphical Representation of (a) R *-
Tree and (b) GR-Tree

follows next. A non-leaf node entry contains four timestamps, a flag
“Rectangle " a flag “Hidden ,” and a pointer to a child
3. The GR-Tree Index node. Here, timestamps represent a minimum bounding re-

The GR-tree is based on the ®ee [3], which is a spa- gion that encloses all child-node regions. ThRettan-
tial index consisting of nodes organized in a tree structure. &:i l\?g?/vc)ierr(l_Otree?sévr:]te;hstrz;ilrsisata?gsrg::ttgﬁ floermrgt\t;i,nUC,
node contains a number of entries and is stored in one dis\% t;oth transalit'on and valid t'mg Tthddegrl] i ?Ia 'sg
page. Spatial objects are bounded with minimum bound” lon vaild time. g |

Is,ed to track growing stair-shapes that are placed in a larger

ing rectangles, which are stored in leaf-node entries togeth) . . e i
with pointers to data tuples containing the spatial objects‘gg??ﬁ;ﬁ;icéi?gﬁnﬁxgg afixed valid-time end (thatis big

All entries of each non-root node are also bounded with & .
The algorithms to accompany the GR-tree structure are

minimum bounding rectangle, that, together with a pointer q he R laorith hich dified
to the node, composes an entry of a parent node. Figure Z(lese gn 'the trge agqut ms, Wd '% are mho |ﬂ|e 0 d
shows minimum bounding rectangles of spatial objects. contend with growing regions encoded using the flags an

When a query asking to retrieve all spatial objects tha{imestamp variables. The QR-tree algorithmg resolve vgri-
overlap with a given query region is issued, the tree is tradbles UC and NOW according to the current time. New in-
versed down from the root looking for entries that encodeSertlon algorithms that take into account the varying shapes

rectangles overlapping with the bounding rectangle of thé’]c ;he bitemporal region_s gerehdgsigngd_ for thf hGR-tlree.
guery region. The list of qualifying entries is obtained, andRe erence [4] contains in-depth descriptions of the algo-

then the spatial objects are retrieved from the correspondir{ hms and performance tests,. sh'owmg that the GR-tree out-
data tuples. The last step is to check using the exact g ierforms the other proposed indices for general bitemporal

ometry whether the query region actually overlaps with th ata.
retrieved spatial objects.

Because the Rtree cannot handle the growing bitempo-4. The Steps Needed to Implement an Access
ral regions presented in Section 2, it was modified, leading Method DataBlade
to the GR-tree [4]. Variables UC and NOW were introduced
in node entries at all tree levels, making it possible to record In this section, we give guidelines for how to implement
the exact geometry and the temporal behavior of the bitem&n access method DataBlade module in Informix Dynamic
poral regions in leaf-node entries. Entries in non-leaf node§erver with Universal Data Option (the abbreviation “In-
store minimum bounding regions of the child nodes. Thes&rmix Server” will be used throughout). Section 5 presents
minimum bounding regions can be either rectangles or staithe GR-tree-specific design considerations, and Section 6
shapes. Minimum bounding regions grow when the regiongescribes the implementation.
inside them grow. Figure 2(b) illustrates minimum bound- The GR-tree DataBlade was developed using the C and
ing regions of the GR-tree. Note that node 2 is bounde®€++ programming languages, and using the DataBlade
with a stair-shape because none of its included regions eXAPI [9], the Virtual-Table Interface API [12], and the
tend above the line VE TT. Virtual-Index Interface API [11] of the Informix Server.

The layout of a GR-tree node does not differ significantly In Informix terms, asecondary access methiscan index
from the layout of an Rtree node. A leaf-node entry con- typeg e.g., the B -tree. Meanwhile, airtual indexis a spe-
tains four timestamps encoding a bitemporal region and aific indexinstanceof adeveloper-definesecondary access
pointer to the actual bitemporal data stored in the databasemethod. A developer can define a secondary access method

| Task | Access Method Purpose Functions

Creating and dropping an index. amcreate() ,amdrop()

Opening and closing an index. amopen() ,amclose()

Scanning an index for records that meet the qualificatipmsnbeginscan() ,amendscan() ,

of a query. amrescan() ,amgetnext()

Adding, deleting, and updating records in an index. aminsert() ,amdelete() ,amupdate()
Determining the cost for a scan of an index. am.scancost()

Updating statistics. am.stats()

Checking an index consistency. am.check()

Table 2. Tasks of Access Method Purpose Functions

(“access method” for short) by providing a set of functionsdex, it dynamically loads and executes the appropriate pur-
that will be used by the Informix Server to access and mapose functions. Figure 3 shows which purpose functions are
nipulate instances of the access method, i.e., virtual indicesalled if the Informix Server determines that a virtual in-
By creating a new access method, an alternative indexindex should be used when procesdiNGERT andSELECT

strategy for specialized data can be provided. statements, respectively.

Thus, to enable usage of the GR-tree in Informix, a GR-
tree access method has to be created. Then, any number am scancost ()
of GR-trees can be created using this access method. To

.) :) am open()
accomplish this, a total of six steps, described below, must
be completed. Steps 1-4 create an access method, and Steps am begi nscan()
5-6 create a virtual index using the access method. am open() /
| am get next ()

Step 1: Create new data types if needed. am.insert()
Informix allows a DataBlade developer to define new data
types to support new kinds of data. In addition, a developer am cl ose()
can (1) write functions implementing operations, e.g., arith- {0 MRE ROMS
metic or comparison, to be used on the new data type and am endscan()
(2) provide casts for data conversions between the new data -
types and existing data types. A discussion about the choice am_ cl ose()
of data type for time extents in the GR-tree DataBlade is @ b)
given in Section 5.1.
Step 2: Create access method purpose functions. Figure 3. Access Method Purpose Functions

Access method purpose functions (“purpose functions” for Called for (a) INSERT and (b) SELECT

short) manipulate an index structure. These functions are

data-type independent and implement the skeleton of the ac- A number of structures, termetescriptors are used in
cess method; additional logic necessary for the data typdbe purpose functions. The descriptors contain the informa-
that the access method is to support is added via operéion that the purpose functions need to perform a scan, an
tor classes (see Step 4). The purpose functions are to lresertion, an update, or a deletion in a virtual index. The
coded in C/C++, compiled, and registered using@rRE- Informix Server fills in most of the data of a descriptor and
ATE FUNCTIONstatement (the path and name of the filepasses it to the purpose functions. For instance, when the In-
where the executable code of a function resides have to Jermix Server invokesmbeginscan() , it passes as an
known). The following example registers a purpose functiorargument a so-callescan descriptgrwhich contains infor-

which will be used in the GR-tree access method. mation about the qualification condition. Descriptors can
CREATE FUNCTION grt_open(pointer) also contain user-defined data. Data in the descriptors is ac-
RETURNING int cessed using specific functions.

EXTERNAL NAME "src/grtree.bld(grt_open)”)

LANGUAGE c: Step 3: Register the access method.

i) , , The purpose functions have to be registered as part of
Table 2 lists and briefly describes the generic purposg,e access method using tRREATE SECONDARY AC-
functions that may be specified for an access method. Onl¥EsgMETHOBtatement. An example of how to register
theamgetnext() function is mandatory. thegrtree _amaccess method is given below (valg"

~ Ifthe Informix Server determines that a table specifiedtyr am sptype means that virtual indices will be created in
in an SQL statement should be accessed via a virtual INshspace , see Section 5.3).

CREATE SECONDARY ACCESS METHOD grtree_am index entries to find the qualifying regions.

(am_create = grt_create, To enhance an existing access method with support for a
am_open = grt_open, new data type, new additional strategy functions with the
Zm—gleotggxi —grtgr(t:l_c?seetnext, same names, but new argument types, should be written
am_drop - gt _drop, ’ and registered. This way, the existing operator class is ex-
am_sptype = "S"); ftended. A new operator class must be preated when there

is a need to employ new strategy functions or to redefine

Step 4: Create operator classes. the existing ones. For instance, creating a new operator
The purpose functions manipulate the index structure, builass for the R-tree access method, the new strategy function
are not data-type specific. In contrast, an operator class isNeighbour() —which finds all objects that are close to

set of functions that allows an access method to manipulai@e query region, but do not overlap with it—can be added.
values of particular data types. An operator class consists d¥hen an existing operator class is extended or a new one is
functions implementing those operations on the data typegreated, the purpose functions do not require any modifica-
that are supported by the access method. In general, thefens.

can exist several operator classes for the same access methodsupport functions are used only internally by the access
(see Figure 4), but normally one is enough. More are needetethod to maintain the index structure and are usually not
when a different access method behavior has to be specifieidyvoked from SQL, but they are visible to the programmer
the situations where this can occur are considered below. Agince they are registered as UDRs and declared in the op-
"off-the-shelf” access method DataBlade always contains agrator class of the access method. An example of a sup-

least one operator class. port function for the R-tree access methodntersec-
tion() , which computes the intersection of two minimum
ACCESSMETHOD OPERATOR CLASS bounding rectangles. In the same way as for strategy func-
}iﬁﬁgiﬂjﬁgﬁgﬁgs } tions, the purpose functions dynamically resolve and invoke
appropriate support functions. Support functions for new
ACCESSMETHOD - data types may be registered, extending an existing operator
PURPOSE FUNCTIONS OPERATOR CLASS class; or redefined support functions can be employed reg-
\\STRATEGY FUNCTIONS | istering a new operator class. The latter can be exemplified
[SUPPORT FUNCTIONS _| as follows. The B-tree operator class contains a support
functioncompare() , which compares two values of sev-
Figure 4. Association Between an Access eral data types. The natural order for integers is -2, -1, 0, 1,
Method and Operator Classes 2, but the programmer may want to change this order to 0,

-1, 1, -2, 2. Then a substitute function fmwmpare() has
Operator class functions have to be written, compiledto be written, and a new operator class with the new func-

and registered as user-defined routines (UDRs) using tHé&n name instead of the old one has to be registered for the
CREATE FUNCTIONtatement. These functions are di- B*-tree.
vided into two categories: strategy and support func- Alternatively, support functions can be “hard-coded,” i.e.,
tions. Strategy functions specify the interface betweeithey can be statically linked together with the purpose func-
SQL and the access method. These boolean functions aiens, not registered as UDRs and not declared in any oper-
typically used in WHERE clauses of SQL statements byator class of the access method, but explicitly invoked from
the application programmer. An example strategy functhe purpose functions where appropriate. This way, the pro-
tion for the R-tree access methodG@werlap() . Func- grammer does not know about their existence, cannot add
tions GreaterThan() andLessThanOrEqual() are support for new data types by extending the existing oper-
among the strategy functions of the B-tree operator class. ator class, and cannot substitute the "hard-coded” support
When the query optimizer meets a function in thefunctions with the redefined ones via a new operator class.
WHERE clause of an SQL statement, it determines if &imilarly, strategy functions can also be “hard-coded” in the
virtual index is applicable for the processing of the SQLamgetnext() purpose function. Unlike “hard-coded”
statement by checking if a virtual index exists for the col-support functions, “hard-coded” strategy functions must still
umn involved in the function and if this function is declaredhave corresponding registered UDRs so that these can be in-
as a strategy function in the operator class of the correvoked when an SQL statement is processed without using a
sponding access method. When processing the SQL stateirtual index. These UDRs must also be declared in an oper-
ment, the purpose functions are invoked as shown in Figator class so that the optimizer knows when a virtual index
ure 3(b). Functioramgetnext() dynamically resolves can be used. But since the purpose functions explicitly in-
which strategy function is used and invokes that function orvoke "hard-coded” strategy functions, the support for new

data types cannot be added by extending the existing opera:1. Physical Representation of a Time Extent
tor class, and new or redefined strategy functions cannot be
employed via new operator classes.

In general, it depends on the specifics of an access meth

The GR-tree indexes the time extents associated with the
@tabase records. We have so far assumed that each of the

whether it makes sense to offer a future possibility to exten ur t|mgstamps ISina separate cqumn_(see Sectlon 2). In
his section, we also consider other options for the imple-

existing or create new operator classes. The cost of this e . ' :
mentation, i.e., we discuss what number of columns and

tensibility is the overhead of dynamic resolution and execu- hat d hould b di Informix ohvsical tabl
tion of strategy and support functions. For general accesyhat datatypes should be used in an Informix physical table

methods, such extensibility may be a desirable option. If arP rlepresent Th?htlme e|>t<tentst: ¢ ting i
access method is targeted for some specific data type and atn genera;, I.ree a efrna |ve|s or retpreser; Ing ime- ex-
specific set of strategy and support functions or if simplerten S aré natural. using four columns, two columns, or one

and more efficient code is preferred, it may be more reasor?plumn' Informix has a set of built-in data types and al-

able to internally “hard code” all function invocations. lows the user to construct new dgta types. The bwlt-m'data
An operator class for an access method is created usir pesDATEandDATETIMEare suitable for representation

the CREATE OPCLASStatement. The following example time. These would make it possible to store time extents
shows how the operator class fdr theree _amcan be of records in four columns of a table—one column for each
created (the GR-tree operator class and its functions are dgt TT1,TT2, VT1, andVT2—and values in Fhese columns
scribed in Section 5.2). would be of typeDATEor DATETIME But, since we want
CREATE OPCLASS art | FOR art to use the special values UC and NOW for2 and VT2,
STRATEGIES(gr ovegrglf':lgopgcrtascsontains griree_am respectively, the built-in data types are not suitable. To be

grt_containedin, grt_equal) able to interpret UC and NOW, a new date type must be con-

SUPPORT(grt_union, grt_size, structed, which would not be interpreted by Informix. Func-
grt_intersection); tions interpreting this type must be provided. This kind of
data type is termed aspaquedata type.
Step 5: Create storage space for a virtual index. As an alternative to having four columns for a time extent,
The space for a virtual index has to be created usingthe ~ two columns could be used: one representing an interval of
spaces command, see Section 5.3. valid time and another representing an interval of transac-

tion time. Yet another possibility would be to have only one

| X | ’ column, completely representing the time extent of a record.
A virtual index is created using tHBREATE INDEXState- s for the four-column alternative, opaque types have to be
ment. When creating a virtual index on a single column 0fq gty cted for these two alternatives. This could be done
on a number of columns, the operator class has to be speg; o ways. One way is to construct an opadpate type
ified for each column. The following example shows howgnhqrting values UC and NOW, and then to useléection

a virtual index is created in storage spEmE using the ya15 type with two (for intervals) or with four (for a whole
griree _amaccess method. time extent) members of the opadDatetype. Another way

Step 6: Create a virtual index.

CREATE INDEX grt_index is to directly construct an opaque tyjpeerval or Extent not
ON employees(columnl grt_opclass) using a collection data type.
IL#\ISISpC(;:' griree_am Issues related to the specifics of querying time extents and
' declaring operator class strategy functions affect the choice
of how to represent time extents.
5. Design Considerations for |mp|ementing the In order to correctly decode a time extent of a tuple, all
GR-Tree DataBlade its four time values must be interpreted together. This re-

stricts the design alternatives. To illustrate, consider the

Implementing the GR-tree DataBlade according to therecord in Table 3, whose corresponding bitemporal region is
steps outlined in the previous section, a number of technishown in Figure 5. Consider the query “Who worked in the
cal design issues had to be resolved; some solutions wefgles department during 7/97 according to the knowledge
not straightforward. This section reveals some of the hiddewe had during 5/97?” issued at the current time, 9/97. If
challenges that a DataBlade developer should be preparedtite valid- and transaction-time intervals are considered sep-
face. Section 5.1 discusses the choice of a new data type farately when answering this query, the answer will include
now-relative bitemporal data. Section 5.2 presents the GRlie. But this would be incorrect, becaug&2 is NOW
tree operator class. Section 5.3 provides insights into thend Julie’s bitemporal extent is a stair-shape, which does
possible index storage options. Deletions and the handlingot overlap with the given query region. Our “bitemporal”
of the database variables UC and NOW are discussed in tHenction cannot be replaced by two functions that consider
full version of the paper [5]. transaction- and valid-time intervals separately.

[Name | Department [TT1 [TT2 [VT1 | VT2 | In a similar manner, strategy functions in the GR-tree ac-

[Julie [Sales [3/97 [7/97 | 3/97 [NOW] cess method operator class @werlaps() , Equal() |,
Table 3. The EmpDep Relation Contains() , 'and Containedin() . Having a table
Employees with columns Name Department , and
vT Time _Extent and having a GR-tree index on the
query Time _Extent column, consider the following query.
0197 / SELECT Name

FROM Employees
WHERE Overlaps(Time_Extent,
"12/10/95, UC, 12/10/95, NOW")

Function Overlaps() takes two GRTTime-
Extent _t objects as input and returns a boolean value.
The Informix Server examines the WHERE clause of this
query as described above and decides whether or not to use
the index. If the index is not use@yerlaps() is invoked
for each table record. If the index is used, the function

Functions registered with th€€REATE FUNCTION must be invoked traversing the index from the root, looking
statement can be used in SQL statements. If a function i&r entries that have regions overlapping with the region
also declared as a strategy function in an operator class gpecified by'12/10/95, UC, 12/10/95, NOW"
an access method, an index can be used (if it exists) pro- Recall that the four timestamps in an internal-node en-
CESSing the SQL statement inVOIVing that funCtion. If thetry do not unique|y |dent|fy the Shape of the region (See
index is used, the Informix Server passes the relevant part &ection 3). This means that another function (let us call
the WHERE Clause to the indeX interface in a SpeCia| Struq'[Over|aps|nterna|()) shou'd be used to determine

ture called egualification descripto(which is a part of the \yhether the given region overlaps with a region encoded by
scan descriptor). This structure is restricted to accommogp internal-node entry. Bverlapsinternal() is reg-
date only single-column predicates, which implies that onlyistered as a UDR, a type for internal-node regions should
single-column functions can be declared as strategy fungjsg pe registered as an opaque type. In the following, we
tions, i.e., can be supported by a virtual index. discuss three alternatives for designing the GR-tree opera-
According to this, to enable virtual index usage processtor class. The alternatives differ in the extensibility they
ing an SQL statement with a WHERE clause including aprovide and in the simplicity and efficiency of the access-
bitemporal function (requiring four time extent values), thismethod code.
function must be a single-column function. A time extent The first and simplest alternative is not to create a new

of a record thus cannot bg represented using four or tWBpaque type for internal-node regions. To avoid this, all
columns, so we represent it as one column, and the valu@grategy and support functions that take as arguments or re-
in this column are of our newly created opaque data typ&ym as results internal-node regions must be “hard coded.”

GRTTimeExtent t. . Hard coding makes it impossible to extend the existing op-
The lastissue to consider about date types in the GR-trégator class or to create new ones. For example, if we
is the time granularity. For our prototype implementation,qyq not register a new opaque type and hard coder-

7197]

3/97]

1/97”\111111551
3/97 7/97 CT T

Figure 5. Time Extent of the Julie Record

we chose a granularity of days, as provided by BTE |5psinternal() , a new operator class, whe@ver-
type. Many other possibilities exist, one being fractions of §ap5() s replaced by a new strategy function, cannot be
second, as provided by tRATETIMEtype. defined. Implementing a new version Giverlaps()
would mean that a neWverlapsinternal() should
5.2. The GR-tree Operator Class be implemented, and this cannot be done, because the old
In the default operator class of the R-tree access methotiard-coded version dDverlapsinternal() is called
the strategy functions includ®verlap() , Equal() , fromthe purpose functions.
Contains() , andWithin() , and the support functions The second alternative is to create a new opague data
include Union() , Size() , andInter() . When the type for internal-node regions. Then a function oper-

guery optimizer examines a WHERE clause that involvesating on internal-node regions (such @werlapsin-

some function on some column, it checks if this column hasernal()) could be registered as a UDR under the
an R-tree defined on it. If it does, and if the function is onesame name as the corresponding function operating with
of the strategy functions of the operator class of the R-tre&RTTimeExtent _t objects, e.g.Overlaps() . Fol-
access method, the optimizer can choose to use the R-treeltwing this approach, implementing a new strategy function
process the SQL statement (see Section 4). would mean additionally implementing its "internal” func-

tion for internal-node regions. This way, the operator clasgause there is no public interface for accessing dbspaces.
would be extended for internal-node regions. Before investigating each of the two available options, we

Yet another approach would be to have a single typdirst briefly recall the proposals for concurrency control and
GRTTimeExtent _t that would encode both the internal- recovery in tree-based index structures.

node regions and the bitemporal regions stored in database The simplest solution to concurrency problems in a tree-
tables and leaf-nodes of an index. To use space efficientlpased index structure is to lock the entire tree or the subtree
this opaque data type can be declared to have a variabiigat needs to be modified. The upper levels of the subtree are
length. The main requirement is that tverlaps() locked so that only readers can access them [2]. To achieve
function should be able to determine whether its argumentguch higher levels of concurrency, B-link trees [18] and R-
are real bitemporal regions or internal-node regions. Thigink trees [15] were proposed, and Kornacker et al. [16] gen-
approachis followed by Informix in its R-tree access methoralized the ideas of R-link trees to apply to a broader class
implementation. of tree-based access methods. Using the link-based concur-

The latter two approaches make it possible to extend thgancy control protocols, a lock on a parent node can be re-
existing operator class and to create new ones with new or rgzased before visiting a child node. To use this protocol in
defined functions. The cost for such extensibility is the overan access-method DataBlade, either the Informix Server or
head of dynamic resolution and execution of strategy anehe DataBlade developer must provide the full management
support functions. Since the GR-tree is an access methast locks on the tree nodes. The recovery protocol proposed
for a quite specific data type, the hard-coding approach iBy Kornacker et al. in addition calls for special types of log
used in the GR-tree DataBlade implementation. records and a logical undo capability.

One of the shortcomings of Informix’s operator class |nformix’s own predefined R-tree access method stores
framework and the UDR framework in general is that thergis indices in dbspaces, the Informix page manager pro-
are rather limited means of telling the query optimizer abougiges the appropriate concurrency control, and the Informix
associations between UDRs. To illustrate this, consider thig,y manager provides the appropriate recovery mechanisms.

situation: the GR-tree operator class contains a strateghys, the R-tree access method can implement the above-
functionOverlap() , but does not contain a strategy func- jentioned R-link mechanism.

tion Equalll() 'th. I a user gsks tIE a qijerlylfc:jr regl'(lnlns iht?t For sbspaces, Informix provides automatic two-phase
are gqll_J'a w atﬁlvent.regmn, elde uatk:n 'eg Wlt n: q elt)cking at the large-object level. Locks are acquired upon
used. However, tne optimizer could use the index o find a pening a large object for reading or writing and, depend-
regions that overlap with the given region and then chec

heth tth | (sianificantlv | : " g on the lock mode and the isolation level of a transaction,
whetherornotthey are equal (significantly eSS regions Wiy re released either upon closing the object or at the end of
have to be retrieved from disk). But there is no way of

. - . . a transaction. The DataBlade developer may vary the num-
telling the optimizer that if two regions do not overlap, they

tb I b Informi v all ¢ 7 ber of large objects used for storing index data. Possibilities
cannot be equal, because nformix only aflows 1o sDeCIfyrange from storing the whole index in one large object, hav-
that one function is a negator of another function (return

X X ?ng the least possible concurrency, to storing each index node
the opposite, given the same set of .valu.es, &qual() in a separate large object. The latter option has the serious
and NotEqual() .) or that one function is a comm'utator drawback that the large-object handles that should be stored
of another funct|on' (retumns the same result when its a4 the internal nodes of a tree (as pointers to child nodes) are
ments are passed in reverse order, &geaterThan() relatively large. In addition, opening and closing large ob-
andLessThanOrEqual()). jects can be time consuming. It may be worth investigating
design options in-between these two extremes, where large
objects do not store single nodes, but several nodes, e.g.,

In this section, we consider the possibilities available forsubtrees. Such a design would require policies for assigning
index storage. The choice of storage mechanism has imporodes to large objects and for migrating them between large
tant implications for concurrency control and recovery. Objects. In our implementation, we chose a single large ob-

A developer of an access method DataBlade has two opect for the whole index.
tions for the storage of an index. One possibility is to store A developer of an access-method has no control over the
index data outside the Informix data space, e.g., in a reguecking of large objects, nor over logging and recovery. For
lar operating system file. Another possibility is to store theexample, it is not possible to unlock a large object storing
index as one or several large objects, in a so-called smarsome internal node while traversing a tree. If the repeatable-
blob space, abbreviatedhspace Table data as well as data read isolation level is set, even the shared locks on large ob-
for built-in access methods such asBees or R-trees are jects will be released only when a transaction commits. This
stored indbspacesn the Informix Server. We do not con- implies that the concurrency control and recovery protocols
sider this latter option for an access-method DataBlade bef Kornacker et al. cannot be implemented using large ob-

5.3. Storage Options, Concurrency, and Recovery

jects. core was implemented in C++ beforehand. The access
Storing index data in a regular operating system file imimethod purpose functions turned into a layer connecting the
plies that all concurrency control and recovery protocolsalready-implemented access-method core to the Informix
must be implemented by the access-method developer. &erver.
seems that it is possible to implement concurrency con- All purpose functions were implemented except
trol integrated with the transaction management of Informixamscancost() , amstats() , and amcheck() ;
Server using transaction-end callbacks. However, there athese three are not necessary for an access method to be
no means to integrate the access-method recovery with tloperational. Most of the implemented purpose functions
Informix Server's recovery subsystem. Although, usingrequired only little coding because their main tasks were to
an operating system file, the developer has the freedom tavoke already-implemented GR-tree-core functions. The
implement any desirable concurrency control and recovergreas that required more additional coding were the manip-
protocols, their implementation are complicated and timeulation of BLOBS, the large object storing the index, and the
consuming tasks. Neither the DataBlade API nor the Virtuamanipulation of the qualification descriptor. The main de-
Index Interface API provide any low-level services to assistsign tasks for the writing of the purpose functions included
Summarizing, shspaces provide too high-level and too ineonsiderations on how to re-use search information during
flexible services for storing index data, rendering “industrialthe index scangm.getnext() returns one qualifying row
strength” concurrency control and recovery impossible. Orat a time) and how to implement deletions [5].
the other hand, the external-file option is also not attractive Being quite useful for addition of new data types, Blade-
because the APIs provide very little support for implement-Smith provides virtually no support for developing access

ing concurrency control and recovery. method DataBlades. The purpose functions and operator-
class functions are defined as regular routines in a Blade-
6. Implementation Smith’s project. Thus, only their prototypes were generated

.))) in a C source file. Function bodies and the SQL code for
In this section, we briefly describe the tools used and theegistering and un-registering an access method and opera-

main implementation tasks that were necessary developingy classes have to be hand-written by the developer.
the GR-tree DataBlade. More details about these subjects,

as well as some hints about the coding guidelines and testing. Conclusions

options are given in the full version of the paper [5].
Prompted by the need for the effective and efficient man-

6.1. Tools Used agement of new kinds of complex data, the major DBMS
vendors are proposing solutions that enable the users them-
selves to extend the DBMS. In the Informix Server, user-
%efined access methods can be created as DataBlades. We

o defi d i tt ¢ DataBlade obi trimplemented the GR-tree index for now-relative bitemporal
0 gefine and manage aifierent types of Lalablade objeCly iy 45 5 DataBlade prototype with the goals of assessing

such as data types and routines [10]. Based on the deﬁn['ﬁe applicability of Informix for such a task; of identifying

tions of these objects, BladeSmith automatically generat;Ee weaknesses and strengths of the Informix Server archi-

C source code (type-support functions and skeletons of cture and its APIs and services supporting user-defined ac-

routines), SQL scripts, test files, and installation files for &.ess methods: and of measuring the required development
DataBlade. Sfforts '

The DataBlade developer has to flesh out the provide Our experience shows that a prototype of an access

skeletons and to _compll_e the code, bglldlng a _shared IIF’nethod DataBlade can be developed relatively fast, provided
brary (pr a dynamic link library under Microsoft WII’]dOWS). that the index structure and algorithms are already in place.
that will be loaded by the server when the DataB.Iade' one of the obstacles that any access-method DataBlade de-
used. The SQL scripts contain the code for reglste”ng?/elopercurrentlyfaces is the lack of good documentation on

and un-registering all DataBlade objects and their mterre,[—he topic. As of this writing, the "Virtual-Table Interface

lationships in the system catalog tables. The scripts arﬁrogrammer’s Manual” [12] is on hold, and the "Virtual-

run.by BIadeManager—a Gl tool fgr reg|ster|ng and U 1ndex Interface Programmer’'s Manual” [11] is access re-
registering DataBlade for databases in the Informix Server.Stri cted

6.2. Tasks Performed A major technical challgnge d'eveloping a .tree-base.d. ac-

cess method DataBlade is the implementation of efficient

The tasks performed when implementing the GR-treeoncurrency control and recovery mechanisms. Currently,
DataBlade are given in Table 4. They required a total ofnformix provides two possibilities for index storage: an in-

about 4.5 person-months of efforts, but the access-methatéx can be stored as a regular operating system file or as

Informix provides a set of tools, called the DataBlade
Developer’s Kit, that support DataBlade development. Th
core tool is BladeSmith, a GUI tool that allows a develope

| Task

| Complexity | LOC]

Adapting the existing code to the DataBlade coding guidelines. low —
Defining the structure of the opaque type. average —
Including UC and NOW handling in opaque-type support functions. low 30
Writing operations on the opaque type. low 30
Designing the operator class framework. high —
Writing access method purpose functions. high 1020

Writing BLOB manipulation functions.

average 280

Writing functions manipulating the qualification descriptor.

average 120

Table 4. Tasks, their Complexity, and Required Lines of Code

one or several so-called large objects inside Informix. While [3]
the first option is too “low-level,” leaving implementation of
all concurrency control and recovery mechanisms to the de-
veloper, the second is too “high-level,” providing automatic [4]
locking for large objects that is unlikely to be efficient in a
multi-user environment for access methods. [
The operator class framework makes it possible to use
several variations of the same access method, but it is not
easy to understand, and may be improved. Different op- [6]
tions concerning the usage of operator classes (cf. Sections 4
and 5.2) are not immediately clear and are not adequatelym
discussed in the documentation. Strategy functions can take[g]
only single-column arguments; in our case, this restriction
forced us to define the bitemporal extent of a tuple as one
data type. [9]
We feel that the existing framework for extending the In-
formix DBMS kernel with user-defined access methods rep{10]
resents a great advance, but it is still only a first step. Fol-[ll]
lowing the ideas of Hellerstein et al. [8] and Aoki [1], a
generic, extendible tree-based access method with “indu:hz
trial strength” concurrency control and recovery protocols
could be integrated into the kernel of the DBMS. Such a[13]
generic access method would support a broad class of tree-
based access methods by providing a simple, high-level ex14]
tension interface that isolates the primitive operations re-
quired to construct new access methods [1]. It is also pos-
sible to implement a generic access method as a DataBla £5]
and use specially designed operator classes to extend it.

(16]
Acknowledgements

This research was supported in part by the Danish TeChf17]
nical Research Council through grant 9700780, by the
Chorochronos project, funded by the European Commission

DG XIl, contract no. FMRX-CT96-0056, and by a grant [18]
from the Nykredit Corporation.

(19]
References
: . . . (20]
[1] P. M. Aoki. Generalizing “Search” in Generalized Search
Trees.Proceedings of ICDEFpp. 380-389 (1998). [21]

[2] R. Bayer and M. Schkolnick. Concurrency of Operations on
B-TreesActa Inf, 9:1-21 (1977).

N. Beckmann et al. The RTree: An Efficient and Robust
Access Method for Points and RectanglPsoceedings of
ACM SIGMOD pp. 322-331 (1990).

R. Blivjute, C. S. Jensen, S. Saltenis, and G. Slivinskas. R-
Tree Based Indexing of Now-Relative Bitemporal D&eo-
ceedings of VLDBpp. 345356 (1998).

5] R. Bliujute, S. Saltenis, G. Slivinskas, and C. S. Jensen. De-

veloping a DataBlade for a New IndexiIME CENTER Tech-
nical Report TR-29 (1998).

J. Clifford et al. On the Semantics of “NOW"” in Databases.
ACM TODS 22(2):171-214 (1997).

A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
SearchingProceedings of ACM SIGMQpp. 47-57 (1984).
J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized
Search Trees for Database Systemceedings of VLDB
pp. 562-573 (1995).

INFORMIX-Universal Server DataBlade API User's Guide.
(21997)

INFORMIX. DataBlade Developers Kit User’'s Guide.
(1997)

INFORMIX. Virtual-Index Interface Programmer’s Manual
(1997).

] INFORMIX. Virtual-Table Interface Programmer’s Manual

1997).

(C. S. ?]ensen and R. Snodgrass. Semantics of Time-Varying
Information.Information System£1(4):311-352 (1996).

C. S. Jensen et al. A Consensus Glossary of Tempo-
ral Database Concepts. [femporal Databases: Research
and Practice O. Etzion, S. Jajodia, and S. Sripada (eds),
Springer-Verlag, pp. 367—-405, (1998).

M. Kornacker and D. Banks. High-Concurrency Locking in
R-TreesProceedings of VLDBop. 134-145 (1995).

M. Kornacker, C. Mohan, and J. M. Hellerstein. Concurrency
and Recovery in Generalized Search Tré&mceedings of
ACM SIGMOD pp. 62—72 (1997).
A. Kumar, V. J. Tsotras, and C. Faloutsos. Designing Access
Methods for Bitemporal DatabaséBEE TKDE 10(1):1-20
(1998).

P. Lehman and S. Yao. Efficient Locking for Concurrent Op-

erations on B-TreeACM TODS 6(4):650-670 (1981).

B. Salzberg and V. J. Tsotras. A Comparison of Access Meth-
ods for Temporal Data. TimeCenter TR-18 (1997). To appear
in ACM Computing Surveys

R. T. Snodgrass. The Temporal Query Language TQuel.
ACM TODS 12(2):247-298 (1987).

R. T. Snodgrass et athe TSQL2 Temporal Query Language
Kluwer Academic Publishers (1995).

