The TEMPIS Project

Architectural Extensions to Support Multiple Calendars

Michael D. Soo, Richard Snodgrass,
Curtis E. Dyreson, Christian S. Jensen, and Nick Kline

Revised May, 1992

TEMPIS Technical Report No. 32

Copyright © 1993 Michael D. Soo, Richard Snodgrass,
Curtis E. Dyreson, Christian S. Jensen, and Nick Kline

Department of Computer Science
University of Arizona
Tucson, AZ 85721

The TEMPIS Project

Architectural Extensions to Support Multiple Calendars

Michael D. Soo, Richard Snodgrass,
Curtis E. Dyreson, Christian S. Jensen, and Nick Kline

Revised May, 1992

Abstract

We describe in detail a system architecture for supporting a time-stamp attribute domain in con-
ventional relational database management systems. This architecture underlies previously proposed
temporal modifications to SQL. We describe the major components of the system and how they
interact. For each component of the system, we provide specifications for the routines exported by
that component. Finally, we describe a preliminary design for a toolkit that aids in the generation
of the components of the database management system that support time.

TEMPIS Technical Report No. 32

Copyright © 1993 Michael D. Soo, Richard Snodgrass,
Curtis E. Dyreson, Christian S. Jensen, and Nick Kline

Department of Computer Science
University of Arizona
Tucson, AZ 85721

Contents

1 Introduction

2 Example Language Constructs

3 Architectural Overview

4 Global Design Decisions

5 Time-stamp ADT Support
5.1 External Data Structures e
5.2 Externally Visible Routines o

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6

Memory Allocation e
Built-in Function Support Lo
Arithmetic Operations Support oL,
Comparison Operations Support
Aggregate Function Support oo
Time-stamp Creation and Manipulation

5.3 Internal Data Structures e e

6 Uniform Calendric Support
6.1 External Data Structures e
6.2 Externally Visible Routines

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9

External Data Structure Allocation
Span Arithmetic Support L L
Span Comparison Support L Lo
Span Aggregate Function Support 0oL
Property Management e
Temporal Constant Translation 0. ...
Time-stamp Translation Support
Calendar Function Binding and Invocation
Calendric System Activation Support

6.3 Internal Data Structures e

7 Calendars

7.1 External Data Structures e e
7.2 Externally Visible Routines o o

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7

Data Structure Allocation o o o
Time-stamp Translation
Constant Translation o o
Span Arithmetic Support L L
Span Comparison Support Lo
Span Aggregate Function Support 0oL
Variable Span to Fixed Span Conversion

7.3 Internal Data Structures e

28
28
30
30
30
33
34
34
36
37
38
39
40

8 Field Value Support

8.1 External Data Structures e
8.2 Externally Visible and Internal Routines
8.3 Internal Data Structures e

9 Examples
9.1 Adding Variable Spans and Events

9.2 Span Arithmetic L
9.3 Aggregate Computation L L L
9.4 Property Table Example L
9.5 Time-stamp and Temporal Constant Translation

9.5.1 Time-stamp To String Translation
9.5.2 String To Time-stamp Translation

10 Calendar DBMS Generation Toolkit
11 Future Work

Acknowledgements

Bibliography

Exported Routine Prototypes

Exported Types

ii

53
53
53
55

56
56
56
57
57
59
59
61

62

64

65

65

66

70

1 Introduction

This paper is a detailed description of the design of the architectural extensions to a database
management system (DBMS) supporting multiple calendars. The paper contains descriptions
of the modules comprising the architectural extensions, with detailed descriptions of the services
provided by each module. In addition, the data structures used by each system module are included.

It is assumed that the reader is familiar with two papers. First, the system architecture under-
lies query language modifications to SQL. The modified SQL supports calendric system selection,
property table selection, and calendar independent temporal built-in functions, arithmetic opera-
tions, comparison operations and aggregate functions [Soo & Snodgrass 1992A]. Second, this paper
concentrates on describing the details of the architecture, and it provides minimal motivation for
the system design. The discussions motivating particular design decisions are the topic of a separate
paper [Soo & Snodgrass 1992B].

The paper is organized as follows. In Section 2 we briefly summarize some of the query language
features supported by the architecture. The next two sections contain an overview of the architec-
ture and general comments on design decisions pertaining to all modules. Section 5 discusses the
operations for time-stamp manipulation. Section 6 describes support for accessing calendar and
calendric system provided services. The next section details the services provided by calendars.
Section 8 details the module that makes possible the use of multilingual temporal constants. Sec-
tion 9 contains examples illustrating how components in the architecture interact. A set of tools
for generating a multiple calendar DBMS from high level specifications is described in Section 10.
The appendix contains indexes for the function and data type definitions.

2 Example Language Constructs

Figure 1 shows an excerpt of an SQL module. The example illustrates many of the ways in which
calendric systems and property tables may be specified; it is not intended to be realistic. A full
description of the language features is provided elsewhere [Soo & Snodgrass 1992A].

declare calendric system as russian;

declare x cursor for
select name, id, birthday,
age with property_table_a, when_employed as american
from employee
where month name of (birthday) = ’jinvar’ and
birthday < |2 jinvar 1925| and
age > %60 years’, as american with property_table_b
when_employed overlaps [1975];

procedure set_x_properties

sqlcode

set properties with x_property_table;
declare calendric system as american;
procedure open_x_cursor

sqlcode
open X;

Figure 1: Example of Calendric System and Property Selection

The russian calendric system is declared in the global scope. The scope of this declaration
extends to the next global declaration, naming the american calendric system. The russian cal-
endric system applies to the birthday and age attributes in the target list of the select statement
since, unlike the when_employed attribute, no calendric system is locally declared for these at-
tributes via an as clause. Similarly, the russian calendric system is used to resolve the function
month name_of, and to interpret the constants |2 jinvar 1925] and 1975 (“Jinvar” is a phonetic
translation of the Russian word for “January”), while the american calendric system is used to
interpret the span %60 years). We note that, in this instance, the function month name_of is
defined via the russian calendric system and returns Russian month names.

In Figure 1, the procedure set_x_properties contains a command that activates the property
values contained in the property table x_property_table. Invocation of this procedure causes the
property values contained in that table to be activated. These values remain active until explicitly
overridden by another set properties command. For example, if an application program calls
the procedure set_x_properties prior to calling the procedure open x_cursor then the property
values specified in x_property_table override the property values in the default property table.

Conversely, naming a property table for an individual data item limits the activation of it’s
property values to the processing of that data item. For example, associated with the attribute
age in the select clause is a property table property_table_a. The property values in this table
are activated temporarily while time-stamps are being converted for the age attribute.

3 Architectural Overview

Figure 2 contains a diagram showing the major components of the system. Each box in the
figure represents a component of the system; a solid line arrow from one component to another
indicates that the former utilizes services provided by the latter. Data structures (non-procedural
components) are shown as ovals, and a dashed line arrow indicates a data structure contains a
reference to another component.

Uniform Calendric Support Field Value Support
(UCs) (FV)

Syntax analyzer / Calendric system Calendric system Field value table
| Semantic analyzer }’ / g “' ____________ "~.=\

£ s e Field value table
- | Calendar l | Calendar] Y | Calendar |
Run-time support / \

l | Field value routind (X OI Field value routine |

Time-stamp ADT
(TADT)

Query Processor

Figure 2: System Architecture Overview
The figure shows the following components.

e Query processor—a conventional query processing system extended to support the new tem-
poral constructs.

¢ Uniform calendric support (UCS)—an interface that manages access to the services provided
by calendars. Each calendric system is defined as a collection of data structures within the

UCS. Within the architecture, calendric systems have no procedural component; they merely
provide a mechanism for accessing the services exported by their calendars.

e Iield Value Support (FV)—a set of tables and routines supporting extensible formatting of
temporal constants.

e Calendar—a set of tables and routines implementing calendar dependent operations. We
note that, as shown in Figure 2, calendars can be shared by multiple calendric systems.

e Time-stamp ADT (TADT) support—a set of routines encapsulating operations on physical
time-stamps. The TADT implements all temporal operations that do not require interpreta-
tion by a calendar.

In Figure 2, it is readily apparent that the support for calendar dependent operations is parti-
tioned from the support for calendar independent operations. The UCS is responsible for execut-
ing, by using the appropriate calendric system, all calendar dependent operations. The TADT, on
the other hand, provides calendar independent operations, specifically, memory management and
built-in, arithmetic, comparison, and aggregate operations on time-stamps.

This distinction is the key aspect of our approach. We isolate operations requiring calendar
interpretation by encapsulating them within a calendar, and provide calendar independent oper-
ations elsewhere. This allows the architecture to support extensibility and interchangeability of
calendric systems and calendars.

As an example, consider the arithmetic operation of computing the sum of two span values
[Soo & Snodgrass 1992A]. Variable spans require calendar interpretation while fixed spans do
not. Therefore, the TADT exports an operation tadt_fs_add_fs which adds two fixed spans,
while a specific calendar calendar must provide an operation for adding a variable span to a fixed
span, cal_calendar_vs_add fs, and an operation for adding a variable span to a variable span,
cal_calendar vs_add _vs. The UCS exports a generic span addition operation, ucs_s_add_s. The
query processor invokes ucs_s_add_s whenever a span addition operation is performed. ucs_s_add_s
uses the TADT operation tadt_is_fs to determine if its operands are variable or fixed spans, then
calls the appropriate TADT or calendar routine. Section 9.2 elaborates on this example.

Extensibility of calendric systems and calendars is central to our architecture. We therefore
support definition of calendric systems and calendars by local site personnel. A base version
of the DBMS will likely include several calendars and calendric systems, and these calendars
and calendric systems will be adequate for most users. In addition, we anticipate a market for
customized calendars and calendric systems with third party vendors specializing in developing
such solutions.

Calendar and calendric system definition will be performed by a database implementor (DBI),
a person with sufficient knowledge of the internal workings of the database management system
to implement calendar-defined functions and routines. The DBI is responsible for supplying the
supporting components of calendars and calendric systems and generating the resulting database
management system. To simplify this task, we provide a calendar DBMS' generation toolkit that
accepts calendar, calendric system, and field value specifications provided by the DBI and composes
the DBMS from those specifications and preexisting components. The design of the generation
toolkit is presented in Section 10.

We continue by describing the system components shown in Figure 2 in more detail. For each
component in the figure, we describe the functions that comprise it. The functions are specified
using their name, a description of their purpose, input and output parameters, return values, and
error codes. Function signatures are given in ANSI C.

4 Global Design Decisions

This section discusses design decisions that are pertinent to every architectural module.

Time-stamps are stored in memory during processing. Memory to store a time-stamp can be
allocated by request of the run-time system, the UCS, or the TADT. It is the responsibility of the
module that requested memory for a time-stamp to free that memory when it is no longer needed.
When memory is requested for a time-stamp, the request always demands the maximum possible
time-stamp size because a time-stamp may change size as a result of an arithmetic operation. For
example, the result of adding a high resolution event time-stamp (8 bytes) to a low resolution
fixed span time-stamp (8 bytes), could be an extended resolution event time-stamp (12 bytes).
By allocating 12 (or more) bytes initially, the result can be stored safely in memory. Although
this memory allocation scheme wastes some space, there will be few time-stamps in memory at
any time. Furthermore, it eliminates a run-time check to ensure that the target of a time-stamp
assignment is spacious enough to receive the time-stamp.

Memory for aggregate structures is allocated by the aggregate initialization routines and freed
by the run-time system. Calendars may only allocate memory for aggregates. All other calendar
data structures must be static. This reduces the possibility of memory leaks caused by faulty
calendar implementations. In general, however, we will assume that calendar implementations
are well-behaved. For example, no UCS or TADT routine checks the validity of run-time data
structures (e.g., that a time-stamp is actually an event) passed by a calendar implementation. The
data structures are assumed to be valid.

Another system-wide design feature is a uniform and consistent error handling discipline. Every
architectural module uses the same error handling strategy. Only some routines can detect run-
time errors; those routines return a value of error_type. If a routine detects an error during
processing, it immediately returns the appropriate error code to the callee. The callee is responsible
for recovering from the error (or, if it cannot recover, passing the error up the calling stack). A
routine that detects an error must leave all input and output parameters unchanged. If no error
is detected, the routine returns an ok value (defined to be 0).

Error codes are either defined on a per component basis as part of the external data structures
or defined globally as part of the error type. Error codes which are germane to more than one
component are globally defined. For example, the system has an out_of_range error code. This
error code would be returned by a time-stamp arithmetic routine that detected that the result
of a time-stamp arithmetic operation exceeded the maximum or minimum representable time.
out_of _range is a global error since it could be returned by a calendar routine, the TADT, or the
UCS. On the other hand, some TADT routines return a tadt_error_type. This type also includes
a value tadt_ok, with the same value, 0, as ok.

The header comment for each routine that returns an error code indicates which error codes
it can return. Every routine can return the ok value. We omit this fact from the routine header
comments for brevity.

Below are system-wide data structures, including those for error handling.

typedef enum {
ok, /* successful completion of the routine x/
out_of range,
divide_by_zero,
overflow,
undefined _extremum,
conversion_error,
insufficient_space,
semantic_error,
string overflow

} error_type;

typedef enum { FALSE, TRUE} bool;

/%
xused to pass strings parameters
*/

typedef struct {
int length;
char *string;
} #string struct;

5 Time-stamp ADT Support

As previously mentioned, the TADT is responsible for all temporal operations that do not require
calendar interpretation. This includes all operations on event, interval, and fixed span values plus
auxiliary operations for time-stamp manipulation. The representations of all such values as stored
in the database are necessarily calendar independent [Dyreson & Snodgrass 1992]. Operations
involving variable spans require calendar support and are not implemented by the TADT.

Table 1 shows the types of operations supported by the TADT along with a count of routines
for each operation type.

‘ Operation ‘ Number of Routines ‘
Built-in operations 9
Memory operations 10
Arithmetic operations 11
Comparison operations 13
Aggregate operations 30
Time-stamp creation and manipulation 12

Table 1: Time-stamp ADT Operations

As shown in Figure 2, the operations provided by the TADT are used by the run-time support of
the query processor, the UCS, and any calendars defined in the system. The query processor invokes
the TADT to allocate runtime data structures, as well as to execute all built-in, memory allocation,
arithmetic, comparison, and aggregate operations involving non-span operands. A calendar calls
the time-stamp creation routines of the TADT while computing a time-stamp equivalent to a
temporal constant encountered in the input. The UCS invokes the TADT to execute fixed span
operations, as we discuss in Section 6.

5.1 External Data Structures

Operations on event, interval, and fixed span values are operations on complex time-stamp data
structures. However, the complexity of these data structures is hidden from the other architectural
components, beneath a simple interface advertised by the TADT. The data structures presented
below are part of this interface and are needed to facilitate efficient communication with the TADT.

typedef enum {
tadt_ok,
tadt_invalid size, /+time-stamp space errork/

tadt_invalid_interval, /+interval errorx/
tadt_truncation /xhad to truncate time-stampx/
} tadt_error_type;

/%
*The internal '"space' datatypes are defined elsewhere

*/

typedef event_space_type xevent_type;

typedef span_space_type *span_type;

typedef interval_space_type *interval_type;

typedef timestamp _space_type *timestamp_type;

typedef enum { hi, low, extended, special} resolution_type;

typedef enum { beginning, forever, undefined} special_value_type;

/%
*Unpacked time information structure

*/

typedef struct {
resolution_type resolution;
special value_type special;
unsigned char sign;
unsigned short milli; /+max value is 1000x/
unsigned short micro; /+max value is 1000x/
unsigned short nano; /#max value is 1000x%/
unsigned int secondshi; /#max value is 2%*27%/
unsigned int secondslo; /#max value is 2%*32x/
unsigned int extra; /+we currently support only 1 extra word of precisionk/
} seconds_space_type;

typedef seconds_space_type *seconds_type;

/%
*Unpacked variable span information structure

*/

typedef struct {
short parami;
short param2;
short param3;
unsigned char cal_id;
unsigned char span_id;

} vs_space_type;

typedef vs_space_type xvs_type;

/%
xAggregate structures
*/

typedef struct {
int count;
event_type sum_of _events;

} *avg_state_e;

typedef struct {
int count;
span_type sum_of_spans;

} *avg_state_fs;

5.2 Externally Visible Routines

In this section, we describe the routines comprising the TADT.

5.2.1 Memory Allocation

The TADT must allocate memory for new events, intervals, spans, and other data structures. Each
TADT external data structure is allocated by a different routine. There is also a general allocation
routine, tadt malloc. Allocated memory must be de-allocated when it is not longer needed using
the tadt_free routine. This memory area is managed very similarly to the standard Unix memory
allocation routines. The memory management routines follow.

/%
*Routine: tadt_malloc
*

xDescription: Allocate storage from the TADT memory heap. Marks a region

* of mem_size bytes which is now in use. If no more memory

* can be allocated, the behaviour of this function is undefined.
*

xArguments: size —- (IN): the number of bytes to allocate

*

*Return Value: The address of allocated memory
*

*Errors: None

*

*Side Effects: Some of the TADT heap is marked as in use. This may lead
* to memory leaks later on.

*/

void *tadt_malloc(int size);

/%

*Routine: tadt_free

*

xDescription: Frees previously allocated storage

*

xArguments: address —-- (IN): address of previously allocated storage
*

*Return Value: TRUE if the address was de-allocated, FALSE otherwise
*

*Errors: None

*

*Side Effects: If the address has not been allocated previously, then
* this will could lead to internal errors.

*/

bool tadt_free(void *address);

-~

iéoutine: tadt_allocate e

IDescription: Memory allocation for an event

IArguments: resolution -- (IN): which resolution to allocate
IReturn Value: Address of allocated event

:Errors: None

*
*Side Effects: Mallocs space
*/

event_type tadt_allocate_e(resolution type resolution);

/%

*The remaining memory allocation routine prologues are omitted for brevity

*/

span_type tadt_allocate s(resolution type resolution);

interval type tadt_allocate_i(resolution_type resolutionl, resolution_type resolution2);
timestamp_type tadt_allocate_ts();

vs_type tadt_allocate vs_struct();

avg _state_e tadt_allocate_avg state e();

avg state fs tadt_allocate avg state fs();

string struct tadt_allocate string struct();

5.2.2 Built-in Function Support

The built-in function component of the TADT provides support for the built-in query language
functions.

iéoutine: tadt_begin

IDescription: Returns the event delimiting the beginning of the interval
IArguments: interval -- (IN): the input interval

* result -- (OUT): result event

IReturn Value: Error code

IErrors: None

*

xSide Effects: Assignment to passed result structure

*/

tadt_error_type tadt_begin(interval type interval, event_type result);

iéoutine: tadt_end

IDescription: Returns the event delimiting the end of the interval
IArguments: interval -- (IN): the input interval

* result -- (OUT): result event

IReturn Value: Error code

IErrors: None

*

xSide Effects: Assignment to passed result structure

*/

tadt_error_type tadt_end(interval_type interval, event_type result);

/%

*Routine: tadt_interval

*

*Description: Constructs an interval from two input events,

* if eventl >= event2 then it flags an error
*

xArguments: eventl -- (IN): the beginning of the interval
* event2 —— (IN): the end of the interval

* result -- (OUT): result interval

*
*Return Value: Error code

*

¥Errors: tadt_invalid_interval

*
xSide Effects: assignment to passed result structure
*/

tadt_error_type tadt_interval(event type eventl, event_type event2, interval_type result);

/%

*Routine: tadt_intersect

*

*Description: Returns the overlap of two intervals, if

* they intersect. Otherwise leave the result

* unchanged.

*

xArguments: i1, i2 -- (IN): intervals for intersection

* result —-- (OUT): result interval if intervals intersect

*
*Return Value: Error code

*

¥*Errors: tadt_invalid_interval

*
xSide Effects: Assignment to passed result structure

*/

tadt_error_type tadt_intersect(interval type il, interval type i2, interval_ type result);

iéoutine: tadt_span

IDescription: Returns the span of an input interval, a positive span
IArguments: interval -- (IN): the input interval

* result -- (OUT): result span

IReturn Value: Error code

IErrors: None

*
xSide Effects: Assignment to passed result structure

*/

tadt_error_type tadt_span(interval type interval, span_type result);

iéoutine: tadt_abs_fs

IDescription: Returns the absolute value of a fixed span
IArguments: span -- (IN): input span

* result -- (OUT): result positive span
IReturn Value: Error code

IErrors: None

*
xSide Effects: Assignment to passed result structure

*/

tadt_error_type tadt_abs fs(span_type span, span_type result);

iéoutine: tadt first

IDescription: Returns the earlier of two events
IArguments: eventl, event2 —- (IN): two input events
* result —-- (OUT) earliest event.

IReturn Value: Error code

IErrors: None

*

xSide Effects: Assignment to passed result structure

*/

tadt_error_type tadt first(event_type eventl, event_type event2, event_type result);

iéoutine: tadt_last

:Description: Returns the later event of two events
IArguments: eventl, event2 —- (IN): two input events
* result -- (OUT): latest event.

IReturn Value: Error code

IErrors: None

*

xSide Effects: Assignment to passed result structure

*/

tadt_error_type tadt_last(event_type eventl, event_type event2, event_type result);

iéoutine: tadt _present

IDescription: Returns the present time
IArguments: result -- (OUT): present event
IReturn Value: Error code

IErrors: None

*

xSide Effects: Assignment to passed result structure
*/

tadt_error_type tadt_present(event_type result);

5.2.3 Arithmetic Operations Support

The arithmetic component of the TADT is shown below. A single routine is provided for commu-
tative operations such as addition and multiplication.

The names of dyadic arithmetic functions have the form tadt_operandl_operalion_operand?2
where operandl denotes the type of the first operand, operation denotes the arithmetic operation
being performed, and operand?2 denotes the type of the second operand. Monadic functions follow
an analogous naming convention.

/*

*Routine: tadt neg-fs

:Description: Determine the sign opposite fixed span which is otherwise the
* same as the input span. Has no effect on a zero length

* span.
*

10

xArguments: span -- (IN) : span to be converted
* result -- (OUT) : result span

*

*Return Value: Error code

*

*Errors: None

*
xSide Effects: Assignment to passed result structure
*/

error_type tadt neg fs(span_type span, span_type result);

igoutine: tadt fs_add fs

:Description: Add two fixed spans

IArguments: spanl, span2 -- (IN) : spans to be added
* result -- (OUT) : result span

:Return Value: Error code

:Errors: out_of range

*
xSide Effects: Assignment to passed result structure

*/

error_type tadt fs_add fs(span_type spanl, span_type span2, span_type result);

/*

*Routine: tadt fsminus fs

*

xDescription: Subtract two fixed spans
*

xArguments: spanl -- (IN) : minuend (span to be subtracted from)
* span2 -— (IN) : subtrahend
* result -- (OUT) : result span

*
*Return Value: Error code
*

xErrors: out_of range

*
xSide Effects: Assignment to passed result structure

*/

error_type tadt fs minus fs(span_type spanl, span_type span2, span_type result);

/%

*Routine: tadt_e_add fs

*

*Description: Displace an event by adding a span
*

xArguments: event -- (IN) : the event time
* span -- (IN) : the displacement
* result —-- (OUT) : result event

*
*Return Value: Error code
*

xErrors: out_of range

*
xSide Effects: Assignment to passed result structure

*/

error_type tadt e add fs(event_type event, span_type span, event_type result);

/%
¥*Routine: tadt_e_minus_fs
*

11

xDescription: Displace an event by subtracting a span
*

xArguments: event -- (IN) : the event time
* span -- (IN) : the displacement
* result —-- (OUT) : result event

*
*Return Value: Error code

*

xErrors: out_of range

* overflow (beginning - anything)

*
xSide Effects: Assignment to passed result structure
*/

error_type tadt e minus fs(event_type event, span_type span, event_type result);

/%

*rRoutine: tadt_eminus_e

*

*Description: Compute the span between two events by

* subtracting the second event from the first event (el - e2).
* if el > e2, return a positive span

* if el < e2, return a negative span

*

xArguments: eventl, event2 -— (IN) : two input events.

* result -- (OUT) : result span

*
*Return Value: Error code

*

*Errors: overflow (forever - beginning)

*
xSide Effects: Assignment to passed result structure
*/

error_type tadt_e minus_e(event_type eventl, event_type event2, span_type result);

/%

*Routine: tadt fs_timesn

*

*Description: Return a span equal to a multiple of the input span. Although

* the multiplier may be a floating point number, the result is
* always an integral number of chronons.

*

xArguments: span -- (IN): the input span

* n —— (IN): number of times

* result -- (OUT) : result span

*
*Return Value: Error code
*

xErrors: out_of range

*
xSide Effects: Assignment to passed result structure

*/

error_type tadt fs_times n(span_type span, double n, span_type result);

/%

*Routine: tadt fs.divoan

*

tDescription: Divide a span by a numeric value. N must be nonzero.
*

xArguments: span —-- (IN):the input span
* n —- (IN): number of division
* result -- (OUT) : result span

*
*Return Value: Error code
*

xErrors: out_of range

*

12

xSide Effects: Assignment to passed result structure
*/
error_type tadt fs div n(span_type span, double n, span_type result);

/%

*Routine: tadt fs_ div fs

*

*Description: Divide one span by another
*

xArguments: spanl -- (IN): the dividend
* span2 -—(IN): the divisor
* result —-- (OUT) : result integer

*
*Return Value: Error code
*

*Errors: out_of range

* division_by_zero

*
xSide Effects: Assignment to passed result structure

*/

error_type tadt fs div fs(span_type spanl, span_type span2, double *result);

/%

*Routine: tadt_i_add fs

*

*Description: Displace an interval by adding a span
*

xArguments: interval -- (IN): the interval to be displaced
* span -- (IN): the span of displacement
* result -- (OUT) : result interval

*
*Return Value: Error code
*

xErrors: out_of range

*
xSide Effects: Assignment to passed result structure

*/

error_type tadt_i_add fs(interval type interval, span_type span, interval type result);

/%

*Routine: tadt_iminus_fs

*

*Description: Displace an interval by subtracting a span
*

xArguments: interval -- (IN): the interval to be displaced
* span -- (IN): the span of displacement
* result -- (OUT) : result interval

*
*Return Value: Error code

*

*Errors: out_of _range

* overflow glbeginning,foreverl - anything)

*
xSide Effects: Assignment to passed result structure
*/

error_type tadt_i minus fs(interval type interval, span_type span, interval type result);

5.2.4 Comparison Operations Support

The semantics of the time-stamp comparison operations depends on the underlying temporal model
[Dyreson & Snodgrass 1992]. Our underlying model of time is a discrete model where chronons are

13

nondecomposable units of time. A time-stamp records that an event occurred during a particular
chronon. One consequence of this model is that two events which occur during the same chronon
may still occur at different times.

We do, however, have a comparison operations such as an equality test for event time-stamps.
The equality test simply checks to see if the events occurred during the same chronon. In fact, all
comparison operations are operations that compare “chronons” rather than “times”. Hence, the
equality comparison does not establish whether or not two events occur at the same time, only
whether they occur during the same chronon. The test captures the intuitive comparison semantics
without compromising the theoretical considerations.

The comparison operations component of the TADT is shown below. As with arithmetic
operations, a single routine is provided for commutative operations. The naming conventions for
comparison routines are similar to the arithmetic functions.

if*{out ine: tadt fs_eq fs

:Description: This routine compares two fixed span values. It returns

* the boolean value TRUE if they are equal and FALSE otherwise.
IArguments: spanl, span2 —- (IN) : spans to be compared

IReturn Value: TRUE if spanl == span2, FALSE otherwise

IErrors: None

*

xSide Effects: None

*/

bool tadt fs_eq fs(span_type spanl, span_type span2);

/%
¥Routine: tadt fs 1t fs
*

*Description: This routine compares two fixed span values. It returns

* the boolean value TRUE if the first span is less than
* the second span and FALSE otherwise.

*

xArguments: spanl, span2 -- (IN) : spans to be compared

*

*Return Value: TRUE if spanl < span2, FALSE otherwise
*

*Errors: None

*

xSide Effects: None

*/

bool tadt fs_ 1t fs(span_type spanl, span_type span2);

/%

*Routine: tadt fs gt fs

*

*Description: This routine compares two fixed span values. It returns

* the boolean value TRUE if the first span is greater than
* the second span and FALSE otherwise.

*

xArguments: spanl, span2 -- (IN) : spans to be compared

*

*rReturn Value: TRUE if spanl > span2, FALSE if spanl =< span2
*

*Errors: None

*

*Side Effects: None

*/

bool tadt fs gt fs(span_type spanl, span_type span2);

14

/*

*rRoutine: tadt e eq.-e

*

*Description: This routine compares two event values. It returns
* the boolean value TRUE if the events are equal and
* FALSE otherwise. Two events are defined to be

* equal if they occur during the same chronon,

* not if they occur at the same time.

* The size of a chronon is resolution dependent.

*

xArguments: eventl, event2 -— (IN) : events to be compared

*

*Return Value: TRUE if eventl = event2, FALSE if eventl <> event2
*

*Errors: None

*
xSide Effects: None

*/

bool tadt_e equals_e(event_type eventl, event_type event2);

/*

*Routine: tadt_e precedes._e

*

*Description: This routine compares two event values. It returns

* the boolean value TRUE if the first event precedes the
* second event and FALSE otherwise.

*

xArguments: eventl, event2 -- (IN) : events to be compared

*
¥*Return Value: TRUE if eventl < event2, FALSE if eventl >= event2
*

*Errors: None

*
¥Side Effects: None
*/

bool tadt_e precedes _e(event_type eventl, event_type event2);

/%
*rRoutine: tadt_e precedes_i
*

*Description: This routine compares an event and an interval. It returns

* the boolean value TRUE if the event precedes the

* beginning of the interval and FALSE otherwise.

*

xArguments: event, interval —— (IN) : event and interval to be compared

*
*Return Value: TRUE if event < begin(interval),

* FALSE if event >= begin(interval)
*
xErrors: None

*
¥Side Effects: None
*/

bool tadt_e precedes_i(event_type event, interval type interval);

/%

*rRoutine: tadt_e overlaps_i

*

*Description: This routine compares an event and an interval. It returns

* the boolean value TRUE if the event overlaps the

* interval and FALSE otherwise.

*

xArguments: event, interval -- (IN) : event and interval to be compared

*
*Return Value: TRUE if begin(interval) <= event <= end(interval)

* FALSE if event < begin(interval) or event > end(interval)
*

15

*Errors: None

*
*Side Effects: None

*/

bool tadt_e overlaps_i(event_type event, interval type interval);

/%

*rRoutine: tadt_i precedes._e

*

*Description: This routine compares an interval and an event. It returns

* the boolean value TRUE if the interval precedes the

* event and FALSE otherwise.

*

xArguments: interval, event —— (IN) : interval and event to be compared

*
*Return Value: TRUE if end(interval) < event

* FALSE if event <= end(interval)
*

*Errors: None

*
xSide Effects: None

*/

bool tadt_i precedes e(interval type interval, event_type event);

/%

*rRoutine: tadt_i_precedes_i

*

*Description: This routine compares two intervals. It returns

* the boolean value TRUE if the end of the first interval
* precedes the beginning of the second.

*

xArguments: intervall, interval2 -- (IN) : intervals to be compared

*
*Return Value: TRUE if end(intervalil) < begin(interval2)

* FALSE if end(intervall) >= begin(interval2)
*
*Errors: None

*
¥*Side Effects: None
*/

bool tadt_i precedes_i(interval type intervall, interval type interval2);

/%

*Routine: tadt_ieq.i

*

tDescription: This routine compares two intervals. It returns

* the boolean value TRUE if the two intervals are

* equal and FALSE otherwise.

*

xArguments: intervall, interval2 -- (IN) : intervals to be compared

*
¥*Return Value: bool TRUE if intervall = interval2

* bool FALSE if intervall <> interval2
*

*Errors: None

*
¥Side Effects: None
*/

bool tadt_i_equals_i(interval type intervall, interval_ type interval2);

/%

*Routine: tadt_imeets_i

*

*Description: This routine compares two intervals. It returns

16

* the boolean value TRUE if the end of the first interval
* is the beginning of the second and FALSE otherwise.

*

xArguments: intervall, interval2 -- (IN) : intervals to be compared

*

*Return Value: TRUE if end(intervall) = begin(interval2)

* FALSE if end(intervall) <> begin(interval2)

*

xErrors: None

*
xSide Effects: None

*/

bool tadt_i meets_i(interval type intervall, interval_type interval2);

/%

*Routine: tadt_i overlaps_i

*

*Description: This routine compares two intervals. It returns

* the boolean value TRUE if the intervals share at least
* one chronon in common and FALSE otherwise.

*

xArguments: intervall, interval2 -- (IN) : intervals to be compared

*
*Return Value: TRUE if intervall overlaps interval2

* FALSE if intervall doesn’t overlap interval2
*

xErrors: None

*
xSide Effects: None

*/

bool tadt_i_overlaps_i(interval type intervall, interval type interval2);

/%

*Routine: tadt_i_contains_i

*

*Description: This routine compares two intervals. It returns

* the boolean value TRUE if the first interval contains
* the second interval and FALSE otherwise.

*

xArguments: intervall, interval2 -- (IN) : intervals to be compared

*
¥*Return Value: TRUE if intervall contains interval2

* FALSE if intervall doesn’t contain interval2
*

*Errors: None

*
*Side Effects: None
*/

bool tadt_i_contains_i(interval type intervall, interval type interval2);

5.2.5 Aggregate Function Support

The TADT supports aggregate computation over events, intervals, and fixed spans. Calendars are

responsible for aggregate computations involving variable spans.

A stream model is used for aggregate computation. Three routines, an initialization routine, an
accumulation routine, and a final result routine, are defined for each aggregate function and each
data type. Data structures that accumulate the results of an aggregate computation are allocated
by initialization routines. The accumulation routines store the partial result of an aggregate
function in this structure, and the final result routines compute the result of the aggregate from

the accumulated information.

17

To support the aggregate functions min and max, there is a special undefined value for events
and spans. This value means that the time-stamp is uninitialized.

A name of an aggregate support function has the form tadt_phase_aggregate_type where phase
denotes either the init, accum, or final processing stage, aggregate denotes the name of the
aggregate function, and (ype denotes the event, span, or interval data type over which aggregate
function is being computed. We only show routine prologues for the initialization, accumulation,
and final stage of one aggregate function. The remaining prologues are similar.

iéoutine: tadt_init_count_e

IDescription: Allocate and initialize the integer used for the event

* count aggregate and return a pointer to it

:Arguments: None

:Return Value: int *: allocated and initialized with 0 for computation
IErrors: None

*
*Side Effects: Allocates memory
*/

int xtadt_init_count_e();

igoutine: tadt_accum_count_e

IDescription: Accumulate the next event in the stream
IArguments: count_state —-- (IN&OUT) : intermediate count state
* event -— (IN) : the next event

:Return Value: Error code

IErrors: overflow

*
¥Side Effects: Overwrites count state
*/

error_type tadt_accum_count e(int xcount_state, event_type event);

igoutine: tadt final_count._e

:Description: Return the final count of events

IArguments: final state —-- (IN) : the final state contains the count
* final count -- (OUT): final count

:Return Value: Error code

:Errors: None

*
¥Side Effects: Overwrites final_count
*/

error_type tadt final count_e(int final state, int *final _count);

avg state_e tadt_init_avg e();
error_type tadt_accum. avg e(avg state_e avg state, event_type event);
error_type tadt final avg e(avg_state_e final state, event_type event);

event_type tadt_init max e();
error_type tadt_accummax e(event_type max_state, event_type event);
error_type tadt final max e(event type final state, event_type event);

18

event_type tadt_initmin_e();
error_type tadt_accummin e(event type min_state, event_type event);
error_type tadt final min e(event_type final state, event_type event);

int *tadt_init_count_i();
error_type tadt_accum_count_i(int xcount_state, interval_type interval);
error_type tadt final count_i(int final state, int *final _count);

int *tadt_init_count_fs();
error_type tadt_accum_count fs(int kcount_state, span_type span);
error_type tadt final count fs(int final state, int xfinal_count);

span_type tadt_init_sum fs();
error_type tadt_accum_sum fs(span_type sum_state, span_type span);
error_type tadt final sum fs(span_type final state, span_type span);

avg state fs tadt_init_avg £s();
error_type tadt_accum avg fs(avg statefs avg state, span_type span);
error_type tadt final avg fs(avg statefs final state, span_type span);

span_type tadt_init max fs();
error_type tadt_accummax fs(span_type max_state, span_type span);
error_type tadt final max fs(span_type final state, span_type span);

span_type tadt_init min fs();
error_type tadt_accummin fs(span_type min_state, span_type span);
error_type tadt final min fs(span_type final state, span_type span);

5.2.6 Time-stamp Creation and Manipulation

The time-stamp creation routines provided by the TADT are shown below. These routines are
invoked by a calendar when translating temporal constants to time-stamps.

/%

*Routine: tadt _create.e

*

*Description: Builds an event timestamp from the given chronon information.
*

*

xArguments: seconds -- (IN): seconds structure
* resolution -— (IN): resolution
* result —-- (OUT): result event

*

*Return Value: Error code
*

xErrors: out_of range

*
xSide Effects: Assignment to passed result structure
*/

error_type tadt _create_e(seconds_type seconds, resolution type resolution, timestamp_type result);

/%

*Routine: tadt _create_i

*

*Description: Builds an interval timestamp from the given events
*

xArguments: eventl -- (IN): starting event
* event2 —— (IN): terminating event

19

* result -- (OUT): result interval
*

*Return Value: Error code

*

xErrors: out_of range

*
xSide Effects: Assignment to passed result structure
*/

error_type tadt create_i(event_type eventl, event_type event2, timestamp_type result);

/%

*Routine: tadt_create fs

*

*Description: Builds a fixed span from the given chronon information.
*

xArguments: seconds —-- (IN): structure containing span info
* resolution —- (IN): resolution
* result -- (OUT): result fixed span

*
*Return Value: Error code
*

*Errors: None

*
xSide Effects: Assignment to passed result structure
*/

error_type tadt _create fs(seconds_type seconds, resolution_type resolution, timestamp_type result);

iéoutine: tadt _create vs

IDescription: Builds a variable span from the given information.
IArguments: vs —-- (IN): vspan structure (contains vspan info)

* result -- (OUT): resulting variable span

IReturn Value: Error code

IErrors: None

*
xSide Effects: Assignment to passed result structure
*/

error_type tadt _create vs(vs_type vs, span_type result);

iéoutine: tadt_extract vs

:Description: Extract the variable span information from the given vspan.
IArguments: vs —— (IN): variable span time-stamp

* result —-- (OUT): resulting variable span information structure
IReturn Value: Error code

:Errors: None

*
xSide Effects: Assignment to passed result structure
*/

error_type tadt_extract vs(span_type vs, vs_type result);

/*

*Routine: tadt_is_vs

*

*Description: Determine if a span is a variable span.
*

20

xArguments:
*

*Return Value:

*

*Errors: None

span -- (IN): the timestamp to be tested

TRUE if span is a variable span
FALSE otherwise

*
¥Side Effects: None

*/

bool tadt_is_vs(span_type span);

/*

¥*Routine: tadt_can fit_ts

*
*Description:
*

*

*

xArguments:

*

*

*Return Value:

*

*Errors: None

Determine if there is enough space allocated to
store a time-stamp. Time-stamp sizes can be
determined using the sizeof function.

ts —- (IN): the timestamp to be tested
size -- (IN): how much space is available

TRUE if there is enough space
FALSE otherwise

*
¥Side Effects: None

*/

bool tadt _can fit ts(timestamp_type ts, int size);

/%

¥*Routine: tadt_coerce_e

*
*Description:
*

H K K K K K K ¥ X

*Arguments:
*
*
*

*Return Value:

*

Fit an event time-stamp into a certain space, truncating if
needed. An extended resolution event time-stamp must be
coerced if it is to fit in the space of a high or

low resolution time-stamp. If the extended resolution

is in the high resolution range, then it is coerced

to a high resolution, otherwise it is coerced to a

low resolution with truncation flagged. Time-stamp sizes
can be determined using the sizeof function. Only valid
event time-stamp sizes are allowed. Other sizes will
generate an error.

event -- (IN): the timestamp to be tested
size -- (IN): how much space is available
result —-- (OUT): the coerced result

Error code

¥*Errors: tadt_truncation
* tadt_invalid_size

*
xSide Effects: Assignment to passed result timestamp

*/

tadt_error_type tadt_coerce e(event_type event, int size, event_type result);

/%

¥*Routine: tadt_coerce_i

*
*Description:
*

K K K K X X

Fit an interval time-stamp into a certain space, truncating if
needed. An extended resolution interval time-stamp must be
coerced if it is to fit in the space of a high or

low resolution time-stamp. If the extended resolution

is in the high resolution range, then it is coerced

to a high resolution, otherwise it is coerced to a

low resolution with truncation flagged. Time-stamp sizes

can be determined using the sizeof function. Only valid
interval time-stamp sizes are allowed. Other sizes will

21

* genera’ce an error.
*

xArguments: interval -- (IN): the timestamp to be tested
* size -- (IN): how much space is available
* result -- (OUT): the coerced result

*
*Return Value: Error code
*

xErrors: tadt_truncation
* tadt_invalid_size

*
xSide Effects: Assignment to passed result timestamp

*/

tadt_error type tadt_coerce_i(interval type interval, int size, interval_ type result);

/%

*Routine: tadt_coerce fs

*

*Description: Fit a fixed span time-stamp into a certain space, truncating
* if needed. An extended resolution span time—-stamp must be

* coerced if it is to fit in the space of a high or

* low resolution time-stamp. If the extended resolution

* is in the high resolution range, then it is coerced

* to a high resolution, otherwise it is coerced to a

* low resolution with truncation flagged. Time-stamp sizes
* can be determined using the sizeof function. Only valid
* fixed span time-stamp sizes are allowed. Other sizes will
* generate an error.

*

xArguments: span -- (IN): the timestamp to be tested

* size -- (IN): how much space is available

* result -- (OUT): the coerced result

*
*Return Value: Error code
*

xErrors: tadt_truncation
* tadt_invalid_size

*
xSide Effects: Assignment to passed result timestamp
*/

tadt_error_type tadt_coerce fs(span_type span, int size, span_type result);

iéoutine: tadt_e_to_seconds

IDescription: Break an event up into its unpacked form (seconds structure)
IArguments: e —— (IN): the event to be converted

* seconds —- (OUT): the resulting seconds structure

:Return Value: Error code

IErrors: None

*
xSide Effects: Assignment to passed seconds structure
*/

error_type tadt e to_seconds(event_type event, seconds_type seconds);

iéoutine: tadt_seconds to_e

IDescription: Convert an unpacked event into its packed form
IArguments: seconds —-- (IN): the seconds structure to be converted
* e -- (OUT): the resulting event

IReturn Value: Error code

22

*
*Errors: None

*
xSide Effects: Assignment to passed seconds structure

*/

error_type tadt_seconds_to_e(event_type event, seconds_type seconds);

5.3 Internal Data Structures

The time-stamp data structures that are accessible only within the TADT are given below. The
interpretation of these data structures is presented elsewhere [Dyreson & Snodgrass 1992].

/%
*STANDARD EVENT TIMESTAMPS:
*/

typedef struct {
unsigned ts_type

i 4; /x type 0000 x/
unsigned wasted : 1;
. 1.
2

; /* wasted */

; /+ sign flag -- 0 positive 1 negative x/
6; /* seconds since origin %/

/* word boundary */

unsigned sign
unsigned secondsl

unsigned seconds2 : 12; /* seconds since origin x/
unsigned milli : 10; /+ milliseconds since origin %/
unsigned micro : 10; /* microseconds since origin %/

} hires_type;

typedef struct {

unsigned ts_type : 4; /x type 0100 x/
unsigned sign : 1; /x sign flag -- O positive 1 negative x/
unsigned secondsl : 27; /x seconds since origin x/
/* word boundary */
unsigned seconds2 : 32; /* seconds since origin x/

} lowres_type;

typedef struct {

unsigned ts_type : 4; /x type 1000 x/
unsigned sign : 1; /«x sign flag -- O positive 1 negative x/
unsigned secondsl : 27; /* seconds since origin */
/* word boundary */
unsigned seconds2 : 32; /* seconds since origin x/
/* word boundary */
unsigned milli : 10; /+ milliseconds since origin %/
unsigned micro : 10; /* microseconds since origin x/
unsigned nano : 10; /* nanoseconds since origin */
unsigned wasted : 1; /x wasted x/
unsigned extraflag : 1; /x flag for extra word, more precisionx/

} exres_type;

typedef struct {

unsigned ts_type : 4; /x type 1100 x/
unsigned wasted 1 28; /% wasted */

/* word boundary */
unsigned special : 32; /x which special event */

} special_type;

23

/%
*VARIABLE SPAN FORMAT
*/

typedef struct {
unsigned ts_type

: 4; /% type 1111 indicates variable span */
unsigned cal_sys : 5;
. 7 .
1

; /% which calendric system */

; /% which variable span function %/
6; /+ span can have three parameters */
/* word boundary */

unsigned param2 : 16; /* span can have three parameters */
unsigned param3 : 16; /% span can have three parameters x/

} vspan_type;

unsigned vspan
unsigned paramil

/%
*TIME-STAMP STORAGE STRUCTURES
*/

typedef union {
hires_type hires;
lowres_type lowres;
exres_type exres;
special type special;
hires uni_chunked type hires_uni_chunked;
lowres uni_chunked_type lowres_uni_chunked;
exres_uni_chunked_type exres_uni_chunked;
hires nuni_chunked_type hires nuni_chunked;
lowres nuni_chunked_type lowres_nuni_chunked;
exres nuni_chunked_type exres nuni_chunked;
hires nuni_type hires_ nuni;
lowres nuni_type lowres_nuni;
exres_ nuni_type exres_nuni;

} event_space_type;

typedef union {
vspan_type vspan,;
event_space type span;
} span_space_type;

typedef struct {
event_space type start;
event_space_type terminate;
} interval_space_type;

typedef union {
span_space_type span;
event_space type event;
interval_space_type interval;

} timestamp_space_type;

The indeterminate time-stamp data structures are not fully supported by the routines (although
the routines as defined will accept indeterminate values and may return indeterminate values). We
include these data structures for completeness.

/*

*UNIFORM, CHUNKED INDETERMINATE FORMS (EVENTS):
*/

24

typedef struct {
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned

ts_type

chunksize :

chunks
sign
seconds1

seconds?2
milli

} hires uni_chunked type;

typedef struct {
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

ts_type

chunksize :

chunks
sign
seconds1

seconds?2

} lowres_uni_chunked _type;

typedef struct {
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

unsigned
unsigned
unsigned
unsigned

ts_type

chunksize :

chunks
sign
seconds1

seconds?2
seconds3

milli
micro

extraflag ;

} exres_uni_chunked type;

/%

e i o)

O e o e ws

type 0001 */

size of chunk */

number of chunks */

sign flag -- 0 positive 1 negative */
seconds since origin */

word boundary */

seconds since origin x/

milliseconds since origin x/

type 0101 */

size of chunk */

number of chunks */

sign flag -- 0 positive 1 negative %/
2048 seconds chunks since origin */
word boundary */

seconds since origin x/

type 1001 */

size of chunk */

number of chunks */

sign flag —-- 0 positive 1 negative */
seconds since origin */

word boundary */

seconds since origin (cont) */

word boundary */

seconds since origin (cont) */
milliseconds since origin x/
microseconds since origin x/

flag for extra word, more precision/

*NONUNIFORM, CHUNKED INDETERMINATE FORMS (EVENTS):

*/

typedef struct {
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned

ts_type
wasted
sign
seconds1

seconds?2
milli
micro

chunksize :

chunks
dist
rght_off
left _off

} hires nuni_chunked _type;

type 0010 */

wasted */

sign flag -- 0 positive 1 negative x/
seconds since origin */

word boundary */

seconds since origin (cont) */
milliseconds since origin x/
microseconds since origin x/
word boundary */

size of chunk */

number of chunks %/

normalized distribution */
right offset */

left offset x/

25

typedef struct {
unsigned
unsigned
unsigned

unsigned

unsigned
unsigned
unsigned
unsigned
unsigned

ts_type
sign
seconds1

seconds?2

chunksize :

chunks
dist
rght_off
left _off

} lowres nuni_chunked type;

typedef struct {
unsigned
unsigned
unsigned

unsigned

unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned

ts_type
sign
seconds1

seconds?2

milli
micro
nano
wasted

extraflag :

chunksize :

chunks
dist
rght _off
left _off

} exres nuni_chunked_type;

/*

type 0110 */

sign flag —-- 0 positive 1 negative %/
seconds since origin */

word boundary */

seconds since origin (cont) */
word boundary */

size of chunk */

number of chunks */

normalized distribution */
right offset */

left offset x/

type 1010 */

sign flag -- 0 positive 1 negative %/
seconds since origin */

word boundary */

seconds since origin (cont) */

word boundary */

milliseconds since origin x/
microseconds since origin x/
nanoseconds since origin */

wasted x/

flag for extra word, more precision/
word boundary */

size of chunk */

number of chunks */

normalized distribution #/

right offset */

left offset x/

*NONCHUNKED, NONUNIFORM INDETERMINATE FORMS (EVENTS):

*/

typedef struct {
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned

unsigned
unsigned
unsigned

unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
} hires nuni type;

ts_type
hiwasted
hisign

hisecondsi:

hiseconds2:

himilli
himicro

lowasted
losign

losecondsl:

loseconds2:

lomilli
lomicro

wasted
dist
rght _off
left _off

type 0011 */

wasted */

sign flag -- 0 positive 1 negative %/
seconds since origin x/

word boundary */

seconds since origin (cont) */
milliseconds since origin x/
microseconds since origin x/
word boundary */

wasted x/

sign flag —-- 0 positive 1 negative %/
seconds since origin x/

word boundary */

seconds since origin (cont) */
milliseconds since origin x/
microseconds since origin x/
word boundary */

wasted x/

normalized distribution */
right offset */

left offset x/

26

typedef struct {
unsigned
unsigned
unsigned

unsigned

unsigned
unsigned
unsigned

unsigned

unsigned
unsigned
unsigned
unsigned
} lowres nuni_type;

typedef struct {
unsigned
unsigned
unsigned

unsigned

unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned

unsigned

unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
} exres nuni type;

/%

ts_type
hisign :
hisecondsi:

hiseconds2:

lowasted
losign2
losecondsl:

loseconds2:

wasted
dist
rght_off
left _off

ts_type
hisign :
hisecondsl:

hiseconds2:

himilli
himicro
hinano
hiwasted
hiextraflag

lowasted
losign
losecondsl:

loseconds2:

lomilli
lomicro
lonano :
lowasted2 :
loextraflag

wasted
dist
rght _off
left _off

type 0111 */

sign flag —-- 0 positive 1 negative %/
seconds since origin */

word boundary */

seconds since origin (cont) */

word boundary */

wasted */

sign flag -- 0 positive 1 negative */
seconds since origin */

word boundary */

seconds since origin (cont) */

word boundary */

wasted x/

normalized distribution #/

right offset x/

left offset x/

type 1011 */

sign flag -- 0 positive 1 negative x/
seconds since origin */

word boundary */

seconds since origin (cont) */

word boundary */

milliseconds since origin x/
microseconds since origin x/
nanoseconds since origin */

wasted x/

flag for extra word, more precision/
word boundary */

wasted x/

sign flag -- 0 positive 1 negative */
seconds since origin */

word boundary */

seconds since origin (cont) */

word boundary */

milliseconds since origin x/
microseconds since origin x/
nanoseconds since origin */

wasted x/

flag for extra word, more precision/
word boundary */

wasted x/

normalized distribution */

right offset */

left offset x/

*Probability Distribution Function Format

*/

typedef struct {
unsigned
unsigned
unsigned
unsigned
} prob.dist_type;

wasted
dist
rght_off
left _off

10;
8;

7;

/*
/%
/*
/*

wasted */

normalized distribution */
right offset %/

left offset */

27

6 Uniform Calendric Support

The UCS provides a generic interface to all calendar defined services. Table 2 lists the types
of operations performed by the UCS. The UCS is invoked by the query processor to activate
and deactivate calendric systems and property values, convert temporal constants to time-stamps,
convert time-stamps to temporal constants, resolve calendar defined functions, and execute all
span operations. It maintains data structures defining calendric systems, and invokes calendar
operations on behalf of the query processor. In general, the UCS is responsible for executing any
operation which could possibly be calendar dependent.

‘ Operation ‘ Number of Routines ‘
Memory allocation 4
Span arithmetic operations 10
Span comparison operations 3
Span aggregate operations 15

Property value activation

Constant translation

Time-stamp translation

Function binding

DNO| Qo Qo| QO W~

Calendric system activation

Table 2: Uniform Calendric Support Operations

Specifically, event and interval computations are calendar independent. Hence, operations on
events and intervals, once translated into time-stamps, can be executed directly by the TADT. For
example, event values, i.e., time-stamps in the physical representation, do not require a calendar
interpretation; their time-stamps completely describe their values. Therefore, operations on event
values, such as event precedes inlerval, are simple time-stamp manipulations that can be per-
formed directly by the TADT. However, for operations involving span values, it is not known if the
operation is calendar independent until the time-stamps of the operands are examined. Variable
spans require calendar support while operations involving only fixed spans do not. The query
processor is not capable of resolving this because the type system of the query language does not
distinguish between variable spans and fixed spans. The TADT provides a routine tadt_is_vs
which determines if a span is variable or fixed. The UCS calls this routine to determine if any
operand is a variable span and, if so, invokes a calendar to perform the given operation. Otherwise,
the operation is passed to the TADT which performs the computation. Almost two-thirds of the
UCS routines are these simple “traflic-control” routines related to variable spans. See Section 9
for more details and examples of operations. We will describe in more detail the interface between
the UCS and a calendar in Section 7.

6.1 External Data Structures

The UCS must maintain the function bindings specified by calls to ucs_bind function. The
structures and types used to manage this information follow.

typedef enum { arg integer, arg string, arg event, arg interval, arg span } formal arg type;

typedef union {
int 1integer;

28

char xcharacter;
event_space_type event;
interval_space_type interval;
span_space_type span;

} *actual_arg type;

The following data types are provided to accommodate both variable and fixed spans in aggre-
gates. For variable spans, each calendar may define different aggregate states. The UCS aggregate
states must be able to accomodate either fixed or variable spans. The aggregate states must be
able to contain either any arbitrary contents (for variable spans) or some specific item (for fixed
spans).

typedef enum { fixed, variable } span_types;

typedef struct {
span_types tag;
avg state fs fs_state;
vold xvs_state;

} *ucs_avg_state_s;

typedef struct {
span_types tag;
sum_state_fs fs_state;
void xvs_state;

} *ucs_sum_state_s;

typedef struct {
span_types tag;
span_type fs_state;
void xvs_state;

} *ucs_min_state_s;

typedef struct {
span_types tag;
span_type fs_state;
void xvs_state;

} *ucs_max_state_s;

Finally, the UCS interacts with the individual calendars via a value array.

typedef int value_array typel];

The following error codes are returned by the UCS when exceptional conditions are encountered.

typedef enum {
ucs_ok,
ucs_string invalid, /+# input event, interval or span invalid #*/
ucs_incompatible types, /# incompatible types on function bind x/
ucs_functionnot_found, /* function not found on function bind */
ucs_invalid _property, /* attempt to push an invalid calendar property */
ucs_table overflow, /* stack full on push */
ucs_table underflow, /+ stack empty on pop */

} ucs_error_type;

29

6.2 Externally Visible Routines

We describe in this section the functions comprising the UCS.

6.2.1 External Data Structure Allocation

The following routines allocate externally visible data structures used by the UCS. The actual
memory allocation is done by calling the TADT routine tadt malloc. Many of the prologues are
omitted here since they are very similar to the prologues in Section 5.2.1.

ucs_sum_state_s ucs_allocate_sum_state_s();
ucs_avg_state_s ucs_allocate avg_states();
ucsmin_state_s ucs_allocatemin_state_s();

ucs_max_state_s ucs_allocatemax_state_s();

6.2.2 Span Arithmetic Support

The following are generic routines for span arithmetic operations. The run-time system of the
query processor invokes these routines when performing arithmetic on either fixed or variable span
time-stamps. Each procedure determines whether one of its operands is variable or not and either
calls a TADT routine or a calendar routine as appropriate. A detailed example is given in Section 9.

/%

*Routine: ucs_negs

*

*Description: Return a negative span whose duration is the

* same as the input span.

*

xArguments: spanin -- (IN) : span to be converted
* result-- (OUT): result negative span

*
*Return Value: Error code
*

*Errors: semantic_error

*
¥Side Effects: Overwrites result
*/

error_type ucs neg s(span_type spanin, span_type result);

/%

*Routine: ucs_s_add_s

*

*Description: Compute the sum of two spans

*

xArguments: spanl, span2 -- (IN) : spans to be added
* result -- (OUT): the sum of the arguments
*

*Return Value: Error code

*

xErrors: out_of range

*

*Side Effects: Overwrites result

*/

error_type ucs_s_add_s(span_type spanl, span_type span2, span_type result);

/*

*Routine: ucs_sminus_s

*

*Description: Compute the difference of two spans

30

*
xArguments: spanl -- (IN) : minuend (span to be subtracted from)
* span2 -— (IN) : subtrahend

* result-- (OUT): the result of "spanl - span2"

*

*Return Value: Error code

*

*Errors: out_of range

*
¥Side Effects: Overwrites result
*/

error_type ucs_sminus_s(span_type spanl, span_type span2, span_type result);

/%

*Routine: ucs_e_add_s

*

*Description: Displace an event by adding a span
*

xArguments: event_in -- (IN) : the event time
* span -- (IN) : the increment period
* result -- (OUT) : the new event time after displacement

*
*Return Value: Error code
*

xErrors: out_of range

*
¥Side Effects: Overwrites result
*/

error_type ucs_e_add_s(event_type event_in, span_type span, event_type result);

/%

*Routine: ucs_eminus_s

*

*Description: Displace an event by subtracting a duration of time (span)
*

xArguments: event_in -- (IN) : the event time
* span -- (IN) : the decrement period
* result -- (OUT) : the new event time after decrement

*
*Return Value: Error code
*

xErrors: out_of range

*
*Side Effects: Overwrites result

*/

error_type ucs_eminus_s(event_type event_in, span_type span, event_type result);

/*

*rRoutine: ucs_s_times.n

*

xDescription: This function multiplies a span by a numeric value
*

xArguments: span_in —— (IN) : the input span
* n —- (IN) : number of times
* result -- (OUT) : the result of (span x n)

*
*Return Value: Error code
*

xErrors: out_of range

*
¥Side Effects: Overwrites result

*/

error_type ucs_s_times n(span_type span_in, double n, span_type result);

31

/*

*Routine: wucs_s_div.n

*

*Description: Return a span equal to the division of the input span by
* a numeric value

*

xArguments: span_in —— (IN) :the input span
* n —— (IN) : number of division
* result -- (OUT): the result of (span / n)

*
*Return Value: Error code
*

*Errors: divide by _zero

*
¥Side Effects: Overwrites result
*/

error_type ucs_s. div.n(span_type span_in, double n, span_type result);

/%

*rRoutine: ucs_s_div.s

*

*Description: Divide one span by another
*

xArguments: spanl -- (IN): the dividend
* span2 -— (IN): the divisor

* dividend -- (OUT): the result of (s/s)
*

*Return Value: Error code

*

*Errors: divide by _zero

*
¥*Side Effects: Overwrites dividend
*/

error_type ucs_s div_s(span_type spanl, span_type span2, double xdividend);

/%

*Routine: ucs_i_add_s

*

*Description: Displace an interval by adding a duration (span) of time
*

xArguments: interval_in -- (IN) : the interval to be displaced
* span -- (IN) : the span of displacement
* result -- (OUT): interval displace by span

*
*Return Value: Error code
*

xErrors: out_of range

*
xSide Effects: Overwrites result

*/

error_type ucs_i_add_s (interval_ type interval_in, span_type span, interval _type result);

/%

*Routine: ucs_iminus_s

*

*Description: Displace an interval by subtracting a duration (span) of time
*

xArguments: interval_in -- (IN) : the interval to be displaced
* span -- (IN) : the span of displacement
* result -- (OUT) : interval displaced by span

*
*Return Value: Error code
*

xErrors: out_of range

*
¥Side Effects: Overwrites result

*/
error_type ucs_iminus_s (interval type interval_in, span_type span, interval type result);

32

6.2.3 Span Comparison Support

The following are generic routines for span comparison operations. The run-time system of the
query processor invokes these routines when performing comparison on either fixed or variable
span values. Each procedure determines whether one of its operands is variable or not and either
calls a TADT routine or a calendar routine as appropriate. If a span is variable, then its calendar
is called to perform the comparison.

/*

*Routine: ucs_s_eq.s
*

*Description: This routine compares two span values. It returns

* the boolean value TRUE if they are equal and
* FALSE otherwise.

*

xArguments: spanl, span2 -- (IN) : spans to be compared

*

*Return Value: bool : TRUE if spanl = span2
* FALSE if spanl <> span2

*

*Errors: None

*

xSide Effects: None

*/

bool ucs_s_eq-s(span_type spanl, span_type span2);

/%
¥*Routine: ucs_s_lt_s
*

*Description: This routine compares two span values. It returns

* the boolean value TRUE if the first span is less than
* the second span and FALSE otherwise.

*

xArguments: spanl, span2 -- (IN) : spans to be compared

*

*Return Value: bool : TRUE if spanl < span2
* FALSE if spanl >= span2

*

*Errors: None

*

xSide Effects: None

*/

bool ucs_s_1lt_s(span_type spanl, span_type span2);

/%
*Routine: ucs_s gt_s
*

*Description: This routine compares two span values. It returns

* the boolean value TRUE if the first span is greater than
* the second span and FALSE otherwise.

*

xArguments: spanl, span2 -- (IN) : spans to be compared

*
*Return Value: bool : TRUE if spanl > span2

* FALSE if spanl <= span2
*

*Errors: None

*

xSide Effects: None

*/

bool ucs_s_gt_s(span_type spanl, span_type span2);

33

6.2.4 Span Aggregate Function Support

The following are generic routines for span aggregate function operations. The run-time system
of the query processor invokes these routines when performing aggregate functions operations on
variable or fixed span values. Each procedure determines whether one of its operands is variable or
not and either calls a TADT routine or a calendar routine as appropriate. Aggregate computations
on variable span values are handled by a calendar. Aggregates involving both fixed and variable
spans are handled by the TADT with calendar support.

We do not show the procedure prologues for these routines since they are very similar to those
for the TADT aggregate routines.

int *ucs_init_count_s();
error_type ucs_accum_count_s(int *count_state, span_type span);
error_type ucs_final count_s(int final state, int *final count);

ucs_sum_state_s ucs_init_sum_s();
error_type ucs_accum sum_s(ucs_sum_state_s sum_state, span_type span);
error_type ucs_final sum_s(ucs_sum_state_s final_ s, span_type final_span_sum);

ucs_avg_state_s ucs_init_avg s();
error_type ucs_accum.avg s(ucs_avg state_s avg state, span_type span);
error_type ucs_final avg s(ucs_avg states final state, span_type final avg span);

ucs_max_state_s ucs_initmax_s();

error_type ucs_accummax_s(ucs_max_state_s max_state, span_type span);

error_type ucs_final max_s(ucs_max_state_s final state, span_type final max_span);
ucsmin_state_s ucs_initmin_s();

error_type ucs_accummin_s(ucs min_state_s min_state, span_type span);
error_type ucs_final min_s(ucs min_state_s final state, span_type final min_span);

6.2.5 Property Management

The use of properties adds flexibility to the calendars, and it helps tailoring the calendars to the

needs of different users. The properties may be used to specify the input and output formats of

temporal constants, the current locale, an override input epoch, and the naming of the concepts

beginning and forever. The current values of the properties in effect are maintained by the UCS.
The properties and their uses follow.

e Locale—the curent location, e.g., the city where the computer user is located. This quantity
may be used for time zone displacement.

e Fvent Input Format—the format of event temporal constants that are input to the database.
A value of this property is a meta-string which is described elsewhere [Soo & Snodgrass
1992A]. It is used by the uniform calendric system and a calendar to parse an input string.
The values of the following five properties are also meta-strings.

e Fvent Ouiput Format—the format to be used when converting events to strings.

e Span Input Format—the format of span temporal constants that are input to the database.
e Span Qutput Formal—the format for output of spans.

e Interval Input Format—the format for input of intervals.

e Interval Qutput Formal—the output format of intervals.

34

e Qverride Input Epoch—the epoch that is consulted the first when transforming input strings
into time-stamps within the current calendric system. It overrides the default order for the
calendric system.

e Beginning—the name for a special event value preceding any other. This special event value
is similar to —oo. This property is provided so that language specific names may be used.

e Forever—the name for a special event value following any other. This event value is similar
to +o00.

The Locale property is calendar specific, and its values are interpreted by the calendar. The
other properties are not calendar specific. Table 3 illustrates a sample default property table; this
table is incomplete, but conveys the general notion of what the various properties express. An
example of property value activation is discussed in Section 9.4. Section 9.5 has a more complete
discussion of the use of the input and output formats.

‘ Property Name ‘ Properly Value ‘

Locale Chicago
Event Input Format Month/Day/ Year
Event Output Format | Month/Day/Year

Span Input Format Fvent - Fvent
Span Output Format FEvent - Fvent
Interval Input Format Fvent

Interval Output Format FEvent
Override Input Epoch Gregorian
Beginning da beginning
Forever da end

Table 3: Example Initial Property List

UCS support for property value activation is provided by the following routines. The run-
time system of the query processor invokes these routines to activate and deactivate values of the
properties.

/*

*Routine: wucs_property push

*

*Description: Add a property to be activated
*

xArguments: property —— (IN): a property

* valud -- (IN): the value of that property
*

*Return Value: Error code

*

*Errors: ucs_invalid_property

* ucs_table_overflow

*

*Side Effects: Adds the property to the list of properties
* waiting to be activated

*/

ucs_error_type ucs_property_push(char sproperty, char xvalue);

/%

*rRoutine: ucs_property. activate

*

*Description: Activate any waiting properties

35

*
xArguments: None

*

*Return Value: Error code
*

*Errors: None

*
*Side Effects: Activates any pushed properties
*/

ucs_error_type ucs_property_activate();

iéoutine: ucs_property clear

IDescription: Discard any properties waiting to be activated
IArguments: None

:Return Value: Error code

IErrors: None

*
xSide Effects: Discards any waiting properties
*/

ucs_error_type ucs_property clear();

igoutine: ucs_property.deactivate

IDescription: Deactivates the last set of activated properties
IArguments: None

IReturn Value: Error code

IErrors: ucs_table underflow

*
*Side Effects: Uncovers the previously active set of properties
*/

ucs_error_type ucs_property deactivate();

6.2.6 Temporal Constant Translation

The string to time-stamp conversion functions of the UCS are as follows. The query processor
invokes these routines at run-time when converting temporal constants to time-stamps. Each
of these conversion routines parses its input string according to the property table specification.
Examples of how these routines are used are provided in Section 9.

/*

*Routine: ucs_e_string to_e

*
xDescription: Convert an event string to a timestamp according to the

* specification of the Event Input Format, Locale,

* Override Input Epoch, Beginning, and Forever properties
*

xArguments: string -- (IN) : the event in calendar specific form

* event -- (OUT): timestamp for the event

*
*Return Value: Error code
*

*Errors: ucs_string_invalid

*
¥Side Effects: Overwrites event

*/

ucs_error_type ucs_e string to_e(char *string, event_type event);

36

/%

*Routine: wucs_i_string to_i

*

*Description: Convert an interval string to a timestamp according to the

* specification of the Interval Input Format, Locale, and
* Override Input Epoch properties

*

xArguments: string -- (IN) : the interval in calendar specific form

* interval -- (OUT): timestamp for the interval

*
*Return Value: Error code
*

*Errors: ucs_string_invalid

*
¥Side Effects: Overwrites interval
*/

ucs_error_type ucs_i_string to_i(char *string, interval type interval);

/%

xRoutine: ucs_s_string to_s

*

*Description: Convert a span string to a timestamp according to the

* specification of the Span Input Format and Override
* Input Epoch properties

*

xArguments: string -- (IN) : the span in calendar specific form

* span -- (0OUT): timestamp for the span

*
*Return Value: Error code
*

*Errors: ucs_string_invalid

*
*Side Effects: Overwrites span
*/

ucs_error_type ucs_s_string to_s(char *string, span_type span);

6.2.7 Time-stamp Translation Support

The time-stamp to string conversion functions of the UCS are as follows. The query processor
invokes these routines at run-time when converting time-stamps to strings for output to procedure
parameters. This interaction between the UCS and calendars is described in detail in Section 9.
/%

*Routine: ucs_e_to_string

*
*Description: Convert a timestamp to an event string according to the

* the specification of the Event Output Format,
* Locale, Beginning, and Forever properties

*

xArguments: event —-- (IN) : the timestamp to be converted

* str —— (OUT): the string to be returned

*
*Return Value: Error code
*

*Errors: conversion_error
* string overflow

*
*Side Effects: Overwrites str
*/

error_type ucs_e to_string(event_type event, string struct str);

/%
*Routine: ucs_i_to_string
*

37

xDescription: Convert a timestamp to an interval string according to the

* specification of the Interval Output Format and
* Locale properties

*

xArguments: interval -- (IN) : the timestamp to be converted
* str —— (OUT): the string to be returned

*
*Return Value: Error code
*

*Errors: conversion_error
* string overflow

*
¥Side Effects: Overwrites str
*/

error_type ucs_i_to_string(interval type interval, string struct str);

/%
*Routine: ucs_s_to_string
*

*Description: Convert a timestamp to a span string according to the

* specification of the Span Output Format property
*

xArguments: span -- (IN) : the timestamp to be converted

* str —— (OUT): the string to be returned

*
*Return Value: Error code
*

*Errors: conversion_error
* string overflow

*
¥Side Effects: Overwrites str
*/

error_type ucs_s_to_string(span_type span, string struct str);

6.2.8 Calendar Function Binding and Invocation

Each calendar specific function uses a special format to describe the parameters that it takes and
the return type. These parameters are passed to the function ucs_bind _function, which performs
name resolution and type checking on the formal parameters, and returns a function pointer.
The function parameters are described by passing a pointer to a list of enumerated type values
describing the actual function parameters. The size of the list is also passed. The return type, a
similar type description value, is also computed by the ucs_bind function.

The function pointer that is returned may be called directly. Each of these functions are called
with two parameters: the address of a list of pointers to the actual parameters, and a pointer to
a return structure of the appropriate type. This return structure has been pre-allocated before
calling this function. If the return value varies in size, e.g., an event_type, then the maximum
allowable size structure is allocated. The actual return value is an error code indicating the success
or failure of the function. If any coercion of values needs to be done, then it is done before calling
the bound function. All the data structures passed to the bound function should be de-allocated
after the function returns.

The semantic analyzer of the query processing system may determine if a function exists by
calling the routine ucs_function exists. To actually bind a function, use ucs_bind function.
/*

*Routine: wucs_bind_function
*

*Description: Resolve a calendric defined function name
*

xArguments: functionname -- (IN) : name of the function

38

num_arguments -- (IN) : number of arguments in the array
type._array —-- (IN) : array of function arguments codes
return_type_type -- (OUT): return value type for function

f —- (0OUT): handle to the function

Return Value: Error code

¥ K K K KX ¥ ¥

*Errors: ucs_incompatible_types
* ucs_function not_found

*
*Side Effects: Overwrites f

*/

ucs_error_type ucs_bind function(char xfunction name, int num_arguments, formal_ arg type type_arrayl[],
formal arg type sreturn_type type, generic function handle £);

iéoutine: ucs_function exists

IDescription: Determines if a function exists
IArguments: function name -- (IN) : name of the function
IReturn Value: bool —- TRUE if the function exists

* FALSE if the function does not exist
IErrors: None

*
¥Side Effects: None
*/

bool ucs_function_exists(char *function_name);

/%
*Routine: generic function_handle
*

*Description: The generic description of the function pointer returned by

* ucs_bind_function

*

xArguments: array -- (IN) : array of parameter pointers

* returnval -- (OUT) : pointer to the return value

*
*Return Value: semantic_error

*

*Errors: Depends on the function

*
¥Side Effects: Overwrites return_val
*/

typedef error_type (generic function handle)(actual._arg type array[], actual.arg type xreturn_val);

Definitions of the parameter and return types for the function binding procedure are in Section 6.1.

To invoke a function, just call it with the correct parameters. At function binding time (compile
time), the UCS must determine which calendar has defined this function. If the function name
is unique, then of course there is no ambiguity. Otherwise, the proper calendar function may be
determined by the lexical scoping of the calendric system.

6.2.9 Calendric System Activation Support

The calendric system activation functions of the UCS are shown below. These functions are used
by the query processor during semantic analysis to check that calendric systems exist, and to
activate calendric systems during both semantic analysis (for calendar defined function binding)
and run-time (for temporal constant interpretation).

39

/%

*rRoutine: wucs_is_calendric_system

*

*Description: Determines if the parameter is the name of a calendric system
*

xArguments: calendric_systemname -- (IN) : the name of the calendric system
*

*Return Value: bool : TRUE if the calendric system is defined

* FALSE otherwise

*

*Errors: None

*
¥Side Effects: Nomne
*/

bool ucs_is_calendric_system(char xcalendric_system name);

/%

*Routine: ucs_declare calendric_system

*

*Description: Inform uniform calendric support that a
* new calendric system has been selected
*

xArguments: calendric_systemname -- (IN) : the name of the calendric system
*

*Return Value: Error code

*

*Errors: None, assumes that ucs_is_calendric_system was called previously

*
xSide Effects: Changes current calendric system in UCS
*/

error_type ucs_declare calendric_system(char *calendric_system name);

6.3 Internal Data Structures

As previously mentioned, a calendric system is represented entirely by data structures within the
UCS; calendric systems contain no procedural components. From an architectural standpoint, a
calendric system exists solely to integrate calendars and to supply a mechanism for accessing the
facilities those calendars provide. As such, static data structures identifying calendars and the
services exported by those calendars are all that is needed to implement a calendric system.

A calendric system data structure contains three components, the name of the calendric system,
the calendars and epochs defined for the calendric system, and a list of routines. Calendric systems
and their constituent calendars were discussed in Section 2. The set of routines defined via the
calendric system is the collection of routines defined by each calendar of the calendric system. This
list is collected by the DBMS generation toolkit described in Section 10.

To illustrate how a calendric system is represented, we return to the Russian calendric system of
Section 2. The Russian calendric system is composed of six calendars, the geologic, carbon-14,
roman, julian, communist, and gregorian calendars [Soo & Snodgrass 1992B]. Each calendar
is associated with one epoch, except for the gregorian calendar which has two epochs. The
num_epochs field in the calendric_system structure is thus set to 7, and 7 epoch structures are
allocated. As illustrated by the Russian calendric system, a single calendar may be in effect during
several epochs—the only requirement is that no epochs in a calendric system overlap. The actual
calendar structures are generated by the generation toolkit (Section 10).

When temporal constants are encountered in a query, a calendar of the calendric system must
be selected to translate the constant into a time-stamp. The calendars must be prioritized for this
purpose. For our example, it is reasonable to assume that the largest number of temporal constants
encountered will belong to the present epoch (covered by the gregorian calendar), followed by the

40

two year epoch of the communist calendar, followed by the epoch from 1917 to 1929 (also covered
by the gregorian calendar), followed by the epoch prior to the revolution (covered by the julian
calendar), and lastly the epochs covered by the roman carbon-14, and geologic calendars in the
indicated order. Therefore, the DBI would assign the highest input priorities to the gregorian
calendar, the next highest priority to the julian calendar, etc. Then, when a temporal constant
is evaluated, the UCS will, after preprocessing the input, pass the constant to each calendar
according to the priorities. The time-stamp returned by the first calendar to successfully translate
the constant is taken as the value of the constant.

Each calendar may define functions invokable by the query language. These functions are
bound at compile time by the function ucs_bind function. This was discussed in Section 6.2.8.

In summary, each calendric system is composed of a name and several epochs. The epochs
are non-overlapping and have an associated calendar. The following structures are used to specify
these epochs. Note that the calendars are listed in decreasing input priority with the epoch at the
head of the list having the highest input priority.

typedef struct {
interval_type epoch;
calendar type *calendar;

} epoch_type;

typedef struct {
char *name;
int num_epochs;
epoch_type epochs[];
} calendric_system type;

calendric_system type calendric _system list[]; /* list of all calendric systems */

The following structures are constructed for particular calendars by the generation toolkit, and

are used by the UCS.

typedef struct {
char *name;
function entry_type functions[];
int field_index_table_size;
char *field_index_tablel[];
} calendar type;

typedef struct {
char *function name;
int num_params;
formal arg type list_params[];
formal arg type return_type;

} function_entry_type;

Property values are managed by the UCS. Internally, property values are not represented by
strings, rather a more efficient method is used. Two routines are needed in order to update the
property table. First the query processor inserts individual values of each property to be updated
into the property table, using the routine ucs_property_push. If more than one value of the same
property is inserted, only the most recent value is retained. Second, all the previously inserted
properties are activalted as a group, using the routine ucs_property_activate. The routine

41

ucs_property_deactivate reverses the effect of the most recent ucs_property_activate, and
makes the previous property table the current property table. When the initial property table is
in effect, calling this routine results in an error—the initial property table cannot be undone.

Property management is implemented in a very simple manner. Property values are recorded in
a stack, and a table of pointers, one for each property, points to the current value of each of the ten
properties. The stack maintains the history of property activation, and the table provides efficient
access to the current property values. Initially, the stack contains only the default properties,
and the pointers point to the default property values in the stack. During execution, a call to
ucs_property_push will push a new property value onto the stack. If this property value is then
activated using ucs_property_activate, the pointer associated with that property in the table of
pointers is updated to point to the most recently activated value.

For efficiency, each property in the stack points back to its previous value; when a ucs_property_-
deactivate is performed and it is necessary to find the old value of that property, the stack does
not need to be searched.

typedef struct {

char xvalue;

struct property_element sprevious_value;
} xproperty_element_type;

#define NUM_PROPERTIES 10

property_element type initial property_list[NUM_PROPERTIES];

7 Calendars

The calendar is the most critical component of the architecture. It represents the local adaptation
of temporal semantics within the architecture, and so the majority of its contents must be provided
by the DBI. These contents include calendar unique functions, routines supporting temporal con-
stant evaluation and time-stamp evaluation, and calendar dependent aggregate, arithmetic, and
comparison operations. These routines constitute the services exported by the calendar to the
UcCs.

Table 4 identifies the operations that must be programmed as part of a calendar implementation.
We note that most of these operations involve variable spans. If the calendar does not define any
variable spans, then these functions are not required, and only the six remaining routines are
required to define a calendar. If only one variable span is defined, then the variable span routines
can be quite simple. This is the case with our initial description of the Gregorian calendar which
has a single variable span, month. When multiple variable spans are defined, then each routine
must contend with all, and some must handle the more complex combinations of two variable
spans.

Constructing calendar routines may be difficult for the DBI. Consequently, whenever possible
we have identified common processing that must be present in all calendars and shifted that code
into the UCS and TADT to minimize the DBI’s programming effort. Shifting processing to the
UCS is made possible by using table-driven algorithms. Calendars provide field index tables to the
UCS; the UCS uses this information to interpret input data or construct output data. In particular,
properties allow local adaptation of calendar semantics. At the query language level, properties
are used to parameterize calendars, and property values affect the result of calendar operations.
However, at the architectural level, our goal is to simplify the implementation of calendars as much
as possible. Consequently, we have moved the interpretation and application of property values out

42

of the calendar and into the UCS. Calendars are not required to interpret property values directly,
and whenever possible, the UCS pre-processes the data to apply the effects of property values.

‘ Operation ‘ Number of Routines ‘
Time-stamp translation 3
Constant translation 3
Memory allocation for span states 4
Variable span arithmetic operations 15
Variable span comparison operations 8
Variable span aggregate operations 15
Variable span to fixed span conversion 1

Calendar specific functions calendar dependent

Table 4: Calendar Operations

7.1 External Data Structures

These structures are allocated indirectly by the TADT via the cal_calendar_... fstate_to_vstate
routines. They are arbitrarily-sized data structures defined by each calendar.

typedef void *count_state_vs;
typedef void *sum_state_vs;
typedef void *avg state_vs;
typedef void *min_state._vs;
typedef void *max_state._vs;

7.2 Externally Visible Routines

We describe in this section the functions comprising a calendar definition. For each different
calendar system, the word calendar in each function name would be replaced by the name of the
actual calendar. For example, in the Gregorian calendric system, there would be a function called
cal _gregorian gen s_array.

7.2.1 Data Structure Allocation

The following routines are used by the calendar module to allocate memory for data structures
that are externally visible. The actual memory allocation is done by calling the TADT routine
tadt_malloc.

sum_state_vs cal_allocate_sum_state_vs();
avg state_vs cal_allocate_avg state vs();
min_state_vs cal_allocatemin_state_vs();

max_state_vs cal_allocatemax_state_vs();

7.2.2 Time-stamp Translation

The following routines support translation of time-stamps into strings (temporal constants). They
are required of all calendars.

43

if*toutine: cal_calendar_gen_s_array

::Description: Create a parsed version of the time-stamp
::Arguments: span -- (IN) : time-stamp

* val_array -- (OUT): parsed version of time-stamp
::Return Value: Error code

::Errors: conversion_error

*
*Side Effects: Overwrites val_array
*/

error_type cal_calendar_gen_s_array(span_type span,value.array type val_array);

if*{outine: cal_calendar_gen_e_array

::Description: Create a parsed version of the time-stamp
::Arguments: event —- (IN) : time-stamp

* val_array -- (OUT): parsed version of time-stamp
::Return Value: Error code

::Errors: conversion_error

*
*Side Effects: Overwrites val_array
*/

error_type cal_calendar_gen_e_array(event type event, value_array._type val_array);

/%

*Routine: cal_calendar_gen_i_array

*

*Description: Create a parsed version of the time-stamp
*

xArguments: event -- (IN) : time-stamp
* val_array_1 -- (OUT): first half of parsed version of time-stamp
* val array 2 -- (0OUT): second half of parsed version of time-stamp

*
*Return Value: Error code
*

*Errors: conversion_error

*

*Side Effects: Overwrites val_array._1l and val_array.2

*/

error_type cal_calendar_gen_i_array(event_type event, value_array type val_array.i,
value array type val_array_2);

7.2.3 Constant Translation

The following routines support translation of strings (temporal constants) into time-stamps. They
are required of all calendars.

/%

*Routine: cal_calendar_gen_s_timestamp

*

*Description: Create a span time-stamp from a parsed version of the

* input string

*

xArguments: val_array -— (IN) : parsed representation of the input string
* span -- (0OUT): span time-stamp

*

44

*Return Value: Error code
*
*Errors: conversion_error

*
*Side Effects: Overwrites span
*/

error_type cal_calendar_gen_s_timestamp(value array type val_array, span_type span);

/%

*Routine: cal_calendar_gen_ e timestamp

*

*Description: Create an event time-stamp from a parsed version of the

* input string

*

xArguments: val_array -- (IN) : parsed representation of the input string
* locale —— (IN) : current locale property value

* event -- (OUT): event time-stamp

*
*Return Value: Error code
*

*Errors: conversion_error

*
xSide Effects: Overwrites event

*/

error_type cal_calendar_gen_e timestamp(value array type val_array, char xlocale, event_type event);

/%

*Routine: cal_calendar_gen_i_timestamp

*

*Description: Create an interval time-stamp from a parsed version of the
* input string

*

xArguments: val_arrayl —-- (IN) : parsed representation of beginning of interval
* val_array2 -- (IN) : parsed representation of ending of interval

* locale -— (IN) : current locale property value

* interval -- (OUT): interval time-stamp

*
*Return Value: Error code
*

*Errors: conversion_error

*

*Side Effects: Overwrites interval

*/

error_type cal_calendar_gen_i timestamp(value array type val_arrayl, value.array type val_array2,
char xlocale, interval type interval);

7.2.4 Span Arithmetic Support

The following variable span arithmetic functions are required if the calendar uses any variable
spans.

/%

*Routine: cal_calendarneg s

*

xDescription: Return a negative span whose duration is the

* same as the input span

*

xArguments: spanin -- (IN) : span to be converted
* result --(0UT): result negative span

*
*Return Value: Error code
*

*Errors: None

*

45

¥Side Effects: Overwrites result
*/

error_type cal_calendar neg _s(span_type spanin, span_type result);

/*

*Routine: cal_calendar_vs_add fs

*

*Description: Compute the sum of a variable span and a fixed span
*

xArguments: vs -- (IN) : variable span
* fs —— (IN) : fixed span
* result-- (OUT): the sum of the arguments

*
*Return Value: Error code
*

*Errors: out_of range

*
xSide Effects: Overwrites result

*/

error_type cal_calendar_vs_add fs(span_type vs, span_type fs, span_type result);

i;outine: cal_calendar_vs_add vs

IDescription: Compute the sum of two variable spans
IArguments: vsl, vs2 -- (IN) : spans to be added

* result -- (OUT): result of sum of two spans
IReturn Value: Error code

IErrors: out_of range

*
xSide Effects: Overwrites result

*/

error_type cal_calendar_vs_add vs(span_type vsl, span_type vs2, span_type result);

/*

*Routine: cal_calendar_vs minus fs

*

*Description: Subtract a fixed span from a variable span
*

xArguments: vs -- (IN) : variable span
* fs —— (IN) : fixed span
* result-- (OUT): the difference of the arguments

*
*Return Value: Error code
*

xErrors: out_of range

*
¥Side Effects: Overwrites result
*/

error_type cal_calendar_vs minus fs(span_type vs, span_type fs, span_type result);

/*

*Routine: cal_calendar_fs minus_vs

*

*Description: Subtract a fixed span from a variable span
*

xArguments: fs -- (IN) : fixed span
* vs —— (IN) : variable span
* result-- (OUT): the difference of the arguments

*

46

*Return Value: Error code
*
xErrors: out_of range

*
¥Side Effects: Overwrites result
*/

error_type cal_calendar_fs minus vs(span_type fs, span_type vs, span_type result);

/*

*Routine: cal_calendar_vs minus_vs

*

*Description: Subtract a variable span from a variable span
*

xArguments: vsl -- (IN) : variable span
* vs2 -— (IN) : variable span
* result-- (OUT): the difference of the arguments

*
*Return Value: Error code
*

*Errors: out_of range

*
¥Side Effects: Overwrites result
*/

error_type cal_calendar_vs minus vs(span_type vsl, span_type vs2, span_type result);

/%

*Routine: cal_calendar_vs_add_e

*

*Description: Add a variable span to an event
*

xArguments: vs -- (IN) : variable span
* event_in -- (IN) : event
* result —-- (OUT): the sum of the arguments

*
*Return Value: Error code
*

xErrors: out_of range

*
¥Side Effects: Overwrites result
*/

error_type cal_calendar_vs_add_e(span_type vs, event_type event_in, event_type result);

/*

*Routine: cal_calendar_e minus_vs

*

*Description: Subtract a variable span from an event
*

xArguments: event_in -- (IN) : event
* vs ——- (IN) : variable span
* result -- (OUT): the difference of the arguments

*Return Value: Error code
*
xErrors: out_of range

*
¥Side Effects: Overwrites result
*/

error_type cal_calendar_e minus vs(event_type event_in, span_type vs, event_type result);

/*

*Routine: cal_calendar_vs_times n

*

*Description: Multiply a variable span by a numeric value
*

xArguments: vs -- (IN) : variable span

47

* n —- (IN) : numeric value

* result-- (OUT): the product of the arguments
*

*Return Value: Error code

*

xErrors: out_of range

*
¥Side Effects: Overwrites result
*/

error_type cal_calendar_vs_times n(span_type vs, double n, span_type result);

/*

*Routine: cal_calendar_vs_div.n

*

*Description: Divide a variable span by a numeric value
*

xArguments: vs -- (IN) : variable span
* n —- (IN) : numeric value
* result -- (OUT): the division of vs by n

*
*Return Value: Error code
*

*Errors: None (assumes that UCS checks that n is not 0)

*
¥Side Effects: Overwrites result
*/

error_type cal_calendar_vs_div n(span_type vs, double n, span_type result);

/%

*Routine: cal_calendarfs div_vs

*

*Description: Divide a fixed span by a variable span
*

xArguments: fs -- (IN) : fixed span dividend
* vs —— (IN) : variable span divisor
* dividend -- (OUT): the division of fs by vs

*
*Return Value: Error code
*

*Errors: divide by _zero

*
*Side Effects: Overwrites dividend
*/

error_type cal_calendar fs_div_vs(span_type fs, span_type vs, double xdividend);

/%

*Routine: cal_calendar_vs div_ fs

*

*Description: Divide a variable span by a fixed span
*

xArguments: vs -- (IN) : variable span dividend
* fs —— (IN) : fixed span divisor
* dividend -- (OUT): the division of vs by fs

*
*Return Value: Error code
*

*Errors: None (assume that UCS checks to make sure fs is not 0)
*
*Side Effects: Overwrites dividend

*/

error_type cal_calendar_vs_div fs(span_type vs, span_type fs, double xdividend);

48

/*

*Routine: cal_calendar_vs div_vs

*

xDescription: Divide a variable span by a variable span
*

xArguments: vsl -- (IN) : variable span dividend
* vs2 -— (IN) : variable span divisor
* dividend -- (OUT): the division of vsl by vs2

*
*Return Value: Error code
*

*Errors: semantic_error

*
*Side Effects: Overwrites dividend
*/

error_type cal_calendar_vs_div_vs(span_type vsl, span_type vs2, double xdividend);

/*

*Routine: cal_calendar_i_add_vs

*

*Description: Add a variable span to an interval
*

xArguments: interval_in -- (IN) : interval
* vs —— (IN) : variable span
* result —-- (OUT): the sum of the arguments

*
*Return Value: Error code
*

xErrors: out_of range

*
¥Side Effects: Overwrites result
*/

error_type cal_calendar_vs_add_i(span_type vs, interval type interval_in, interval _type result);

/*

*Routine: cal_calendar_i_ minus_vs

*

*Description: Subtract a variable span from an interval
*

xArguments: interval_in -- (IN) : the interval to be displaced
* vs —— (IN) : the span of displacement
* result —-- (OUT): the difference of the arguments

*
*Return Value: Error code
*

xErrors: out_of range

*
¥Side Effects: Overwrites result
*/

error_type cal_calendar_i minus vs(interval type interval_in, span_type vs, interval_type result);

7.2.5 Span Comparison Support

The following variable span comparison routines are required if the calendar uses any variable
spans.

/%

*Routine: cal_calendar_vs_eq fs

*

xDescription: Compare a variable span to a fixed span. Returns

* the boolean value TRUE if they are equal and
* FALSE otherwise.

*

xArguments: vs -- (IN) : variable span

49

* fs —— (IN) : fixed span

*

*Return Value: bool : TRUE if vs = fs
* FALSE if vs <> fs

*

xErrors: semantic_error

*
xSide Effects: None

*/

bool cal_calendar_vs_eq fs(span_type vs, span_type fs);

/%

*Routine: cal_calendar_vs_eq.vs

*

xDescription: Compare a variable span to a variable span. Returns

* the boolean value TRUE if they are equal and
* FALSE otherwise.

*

xArguments: vsl -- (IN) : variable span

* vs2 -— (IN) : variable span

*
¥*Return Value: bool : TRUE if vsl = vs2
* FALSE if vsl <> vs2

*

*Errors: semantic_error

*
¥Side Effects: None
*/

bool cal_calendar_vs_eq vs(span_type vsl, span_type vs2);

/*

*Routine: cal_calendar_vs 1t fs

*

xDescription: Compare a variable span to a fixed span. Returns

* the boolean value TRUE if the first span is less than
* the second span and FALSE otherwise.

*

xArguments: vs -- (IN) : variable span

* fs —— (IN) : fixed span

*
*Return Value: bool: TRUE if vs < fs
* FALSE if vs >= fs

*

*Errors: semantic_error

*
xSide Effects: None

*/

bool cal_calendar_vs 1t fs(span_type vs, span_type fs);

/*

*Routine: cal_calendarfs 1t _vs

*

*Description: Compare a fixed span to a variable span. Returns
* the boolean value TRUE if the first span is less than
* the second span and FALSE otherwise.

*

xArguments: fs -- (IN) : fixed span

* vs —— (IN) : variable span

*

*Return Value: bool : TRUE if fs < vs

* FALSE if fs >= vs

*

*Errors: semantic_error

*
xSide Effects: None

*/

bool cal_calendar_fs 1t _vs(span_type fs, span_type vs);

50

/*

*Routine: cal_calendar_vs 1t _vs

*

xDescription: Compare a variable span to a variable span. Returns

* the boolean value TRUE if the first span is less than
* the second span and FALSE otherwise.

*

xArguments: vsl -- (IN) : variable span

* vs2 -— (IN) : variable span

*
¥*Return Value: bool : TRUE if vsl < vs2
* FALSE if vsl >= vs2

*

*Errors: semantic_error

*
xSide Effects: None

*/

bool cal_calendar_vs 1t _vs(span_type vsl, span_type vs2);

/%

*Routine: cal_calendarfs_gt_vs

*

*Description: Compare a fixed span to a variable span. Returns
* the boolean value TRUE if the first span is greater than
* the second span and FALSE otherwise.

*

xArguments: fs -- (IN) : fixed span

* vs —— (IN) : variable span

*

*Return Value: bool: TRUE if fs > vs

* FALSE if fs <= vs

*

*Errors: semantic_error

*
xSide Effects: None

*/

bool cal_calendar_fs gt _vs(span_type fs, span_type vs);

/%

*Routine: cal_calendar_vs_ gt fs

*

*Description: Compare a variable span to a fixed span. Returns

* the boolean value TRUE if the first span is greater than
* the second span and FALSE otherwise.

xArguments: vs -- (IN) : variable span

* fs —— (IN) : fixed span

*
*Return Value: bool : TRUE if vs > fs
* FALSE if vs <= fs

*

*Errors: semantic_error

*
xSide Effects: None

*

*/

bool cal_calendar_vs_gt fs(span_type vs, span_type fs);

/%

*Routine: cal_calendarvs_gt_vs

*

*Description: Compare a variable span to a variable span. Returns

* the boolean value TRUE if the first span is greater than
* the second span and FALSE otherwise.

*

xArguments: vsl -- (IN) : variable span

* vs2 —-— (IN) : variable span

51

*
*Return Value:
*
*
*
*
*Errors:

bool : TRUE if vsl < vs2
FALSE if vsl >= vs2

Return Value: Error code
semantic_error

ISide Effects: Nomne

o/

bool cal_calendar_vs_gt _vs(span_type vsl, span_type vs2);

7.2.6 Span Aggregate Function Support

The following variable span aggregate routines are required if the calendar uses any variable spans.
In addition, the calendar must provide conversion routines for state conversion from fixed span to
variable span aggregates. A detailed example of span aggregate computation is given in Section 9.3.

We show only one prologue for the aggregate routines. The remaining prologues are similar to

those in the TADT.

/%
*Routine:
*

*Description:

*
*

xArguments:

*
*

*Return Value:

*
*Errors:

cal_calendar_count fstate_to_vstate

Convert a partial result of the count
of fixed spans to a count of variable spans

fs_count_state —-- (IN) : the count of spans so far
vs_count _state -- (0OUT): the count of fixed spans

Error code

conversion_error

*
¥Side Effects: Overwrites vs_count_state

*/

error_type

error_type
error_type

error_type
error_type
error_type

error_type
error_type
error_type

error_type
error_type
error_type

error_type
error_type
error_type

cal_calendar_count fstate_to_vstate(int *fs_count_state, void *vs_count_state);

cal_calendar_accum_count_s(void *count_state, span_type span);
cal_calendar_final count_s(void xfinal_state, int *final_count);

cal_calendar_sum fstate to_vstate(span_type fs_sum state, void *vs_sum_state);
cal_calendar_accum_sum_s(void xsum_state, span_type span);
cal_calendar_final sum_s(void xfinal_state, span_type span);

cal_calendar_avg fstate to_vstate(avg state fs fs_avg state, void xvs_avg state);
cal_calendar_accum_avg_s(void *avg_state, span_type span);
cal_calendar final avg_s(void *final _state, span_type span);

cal_calendar max fstate to_vstate(span_type fs max state, void *vs_max state);
cal_calendar_accummax_s(void xmax_state, span_type span);
cal_calendar_final max _s(void xfinal_state, span_type span);

cal_calendarmin fstate to_vstate(span_type fsmin state, void *vs_min_state);
cal_calendar_accummin_s(void *min_state, span_type span);
cal_calendar_final min _s(void xfinal_state, span_type span);

52

7.2.7 Variable Span to Fixed Span Conversion

The following variable span to fixed span conversion routine is required if the calendar uses any
variable spans.

if*{outine: cal_calendar_vs_to_fs

::Description: Converts a variable span to an equivalent fixed span
IArguments: vs —— (IN) : variable span

* fs -- (OUT): fixed span

IReturn Value: Error code

:Errors: semantic_error

*
¥Side Effects: Overwrites fs
*/

error_type cal_calendar_vs_to fs(span_type vs, span_type fs);

7.3 Internal Data Structures

A calendar does not need internal data structures to store information. This is because the oper-
ation of a calendar is mostly stateless, with two exceptions. Overrides on default Locale property,
as maintained in the UCS property stack, may affect the input and output of time-stamps. The
current value of this property is passed into the appropriate conversion routines, as discussed in
Sections 7.2.2 and 7.2.3. The other exception is the state of an aggregate computation, which is
discussed in Sections 7.1 and 9.3.

8 Field Value Support

This section describes the module providing access to field value tables and field value routines.
Field value support has been separated from calendars in the architecture because distinct calendars
may make use of the same field value tables and routines.

8.1 External Data Structures

typedef enum {
fv_ok, /+successful completion of the routine */
fv_index too_large, /#no string found, a too large index x*/
fv_index_too_small, /#no string found, a too small index x/
fv_string unrecognized, /+no index value found, unrecognized string */
fv_string overflow, /+string too long */
fv_table number_undefined, /*no table has this number */
fv_table name undefined /*no table has this name */

} fv_error_type;

8.2 Externally Visible and Internal Routines

The field value support (FV) module exports the two routines described below. The first routine
looks up an index value in an argument field value table and returns the corresponding string.
Field value tables relate index values and text strings. Such tables may be implemented as either
genuine tables or as routines. The second routine looks up a text string in an argument field value
table and returns the corresponding index value.

53

/%

*Routine: fv_index to_string

*

*Description: Return the string corresponding to an index value
*

xArguments: tablenumber —-- (IN) : the argument table
* index -- (IN) : the index value to convert to a string
* result —-- (OUT) : the requested string

*
+tReturn Value: Error code
*

*Errors: fv_index_too_large

* fv_index_too_small
* fv_table number undefined
* fv_string overflow

*
xSide Effects: Assignment to passed result string
*/

fv_error type fv_index to_string(int table number, int index, string struct result);

/%

*Routine: fv_string to_index

*

*Description: Return the index value of a string
*

xArguments: tablenumber —- (IN) : the argument table

* string —— (IN) : the string to be located

* result -- (OUT) : the index value of the string

* num_char -- (OUT) : the number of recognized characters in the string

*
*Return Value: Error code

*

xErrors: fv_string unrecognized

* fv_table number undefined

*
xSide Effects: Assignment to result and num_char
*/

fv_error type fv_string to_index(int table number, char kstring, int kresult, int snum_char);

The next routine, also exported by the FV module, returns the number of a field value table
when given the name of the table. It is used when converting the table names of format strings to
their corresponding index values. Recall that a field value table may be implemented by a pair of
functions. Only one function in a pair of functions is needed at a time; the routine requesting a
table lookup decides which function to use.

/*

*Routine: fv_table name_to_number

*

*Description: Return the number of a named table
*

xArguments: tablename —-- (IN) : the name of the table

* table_number -- (0UT) : the number of the table
*

*Return Value: Error code

*

¥Errors: fv_table_name_undefined

*
xSide Effects: Assignment to table number

*/

fv_error_type fv_table name_to number(char stable name, int *table number);

In the pair of routines fv_table_index_to_string and fv_table_string to_index below, we use
table (in italics) to indicate that one pair of routines exists for each field value table defined in
the system. When one of the first two routines above is called, it simply uses the table number
argument to decide which specific table routine to call. The table routines either work by doing a
table look-up or by calling a function. For example, the english month name table routines use a
table with twelve entries, and the day_of _year table routines use a pair of functions for computing
day and index numbers.

54

/%

*Routine: fv_table_index to_string

*

xDescription: Return the string in table corresponding to an index value
*

xArguments: index -- (IN) : the index value to convert to a string
* result —-- (OUT) : the requested string

*

*Return Value: Error code

*

xErrors: fv_index_too_large

* fv_index_too_small

* fv_string overflow

*
xSide Effects: Assignment to passed result string
*/

fv_error_type fv_table_index to_string(int index, string struct result);

/%

*Routine: fv_table_string to_index

*

*Description: Return the index value in table of a string
*

xArguments: string -- (IN) : the string to be located
* result —-- (OUT) : the index value of the string
* num_char -- (OUT) : the number of recognized characters in the string

*
*Return Value: Error code

*

*Errors: fv_string unrecognized

*
xSide Effects: Assignment to result and num_char
*/

fv_error_type fv_table_string to_index(char #string, int sresult, int snum_char);

8.3 Internal Data Structures

The fv_table name_to number routine uses the first array defined below for finding the number
of a field value table. The numbers of genuine tables range from 0 to fv_max field tables —1,
and the numbers of functions implementing field value tables range from fv_max field tables to
fv_max _field tables + fvmax field functions —1.

#define fv.max field tables num /xtotal number of genuine field value tables, generated */
#define fv.max field functions num /xtotal number of field value functions, generated */

char *table names[fv.max field tables + fv_.max field functions - 1];

The data structure below represents genuine field value tables. The first three fields are used
for output, i.e., when an index value is looked up and the corresponding field value is returned. The
fourth field (an array of struct’s) is used for input, i.e., when a field value must be transformed
into an index value. The latter array is sorted on the field values.

struct {

int min_index;

int max_index;

char *field_values[];

struct { char xfield_value; int index_value; } input_tablel[];
} field value tables[fvmax field tables];

The data structure immediately following represents the pairs of field value functions.

struct {
fv_error type (#fv_table_index to_string)(int, string struct);
fv_error type (xfv_table string to_index)(char *, int x, int %);
} field value functions[fvmax field functions];

55

9 Examples

By means of examples, we illustrate how components of the architecture interact when performing
temporal constant related operations.

9.1 Adding Variable Spans and Events

Consider adding the variable span %month}, to the event |January 27, 1992, 12:01 PM|. The
result of adding a month and an event is, in the calendar of this example, defined to be the event of
the following month which is the same number of days from the month’s end as was the argument
event. In our example, January 27 is 4 days from the end of January. Thus, the result is 4 days
from the end of February, or |February 25, 1992, 12:01 PM| (1992 is a leap year).

In the architecture, it is first determined that the span is variable. The TADT routine
tadt_is_vs_s is used. Then the routine cal_calendar_vs_add_e is called with the event and the
variable span, month. It, in turn, calls tadt_e_to_seconds which returns the number of seconds
from the argument event to the origin. The calendar routine then uses this number to compute the
month, day and year represented by the event (i.e., January 27, 1992). The month is then deter-
mined from this information; the desired result after the addition is determined to be February 25,
1992, 4 days from the end of February. The calendar routine then computes how many seconds from
the temporal origin this time and date result is. Finally, it calls the routine tadt_seconds_to_e
which returns the result event. No new structures to hold time-stamps would be created here.

Whenever the UCS operates on spans, it asks the TADT module whether the span is variable.
While arithmetic operations dealing with fixed spans are handled solely by the UCS and TADT
modules, variable spans require calendar involvement—only the calendar, a variable span belongs
to, is capable of computing its value.

9.2 Span Arithmetic

Consider an example where the query processor encounters the expression }age’ + seniorityij.
Here age and seniority are attribute names of type span. In response, the query processor makes
the following function call.

ucs_s_add_s(age, seniority)

Note that the query processor is not capable of determining whether the spans are fixed or variable.
Therefore, the routine ucs_s_add_s is called independently of the types of the spans involved—this
is the routine that supports addition of span values in the type system of the query language. The
routine determines whether its operands are fixed, variable, or a combination. To do so, it calls
the routine tadt_is_vs as follows.

tadt_is_vs_s(age)
tadt_is vs_s(seniority)

If both age and seniority are fixed spans, the following function call is made.
tadt_fs_add fs(seniority, age)

In this case, the TADT performs the addition. If exactly one of the attributes, e.g., seniority, is
a variable span then a calendar is responsible for the computation. The UCS issues the function
call

cal_calendar_vs_add fs(seniority, age)

56

Next, if both spans are variable then the operation is passed to a calendar using the similar routine
cal_calendar_vs_add_vs.

Finally, the result computed by one of the routines tadt_fs_add fs, cal_calendar_vs_add_fs,
or cal_calendar_vs_add_vs is returned to ucs_s_add_s which then returns it to the query processor.

In the example, we only considered addition. The UCS also provides routines for all other
arithmetic operations involving span values.

In general, when a computation involves both a variable span and a fixed span then both spans
are passed to the calendar of the variable span. The calendar then assumes the responsibility for
the computation. It may proceed in several ways. It may convert the variable span to a fixed
span and then use the TADT arithmetic routines for performing the computation. It may ask
the TADT to determine the size of the fixed span (the difference between its starting and ending
events), and decide how to proceed. Other types of operations are also possible.

As illustrated by the example, when an operation involves two variable spans from the same
calendar then the UCS simply calls the required routine cal_vs_operation_vs (where operation is
the mathematical operation, e.g., add). If the variable spans are from different calendars then the
UCS calls each of the two calendar’s routine cal vs_to_fs. The two fixed spans returned from the
function calls are used by the TADT to compute the result. Note that adding variable spans from
different calendars may produce unexpected results.

Comparisons involving variable spans are similar to arithmetic computations involving variable
spans, like that of the example.

9.3 Aggregate Computation

Consider the computation of the average of a set of spans. For the purpose of this example, we
assume that the set contains both fixed and variable spans, and that at least one fixed span is
evaluated before a variable span is encountered.

Computing aggregates on variable spans requires action by the underlying calendar upon which
the spans are defined. Initially the routine tadt_init_avg fs is called to initialize the state used.
Then the routine tadt_accum_avg fs is called repeatedly with fixed span arguments until the first
variable span is encountered (before each call, the routine tadt_is_vs_s is used to decide the type
of the span). Now the UCS calls the calendar’s routine cal_calendar_avg_fstate_to_vstate which
converts the partial state of fixed spans to a state usable for variable span average computation.
Then the routine cal_calendar_accum_avg vs is called with each of the rest of the spans, indepen-
dently of their type. Finally, cal_calendar_final_avg vs is called after all of the spans have been
processed.

9.4 Property Table Example

The use of properties adds flexibility to the calendars, and it helps tailoring the calendars to the
needs of different users. The properties may be used to specify the input and output formats of
temporal constants, the current locale, an override input epoch, and the naming of the concepts
beginning and forever.

The calendar DBMS is created with an initial property table, containing values for each of the
ten properties. A new property table is created as follows. First the new values of the properties
to be changed are specified using the ucs_property_push routine. Second, the new table is created
by calling the routine ucs_property_activate. The new table is identical to the previous table,
except from that it contains the new values specified with the ucs_property_push routine. If no
new value is specified for a property, the old value is in effect. If more than one value is specified
for the same property, the most recently specified value is in effect.

57

Using the routine ucs_property_deactivate, the effect of the most recent ucs_property_activate

may be undone. In this way it is possible to revert to any previous table. To exemplify, suppose
that our application is target for use in the European Economic Community, where multi-lingual
reports on information in the database need to be generated. Most of the information must be
displayed in English, but selected portions must be presented in other languages, e.g., French,
Danish.

Initially, the Fvent Quipul Format property has the following value.

<month,english month names> <day,arabic_numeral>, <year,arabic_numeral>

This prints out the Ides of March in 1992 as March 15, 1992. Assume that we need to print
this and other dates according to the common European format (day/month/year). To do so, we
change the initial event output format to the following format.

<day,arabic_numeral>/<month,arabic numeral>/<year,arabic numeral_two_ digits>

This format is specified using the function ucs_property push. The new table is created by
calling ucs_property_activate. The actual sequence of calls follows.

ucs_property_push("event output format", "day/month/year property string") ;
ucs_property_activate();

Now assume that the new dates must be printed in France. Then we may want to specify a
new value for the Locale property. The value, indicating some location in France, may be simply
the character string for “France”, or it may be a longitudinal coordinate specifying a point in
France. The Locale property value is interpreted by the calendar. A new table (still with the
day/month/year output format) is created as follows.

ucs_property push("locale", "France");
ucs_property_activate();

The Ides of March would now be printed out as 15/3/92.
After printing out a few dates in this format, suppose one date needs to be printed out using
French month names. We specify the following format.

<day,arabic_numeral > <month,french month names>, <year,arabic_numeral>
To create the appropriate table, we issue these commands.

ucs_property_push("event output format", " French month names formal") ;
ucs_property_activate();

Our earlier date would be printed out as 15 Mars, 1992. The new date is still in France, so the
“France” Locale property value is still desired. Since we did not explicitly change the old Locale
property value, the new table contains the desired value. After this date is printed, we use the rou-
tine ucs_property_deactivate to revert to toe previous property table, and the day/month/year
event output format becomes current. Finally, after the use of this property is no longer needed,
the original property table is recovered using ucs_property_deactivate.

Situations may arise where the runtime system uses the ucs_property_push routine repeat-
edly and later discovers that an erroneous property value has been pushed. To recover easily
from such a mistake, we provide the routine ucs_property_clear. Instead of calling the routine
ucs_property_activate and then ucs property_deactivate, this new routine may be called. Its
effect is to simply undo all invocations of ucs_property_push after the most recent invocation of
ucs_property_activate.

58

9.5 Time-stamp and Temporal Constant Translation

When a temporal constant is read, one or more calendars may need to be consulted to translate the
constant. Calendars are consulted in order of the calendar priority list until a calendar successfully
translates the constant. The property override input epoch may be used to override the default
input priority list and this epoch (and associated calendar) is considered first for translation of the
constant.

Input format properties are provided for each of the three temporal types. We have designed
the query language to include strong typing of temporal expressions, including temporal constants.
The query processor is therefore able to determine at compile time which UCS translation function
to call. The UCS determines the format string for the particular temporal type and translates the
constant according to the contents of this string. The calendar then fills a table with information
from the parsed input string.

The calendar knows how to convert this into the number of seconds from the origin (using
internal rules defined in the implementation of the calendar). The calendar calls the TADT to
create an event, interval, or span and return this data structure to the calendar. The calendar
does not understand the internals of this structure; whenever it is necessary to understand the
internal contents the TADT module is called to convert the structure back to the number of
seconds from the origin.

Time-stamp translation and constant translation are discussed in detail in the following two
examples.

9.5.1 Time-stamp To String Translation

Figure 3 shows a flow diagram for the processing that occurs when a time-stamp is converted
into an output string. (This processing would occur when a time-stamp is retrieved in a fetch
statement returning temporal attributes.) The query processor invokes the UCS to convert the
retrieved time-stamp into an output string for assignment to a procedure parameter. Boxes in the
figure denote actions which, in turn, represent UCS or calendar calls. Ovals represent data items
used in or generated by the processing. Most actions present in the figure are implemented in the
UCS; calendar routines are represented by broken outline boxes, and we note that there are only
two such boxes.

Figure 3 is illustrative of how table-driven algorithms are used in the UCS. Consider the time-
stamp 000078772A800000 stored in the when_employed attribute of Figure 1. This is the actual
time stamp for midnight, January 2, 1972 MST, as a hexadecimal number in the high resolution rep-
resentation. For this time-stamp, the american calendric system is consulted, and the time-stamp
is determined to be associated with the gregorian calendar. Translation begins by performing
local processing to determine the correct timezone. The calendar checks the value of the Locale
property which names the location of interest. In this case, the locale is “Tucson, Arizona”. The
calendar uses internal tables or computation to determine the timezone in which Tucson is located,
or its offset from Greenwich Mean Time (GMT). The locale indicates that Tucson, and most of the
state of Arizona, is always on Mountain Standard Time (MST), making determining the timezone
particularly simple. The time displacement for MST, which is 7 hours behind GMT, is retrieved
and subtracted from the original time-stamp. All of the parsing of the locale is internal to the
calendar.

Generation of the final output string begins by invoking the gregorian calendar to generate
the following array of field values. The UCS uses the valid flags to indicate which array entries are
desired.

59

| Indez I Value I Valid |

0 2 Y
1 0 Y
2 1972 Y

The array of field values is simply an unparsed version of the time-stamp. The content of the array
of field values is described by the following field indez table, which is provided by the calendar.

| Index in Field Value Table | Field Name |

0 day
1 month
2 year

Table 5: Field Index Table for Gregorian Calendars

The field index table associates indices in the array of field values with the components of a temporal
constant. The field index table indicates that the day component, 2, is found in the zeroth element
of the array of field values, the month component, 0, is found in the first element, and the the year

component, 1975, is found in the second element.
i Active calendric system
Determine calendar |

‘ Determine format string

Output format string Field index table Field value tables

Construct output string |

Figure 3: Time Value Retrieval

Array of field values

The UCS determines the format of the final output string by retrieving the output format string
from the current property set. We schematically represent the output format string as follows.

<month,english month names> <day,arabic numeral>, <year,arabic_numeral>

The format string lists the fields in the order that they are to appear in the output. The component
associated with each field is either a field value name table or the name of a routine that computes
the field’s string. For example, the english month names field value name table is shown in
Table 6. The UCS retrieves the string January since the field value table entry for month is 0,
and January is contained in the zeroth entry of the field value name table. The UCS iterates over

60

the fields of the output format string adding one field to the output string on each iteration. The
resulting string, “January,2,,1975”, is returned as the value of the when employed attribute.

‘ Index ‘ Field Value ‘

0 January
1 February
10 November
11 December

Table 6: english month names Field Value Table

This example illustrates how much of the the processing has been moved out of the calendar and
into the UCS and TADT. In particular, the calendar need only provide one routine, that converts
an adjusted time-stamp into an array of field values. (The calendar may also define additional field
formatting routines as previously described.) The UCS does the rest of the work of creating the
associated string. Minimizing each calendar’s responsibility is important since the UCS and TADT
will be implemented once, by the DBMS implementor, whereas the calendar’s implementation will
be the responsibility of the DBI.

9.5.2 String To Time-stamp Translation

Figure 4 shows the flow diagram for temporal constant interpretation. This flow occurs when the
string denoting a temporal constant is translated during run-time.

Consider reading in the string “January,2,,1972”. The query processor begins the parsing of
this time stamp by calling the UCS with the string. The UCS looks at the priority table and the
property table to determine which calendar has first priority when translating this string. These
calendars are consulted in order until one succeeds in translating the constant. For this constant,
the Gregorian calendar will succeed.

We’ll use the same format as before, only this time for input. When the string is parsed
according to this format, it results in the values shown in Table 7. Here the valid column indicates
whether the associated field appeared in the input format.

‘ Index ‘ Value ‘ Valid ‘
0 2 Y
1 0 Y
2 1972 Y

N

Table 7: Result of Parsing “January 2, 1972”

The calendar must still convert the parsed time into a number, which represents seconds or
fractions of seconds from the origin. This number represents the input string, but it does not
represent a universal time. It represents a time which is relative to its locale. Locale is a property
from the UCS property table which is calendar dependent. This value could describe a simple
time zone, such as MST, it could give the name of the city such as La Paz, or it could even give
the longitude of the locale. Whatever information is contained in the locale property, the calendar
must be able to convert this into a time offset from Greenwich Mean Time.

This offset is then applied to the number computed above, and this final number is passed to the

61

TADT module which creates the event (Midnight January 2, 1972 is the hex value 0000787724800000)

which represents the input string.
Active calendric system descriptor

I Determine calendar I
ield value tables
Parse input string
. | check for -
Field index table Beginning and
Forever

i

Field value array

...... l

it

Figure 4: Time Value Interpretation

10 Calendar DBMS Generation Toolkit

The architecture described in this document shares the characteristics of most extensible DBMSs,
in that certain aspects are bound at DBMS-generation time, other aspects are bound at database
schema-definition time, and still other aspects are bound during query evaluation. Specifically, in
our design calendars and calendric systems are declared when the DBMS is generated; calendric
systems are bound at schema definition time (or more precisely, when an SQL module is compiled),
and properties, such as output format, are bound at query evaluation time.

In this section, we focus on the aspects that are bound when the calendar DBMS is gener-
ated. The calendar DBMS generation toolkit processes a number of user-made specifications and
generates data structures used by the UCS and the FV modules.

Figure 5 gives an overview of the process of generating a DBMS, and it illustrates the role of
the toolkit, which consists of four individual generators. The top row of ovals represent high-level,
user provided specifications. The row of boxes are individual generators within the toolkit. Each
of these generate C language output. This output, along with C code defining the TADT module,
a library of UCS routines, and the remaining parts of a DBMS, is compiled to generate a DBMS
supporting multiple calendars.

We proceed by describing the input to the toolkit and its individual generators. Then we
discuss the products generated by the toolkit. For each product, we explain briefly what input is
used to generate it.

The user-made specifications read by the toolkit are contained in several types of specifications.

62

Toolkit
Prop Gen FV Gen @ UCS Gen @ Cal Gen

Calendars

Compile DBMS

Figure 5: Using the Toolkit for Generating a DBMS

Prop Spec’s—property specifications As described in Section 6.2.5, there are ten types of
properties. This default property specification contains a single value for each of these, and
it is used by the default property generator (Prop Gen).

FV Fct Spec’s—field value function specifications The size of a domain of field values, e.g.,
arabic_numeral, may make enumeration impractical. When that is the case, field value func-
tions are utilized. A table is represented by two functions, one maps index values to field

™ values, and the other maps field values to index values. While a higher level specification lan-
guage is desirable, field value functions must currently be specified using the C programming
language. See also Section 8.2.

FV Tbl Spec’s—field value table specifications Table 6 is an example of this kind of ta-
ble. Field value tables enumerate domains of field values such as english month names and
danish week days. Section 8.3 discussed these tables.

FV Info—field value information The UCS generator needs a listing of all available field value
tables and functions. This listing is compiled from the field value specifications, by the F'V
generator.

Cal Syst Spec’s—calendric system specifications This specification describes the various cal-
endric systems to be used by the DBMS. For each calendric system, its name and a list of
calendars, each with an associated epoch, is given. The calendars are ranked for the purpose
of interpretation of input strings. Starting with the highest ranked calendar, an input string
is passed to successively lower ranked calendars until it is recognized. The output generated
by the UCS generator is described in Section 6.3.

Cal Info—calendar information The calendar generator produces a list of signatures of all
calendar routines, as discussed in Section 6.2.8. This list is used by the UCS Generator

(UCS Gen).

Cal Spec’s—calendar specifications These specifications are used by the calendar generator
(Cal Gen) to define the calendric systems included in the DBMS. Section 7 discusses calendars

63

and calendar-dependent operations in particular. The preliminary version of the toolkit does
not construct the C routines of calendars from higher-level specifications—the routines must
be supplied directly. (See also Section 6.3.)

A central goal is to make the specification of calendars as easy as possible. Therefore, we want
to improve the toolkit so that it can generate calendar routines in the C programming language
from declarative descriptions. Already, we have simplified the specification of calendars by shifting
as much responsibility as possible from individual calendars to system components that are not
user-specified.

As seen in Figure 5, the toolkit generators produce four components. We discuss each of these
components in turn.

Prop’s—properties The property stack is the topic of Section 6.2.5. The Property generator
creates the initial property stack, initial _property_list (Section 6.3).

FV—field value module In addition to field value tables and functions (field value_tables
and field value functions), this module contains a table, table names, that relates table
names (including function names) to table numbers. These data structures are described in
Section 8.3.

UCS—uniform calendric support A data structure, calendric system list, enumerates the
calendric systems defined for the DBMS. For each calendric system, this data structure gives
its name and lists its constituent calendars along with their epochs. The position in this
list defines the rank of a calendar when interpreting input strings. This and the following
structure is defined in Section 6.3. The global function table, calendar functions, contains
the signatures of each function supplied by some calendar. Because the list of functions
supported by a calendric system is the union of the set of functions defined by each calendar,
function names must be unique within a complete calendric system. A list of all field value
tables and functions is included.

Calendars The calendar component of the architecture mainly consists of calendar dependent
routines. The toolkit verifies that all required routines, as described in Section 7, are
present. In addition, a calendar contains a field index table which is a component of
calendric_system_list (Section 6.3), which is used when a stored time stamp is trans-
lated to or from a text string. Its use is exemplified in Section 9.5.

Note that the TADT is not at all affected by user specifications.

11 Future Work

There are still several areas that need to be further considered before this design is complete.
Historical indeterminacy is only partially accommodated. While the various routines may take
indeterminate events, intervals, and spans as arguments, and return such time-stamps, full support
for historical indeterminacy entails either additional arguments specifying ordering plausibility and
range credibility, or additional routines where these values are not assumed to both be 100.

Second, the input routines discussed in Section 9.5.1 assume that a single format is available
for input. This should be generalized to allow variable-format input.

Finally, the Cal Gen tool in the generation toolkit has not been designed. In the interim, we
plan to manually produce the C source code for the calendars, but obviously a specialized high-level
calendric specification language would be preferable.

64

Acknowledgements

Suchen Hsu contributed to previous drafts of this proposal. Support for this research was provided
in part by the National Science Foundation through grant IRI-8902707 and by the IBM Corporation
through contract #1124. Christian S. Jensen was in addition supported by Aalborg University,
Denmark, and by Danish Natural Science Research Counsil through grant 11-9675-1 SE.

Bibliography

[Dyreson & Snodgrass 1992] Dyreson, C. E. and R. T. Snodgrass. “Time-stamp Semantics and
Representation.” TemplS Technical Report 33. Computer Science Department, University
of Arizona. Revised Apr. 1992, 41 pages.

[Soo & Snodgrass 1992A] Soo, M. and R. Snodgrass. “Mixed Calendar Query Language Support
for Temporal Constants.” TemplS Technical Report 29. Computer Science Department,
University of Arizona. Revised May, 1992, 59 pages.

[Soo & Snodgrass 1992B] Soo, M. and R. Snodgrass. “Multiple Calendar Support for Conventional

Database Management Systems.” Technical Report 92-7. Computer Science Department,
University of Arizona. Feb. 1992.

65

Exported Routine Prototypes

avg_state_vs cal_allocate avg statevs(); 43
error_type cal_calendar_accum_avg_s(void *, span_type) 52
error_type cal_calendar_accum_count_s(void %, span_type) 52
error_type cal_calendar_accum max_s(void #*, span_type) 52
error_type cal_calendar_accummin_s(void #*, span_type) 52
error_type cal_calendar_accum_sum_s(void #*, span_type) 52
error_type cal_calendar_avg fstate to_vstate(avg state fs, void %) 52
error_type cal_calendar_count fstate to_vstate(int %, void x*) 52
error_type cal_calendar_e minus vs(event_type, span_type, event_type) 47
error_type cal_calendarfinal avg s(void *, span_type) 52
error_type cal_calendar final _count_s(void *, int *) 52
error_type cal_calendar final max _s(void #*, span_type) 52
error_type cal_calendar final min_s(void #*, span_type) 52
error_type cal_calendar final sum_s(void #*, span_type) 52
error_type cal_calendar fs_div_vs(span_type, span_type, double %) 48
bool cal_calendar f£s_gt vs(span_type, span_type) 51
bool cal_calendar £s_1t vs(span_type, span_type) 51
error_type cal_calendar f£s minus _vs(span_type, span_type, span_type) 47
error_type cal_calendar_gen_e_array(event_type, value_array.type) 44
error_type cal_calendar_gen_e_timestamp(value array type, char x, event_type) 45
error_type cal_calendar_gen_i_array(event_type, value_array._type, value_array._type) 44
error_type cal_calendar_gen_i_timestamp(value array type, value_array. type, char x, interval_type)
error_type cal_calendar_gen_s_array(span_type, value_array_type) 44
error_type cal_calendar_gen_s_timestamp(value array type, span_type) 45
error_type cal_calendar_i minus vs(interval type, span_type, interval_type) 49
error_type cal_calendar max fstate to_vstate(span_type, void x*) 52
error_type cal_calendar min fstate to_vstate(span_type, void x*) 52
error_type cal_calendar neg _s(span_type, span_type) 46
error_type cal_calendar_sum fstate _to_vstate(span_type, void x*) 52
error_type cal_calendar_vs_add_e(span_type, event_type, event_type) 47
error_type cal_calendar_vs_add fs(span_type, span_type, span_type) 46
error_type cal_calendar_vs_add_i(span_type, interval_ type, interval_type) 49
error_type cal_calendar_vs_add_vs(span_type, span_type, span_type) 46
error_type cal_calendar_vs div_fs(span_type, span_type, double %) 48
error_type cal_calendar_vs_div n(span_type, double, span_type) 48
error_type cal_calendar_vs _div_vs(span_type, span_type, double %) 49
bool cal_calendar_vs_eq fs(span_type, span_type) 50
bool cal_calendar_vs_eq_vs(span_type, span_type) 50
bool cal_calendar_vs_gt fs(span_type, span_type) 51
bool cal_calendar_vs_gt vs(span_type, span_type) 52
bool cal_calendar_vs_1t fs(span_type, span_type) 50
bool cal_calendar_vs_1t vs(span_type, span_type) 51
error_type cal_calendar_vs minus fs(span_type, span_type, span_type) 46
error_type cal_calendar_vs minus _vs(span_type, span_type, span_type) 47
error_type cal_calendar_vs_times n(span_type, double, span_type) 48
error_type cal_calendar_vs_to fs(span_type, span_type) 53
fv_error_ type fv_index_to_string(int, int, string_struct) 54
fv_error type fv_string to_index(int, char *, int %, int %) 54
fv_error_type fv_table_index_to_string(int, string_struct) 55
fv_error_type fv_table name_to_number(char *, int x*) 54
fv_error type fv_table_string to_index(char *, int #, int *) hY)

66

max _state_vs
min_state_vs
sum_state_vs
tadt_error_type
error_type
error_type
error_type
error_type
error_type
error_type
error_type
error_type
error_type
error_type
avg_state_e
avg_state fs
event_type
interval_type
string_struct
span_type
timestamp_type
vs_type
tadt_error_type
bool
tadt_error_type
tadt_error_type
tadt_error_type
error_type
error_type
error_type
error_type
error_type

bool
error_type
error_type
tadt_error_type
bool

bool

bool
error_type
error_type
error_type
error_type
error_type
error_type
error_type
error_type
error_type
error_type
error_type
error_type
tadt_error_type
bool
error_type

cal_allocatemax_statevs();
cal_allocatemin_statevs();
cal_allocate_sum_statevs();
tadt_abs_fs(span_type, span_type)
tadt_accum_avg e(avg state_e, event_type)
tadt_accum_avg fs(avg_statefs, span_type)
tadt_accum_count_e(int %, event_type)
tadt_accum_count _fs(int %, span_type)
tadt_accum count_i(int *, interval_type)
tadt_accum max _e(event_type, event_type)
tadt_accum max fs(span_type, span_type)
tadt_accummin_e(event_type, event_type)
tadt_accummin fs(span_type, span_type)
tadt_accum_sum fs(span_type, span_type)
tadt_allocate_avg state_e()
tadt_allocate avg state fs()
tadt_allocate e(resolution_type)
tadt_allocate_i(resolution_type, resolution_type)
tadt_allocate string struct()
tadt_allocate_s(resolution_type)
tadt_allocate ts()

tadt_allocate vs_struct()
tadt_begin(interval type, event_type)
tadt_can fit_ts(timestamp _type, int)
tadt_coerce_e(event_type, int, event_type)
tadt_coerce fs(span_type, int, span_type)
tadt_coerce_i(interval type, int, interval type)

tadt_create_e(seconds_type, resolution_ type, timestamp_type)
tadt_create fs(seconds type, resolution_type, timestamp_type)
tadt_create_i(event_type, event_type, timestamp_type)

tadt_create_vs(vs_type, span_type)

tadt_e_add fs(event_type, span_type, event_type)
tadt_e_equals_e(event_type, event_type)

tadt_e minus_e(event_type, event_type, span_type)
tadt_e minus fs(event_type, span_type, event_type)
tadt_end(interval type, event_type)

tadt_e overlaps_i(event_type, interval_type)
tadt_e precedes_e(event_type, event_type)

tadt_e precedes_i(event_type, interval_type)
tadt_e_to_seconds(event_type, seconds_type)
tadt_extract_vs(span_type, vs_type)

tadt final avg e(avg state_e, event_type)

tadt final avg fs(avg_statefs, span_type)
tadt_final_count_e(int, int *)

tadt _final_count_fs(int, int *)

tadt _final_count_i(int, int *)

tadt final max e(event_type, event_type)

tadt _final max fs(span_type, span_type)

tadt final min e(event_type, event_type)

tadt final min fs(span_type, span_type)

tadt final sum fs(span_type, span_type)

tadt first(event_type, event_type, event_type)
tadt _free(void *)

tadt _fs_add fs(span_type, span_type, span_type)

67

43
43
43
10
19
19
19
19
19
19
19
19
19
19

co Co Co Co GO Co o

21
22
22
19
20
20
20
11
15
12
12

16
15
15
22
20
19
19
19
19
19
19
19
19
19
19
10

11

error_type tadt fs_ div fs(span_type, span_type, double *) 13
error_type tadt fs_div.n(span_type, double, span_type) 13
bool tadt _fs_eq fs(span_type, span_type) 14
bool tadt fs_gt fs(span_type, span_type) 15
bool tadt fs_ 1t _fs(span_type, span_type) 14
error_type tadt _fs minus fs(span_type, span_type, span_type) 11
error_type tadt fs_times n(span_type, double, span_type) 12
error_type tadt_i_add fs(interval type, span_type, interval_type) 13
bool tadt_i_contains_i(interval type, interval_type) 17
bool tadt_i_equals_i(interval type, interval_type) 16
bool tadt_i meets_i(interval_type, interval_type) 17
error_type tadt_i minus fs(interval_ type, span_type, interval_type) 13
avg state_e tadt_init_avg e() 19
avg state_fs tadt_init_avg fs() 19
int *tadt_init_count_e() 19
int *xtadt_init_count £s() 19
int *tadt_init_count_i() 19
event_type tadt_init max_e() 19
span_type tadt_init max f£s() 19
event_type tadt_initmin_e() 19
span_type tadt_init min fs() 19
span_type tadt_init_sum fs() 19
tadt_error_type tadt_intersect(interval type, interval_ type, interval_type) 9
tadt_error_type tadt_interval(event type, event_type, interval_type) 9
bool tadt_i_overlaps_i(interval type, interval_type) 17
bool tadt_i_precedes e(interval type, event_type) 16
bool tadt_i_precedes_i(interval type, interval_type) 16
bool tadt_is_vs(span_type) 21
tadt_error_type tadt_last(event_type, event_type, event_type) 10
void *tadt malloc(int) 7
error_type tadt neg fs(span_type, span_type) 11
tadt_error_type tadt_present(event_type) 10
error_type tadt_seconds_to_e(event_type, seconds_type) 23
tadt_error_type tadt_span(interval type, span_type) 9
error_type ucs_accum_avg.s(ucs_avg state_s avg_state, span_type span); 34
error_type ucs_accum_count_s(int *count_state, span_type span); 34
error_type ucs_accummax._s(ucs max_state_s max_state, span_type span); 34
error_type ucs_accummin_s(ucs min_state_s min_state, span_type span); 34
error_type ucs_accum _sum_s(ucs_sum_state_s sum_state, span_type span); 34
ucs_avg state_s ucs_allocate.avg states(); 30
ucs_max_state_s ucs_allocate max_states(); 30
ucsmin_state_s ucs_allocatemin_state s(); 30
ucs_sum_state_s ucs_allocate_sum_state_s(); 30
ucs_error_type ucs_bind function(char #*, int, formal._arg type, formal arg type *,
generic_function_handle) 39
error_type ucs_declare calendric_system(char *) 40
error_type ucs_e_add_s(event_type, span_type, event_type) 31
error_type ucs_eminus_s(event_type, span_type, event_type) 31
ucs_error_type ucs_e_string to_e(char x, event_type) 37
error_type ucs_e_to_string(event_type, string struct) 37
error_type ucs_final avg s(ucs_avg state_s final state, span_type final_ avg_span); 34
error_type ucs_final count_s(int final state, int #final_count); 34
error_type ucs_final max_s(ucs max state_s final state, span_type final max_span); 34
error_type ucs_final min_s(ucs min state_s final state, span_type final min_span); 34

68

error_type

bool
error_type
error_type
ucs_avg state_s
int

ucs max_state_s
ucs_min_state_s
ucs_sum_state_s
bool
ucs_error_type
error_type
error_type
ucs_error_type
ucs_error_type
ucs_error_type
ucs_error_type
error_type
error_type
error_type

bool

bool

bool
error_type
ucs_error_type
error_type
error_type

ucs_final sum s(ucs_sum _state_s final s, span_type final span_sum);

ucs_function_exists(char x)

ucs_i_add_s(interval type, span_type, interval_type)
ucs_iminus_s(interval type, span_type, interval_type)

ucs_init_avg s();

*ucs_init_count_s();

ucs_initmax_s();

ucs_initmin_s();

ucs_init_sum_s();
ucs_is_calendric_system(char x*)
ucs_i_string to_i(char *, interval_type)
ucs_i_to_string(interval type, string struct)
ucs_neg s(span_type, span_type)
ucs_property_activate()
ucs_property_clear()
ucs_property_deactivate()
ucs_property_push(char %, char x*)
ucs_s_add_s(span_type, span_type, span_type)
ucs_s_divn(span_type, double, span_type)
ucs_s_div_s(span_type, span_type, double x*)
ucs_s_eq_s(span_type, span_type)
ucs_s_gt_s(span_type, span_type)
ucs_s_1t_s(span_type, span_type)
ucs_s_minus_s(span_type, span_type, span_type)
ucs_s_string to_s(char x, span_type)
ucs_s_times n(span_type, double, span_type)
ucs_s_to_string(span_type, string struct)

69

34
39
32
32
34
34
34
34
34
40
37
38
30
36
36
36
35
30
32
32
33
33
33
31
37
31
38

Exported Types

typedef union { } #ACHUAL AT tYPE -\ o\ttt ittt

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

struct { } xavg state
struct { } xavg state 8. i
vold #avg state Ve
enUM { } BOOL oot
struct { } calendar B peot
struct { } calendric SyStem typeottt
void *count_state ws
Struct { } ePOCh type. ...
ENUM { } @TTOT BYPE -ttt ittt et ettt e
UNION { } VI SPACE By PO -\ttt ittt
event_space type *xevent type
struct { } exres nuni chunked ByPeovririnitieie et
struct eXTeS NUNI BYPeo
struct

struct

}

b XS by Pe .
} exres uni_chunked typeot
f

{

{

{
enum { } FOIMaLl AT B Pe. . ettt ittt et e
struct { } function entry typeo
enUM { } U OIT 0T B PO ottt ittt
error_type(generic function handle) (actual. arg type [], actual_arg type)
struct { } hiresnuni chunked typPeoviririiiiiit i
struct hires nuni Bypeo .
struct hires Bype. . .o

struct hiresuni_chunked type

{1}

{1}

{}
struct { } interval Space ByPeot
interval_space_type *interval type........
struct { } lowres nuni chunked ByPeuiririt ittt
struct { } LoWwres MUNI BYPettt
SEIUCE { } LoWIeS B D ittt ettt e
struct { } lowres uni chunKked ByPeovrrinieiee et
vold #Max_SBate Vs
vold #MIN_SBate Vs
Struct { } Prob dist typet
struct { } #property element typPeouiu ittt
enum { } resolution BYPei.ii it
struct { } SeCOnds SPaCE BYPe . . .ttt
seconds_space_type *seconds_type
UNION { } SPAL SPACE BYPE « .ottt et
ENUM { } SPAIM By DES o\ttt it e
span_space_type *span_Bype
SETUCt { } SPECial ByPe .o\ttt
enum { } SPecial Walue By Pettt
struct { } *string Struct i
vold #SUM_SBate VS
enum { } tadt @Tror By Pe. .. it

29

43

41
41
43
41

24

26
27
23
25
28
41
53
39
25
26
23
25
24

26
27
23
25
43
43
27
42

24
29

23

43

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

union { } timMeStamMP SPACE LYPE ...\ttt

timestamp_space_type xtimestamp_type..........

struct { } #UCS avg State S

ENUM { } UCS @I TOT By DO o ittt ettt et e

Struct { } #UCSmMax State S ...ttt

struct { } #UcsmMin State s i

Struct { } #UCS SUM STATE S ...\ttt

int value array typel]o

struct { } vspan_type

SETUCE { } VS SPaCE By Pe .« ittt e

vs_space_type *Vs_type

71

24

29
29
29
29
29
29
24

