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Abstract

Symbolic search allows saving large amounts of memory
compared to regular explicit-state search algorithms. This is
crucial in optimal settings, in which common search algo-
rithms often exhaust the available memory. So far, the most
successful uses of symbolic search have been bidirectional
blind search and the generation of abstraction heuristics like
Pattern Databases. Despite its usefulness, several common
techniques in explicit-state search have not been employed
in symbolic search. In particular, mutexes and other con-
straining invariants, techniques that have been proven essen-
tial when doing regression, are yet to be exploited in con-
junction with BDDs. In this paper we analyze the use of such
constraints in symbolic search and its combination with min-
imization techniques common in BDD manipulation. Exper-
imental results show a significant increase in performance,
considerably above the current state of the art in optimal plan-
ning.

Introduction
Automated Planning consists on finding a sequence of ac-
tions, commonly called a plan, that achieves a set of goals
from a given initial state. In optimal planning, in which a
plan of least cost must be found, the most popular approach
is using A∗ (Hart, Nilsson, and Raphael 1968) combined
with an admissible heuristic. The main shortcoming of A∗ is
its memory requirements. When using heuristics in optimal
search, all the nodes whose f-value is less than the cost of the
optimal solution must be expanded (unless they are pruned
by an optimality-preserving pruning technique). Hence, if
the heuristic is not accurate enough, the number of gener-
ated nodes may exceed what the main memory can store.

Several alternatives to A∗ have been proposed, like
symbolic search, which uses Binary Decision Diagrams
(BDDs) (Bryant 1986) to represent sets of states instead of
storing them individually. When using BDDs, a potentially
exponential saving in memory may be obtained. This means
that symbolic versions of common search algorithms, like
symbolic blind search and BDD-A∗ (Edelkamp and Reffel
1998), are often able to solve problems that the explicit-state
versions are unable to solve due to memory problems.
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The main uses of symbolic search have been so far reg-
ular bidirectional search and the generation of abstraction
heuristics (Edelkamp and Reffel 1998; Torralba, Linares
López, and Borrajo 2013) for their use in both symbolic
and explicit search algorithms. These methods require per-
forming regression on the goals of the problem. Regres-
sion in planning is known to be less robust than progres-
sion due to the existence of multiple goal states, the pres-
ence of partially-defined states and the impact that spurious
states (states that are not reachable from the initial state)
have on the search (Bonet and Geffner 2001). To allevi-
ate this, constraints obtained from invariants of the prob-
lem such as binary static mutexes (Blum and Furst 1997)
and invariant groups (Helmert 2006) have been thoroughly
employed (Bonet and Geffner 2001; Haslum et al. 2007).
Surprisingly enough, the use of these constraints has not
been extrapolated to symbolic search except for the mono-
tonicity analysis required to transform the planning task into
SAS+ (Kissmann and Edelkamp 2011). Although the size
of a BDD does not have to be proportional to the number
of states it contains, there may exist a correlation, in which
case constraints may help.

Also, the use of constraints is commonplace in BDD ma-
nipulation. Some minimizing operations have been specif-
ically designed to reduce the size of a BDD when subject
to a given constraint in the form of another BDD. The use
of these minimization operations may translate not only into
smaller (and thus more memory-efficient) BDDs but also in
faster BDD manipulation, as the time consumed by the log-
ical operations performed over BDDs depends on their size.
Taking all this into account, in this paper we study the impact
of constraints such as mutexes and invariant groups in sym-
bolic search and symbolic abstractions and how minimiza-
tion of BDDs affects the performance of these techniques.

Background
In this section some background regarding automated plan-
ning and BDDs is presented. In particular, the SAS+ formal-
ization of a planning task, the invariants used throughout this
paper and a description of BDDs will be given.

SAS+

A planning task in SAS+ (Bäckström and Nebel 1995) is
defined as a tuple Π = (V, s0, s?,O). V is a set of state
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variables, and every variable v ∈ V has an associated ex-
tended domain D+

v = Dv ∪ {u} composed by the regu-
lar domain of each variable, Dv , and the undefined value u.
The total state space is defined as S+

v = D+
v1
× . . . × D+

vn

and the value of a variable v ∈ V in a given state s,
also known as a variable-value pair or fluent, is defined
as s[v]. Partial states are states in which at least one flu-
ent s[vi] = u. s0 is the initial state, defined over V such
that s0[vi] 6= u ∀vi ∈ V . s? is the partial state that de-
fines the goals. O is a set of operators (actions), where each
operator is a tuple o = (pre(o), post(o), prev(o)), where
pre(o), post(o), prev(o) ∈ S+

v represent the pre-, post- and
prevail-conditions respectively.

An operator o in a state s is applicable in progression if
∀vi ∈ V : (prev(o)[vi] = u ∨ prev(o)[vi] = s[vi]) ∧
(pre(o)[vi] = u ∨ pre(o)[vi] = s[vi]). The resulting state
s′ from the application of o in s is equal to s except that
∀vi ∈ V : post(o)[vi] 6= u then s′[vi] = post(o)[vi]. An
operator o ∈ O is applicable in a partial state s in regression
if ∀vi ∈ V : s[vi] = u ∨ s[vi] = post(o)[vi] ∨ s[vi] =
prev(o)[vi] and ∃vi ∈ V : s[vi] = post(o)[vi] ∧ s[vi] 6= u.
The resulting state s′ obtained from applying o in s in re-
gression is equal to s except that ∀vi ∈ V : prev(o)[vi] = u
then s′[vi] = pre(o)[vi] and ∀vi ∈ V : prev(o)[vi] 6= u then
s′[vi] = prev(o)[vi].

Spurious States, Mutexes and Invariant Groups
A spurious state is a state not reachable from s0, as defined
by Bonet and Geffner (2001)1. Such states may be gener-
ated when doing regression and are dead ends in backward
search. A set of fluents M = {f1, . . . , fm} is a set of mutu-
ally exclusive fluents of size m (mutex of size m) if there
is no reachable (non-spurious) state s ⊆ S such that all
elements in M are true in s. Computing mutexes is expo-
nential on size m, so in most cases finding mutexes of size
m > 2 is not practical. The most common method to com-
pute mutexes of size two is hm (Bonet and Geffner 2001)
with m = 2.

Planners that use SAS+ transform a planning task
expressed in the Planning Domain Definition Language
(PDDL) into SAS+ by computing invariant groups. An in-
variant group is a set of fluents θ such that every fluent fi ∈ θ
is mutex with every other fluent fj ∈ θ if fj 6= fi and such
that exactly one fluent fi ∈ θ must be true in every non-
spurious complete state. Every variable vi ∈ V is an invari-
ant group, although not every invariant group corresponds
to a variable. Invariant groups are computed doing a mono-
tonicity analysis (Helmert 2006). Note that per definition bi-
nary mutexes can also be computed doing a monotonicity
analysis, although the set of mutexes obtained is a subset of
the mutexes obtained with h2.

Binary Decision Diagrams and Symbolic Search
Decision Diagrams are data structures inspired by the graph-
ical representation of a logical function. A Binary Decision
Diagrams (BDD) is a directed acyclic graph with two ter-
minal nodes (called sinks) labeled with true and false. All

1An alternative definition is given by Zilles and Holte (2010).

the internal nodes are labeled with a binary variable v ∈ V
and have two outgoing edges that correspond to the cases in
which v is true and false respectively. When representing a
multi-valued variable v ∈ V , dlog2 |Dv|e binary variables
are used instead. For any assignment of the variables on a
path from the root to a sink, the represented function will
be evaluated to the value labeling the sink. A more general
type of decision diagram is an Algebraic Decision Diagram
(ADD) (Bahar et al. 1997), which can have an arbitrary num-
ber of different sink nodes. This allows evaluating the repre-
sented function to values different from true and false.

Variables in a BDD are ordered. This has two advantages:
first, the operations performed between BDDs with the same
variable ordering are quadratic in the worst case; second, for
a given set of states an ordered BDD guarantees uniqueness.
This is achieved thanks to the reducing operations called the
deletion rule, in which nodes with outgoing edges that lead
to the same successor are removed, and the merging rule, in
which nodes labeled with the same variable are merged if
their respective successors are the same.

The set of operators O is represented using one or more
Transition Relations (TRs). A TR is a function defined over
two sets of variables, one set x representing the from-set and
another set x′ representing the target-set. Any given TR rep-
resents one or more operators o ∈ O with the same cost.
To compute the successors of a set of states Sg , the image
operation is used. The definition of image is as follows: im-
age(Sg,TRi) = ∃x . Sg(x) ∧ TRi(x, x

′)[x′ ↔ x]. Thus,
image is carried out in three steps:

1. The conjunction with TRi(x, x
′) filters preconditions on

x and applies effects on x′.

2. The existential quantification of the predecessor variables
x removes their values relative to the predecessor states.

3. [x′ ↔ x] denotes the swap of the two sets of variables,
setting the value of the successor states in x.

Similarly, regression uses the pre-image operator: pre-
image(Sg,TRi) = ∃x′ . Sg(x′) ∧ TRi(x, x

′)[x↔ x′]).

Encoding Mutexes as a BDD
Ever since the first application of heuristic backward search
in domain-independent planning, binary static mutexes have
been considered essential (Bonet and Geffner 2001). Binary
mutexes allow pruning spurious states that otherwise would
be considered for expansion during search. Expanding such
states may lead to an exponential decrease in performance,
as none of the successors of a spurious state may lead to the
initial state by doing regression. Their use in explicit-state
search is straightforward: simply prune every state s such
that fluents fi, fj ∈ s are mutex.

Despite the impact that the use of mutexes in regression
has, surprisingly this technique has not been employed in
symbolic search. Although it is obvious that a per state ap-
plication of mutexes in symbolic search is impossible, there
are alternatives. In particular, we propose creating a BDD
that represents in a succinct way all the states that would
be pruned if mutexes were used. This BDD can be used to
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discard all the states that have been generated using a TR in
a similar way as it is done with the closed list.

The mutex BDD (mBDD) is created in a very simple way.
Every binary mutex is a conjunction of fluents fi, fj such
that, if fi, fj ∈ s in state s, then s is spurious. Hence, the set
of states that can be pruned using mutexes are those in which
at least one such conjunction of fluents is true. This way, the
logical expression represented by mBDD is the disjunction
of all the mutexes found with h2 (represented by the con-
junction of both fluents). Formally, if M is the set of binary
mutexes found by h2:

mBDD =
∨

<fi,fj>∈M

fi ∧ fj

Spurious states determined by mutexes are pruned by
computing the difference Sg \ mBDD of a newly gen-
erated set of states Sg with the mutex BDD mBDD . In
terms of BDD manipulation this is done by computing the
logical conjunction of Sg with the negation of mBDD :
Sg ∧ ¬mBDD . This operation is the same as the one done
in symbolic search with the BDD that represents the set of
closed states, used to prune duplicates.

Pruning with Invariant Groups
Invariant groups are groups of fluents such that exactly one
fluent must be true in every reachable complete state. This
invariant of the problem is always respected when doing pro-
gression, but it may be violated in regression (Alcázar et al.
2013). Figure 1 shows an example of such an invariant vio-
lated in the floortile domain.

Figure 1: Spurious state in floortile that violates a constraint
induced by an invariant group. The second robot in the state
at the right has no valid location because all cells are either
clear or occupied.

Problems in the floortile domain consist of two or more
robots that have to paint the cells of a grid. The initial state
contains the locations where the robots are and the goal con-
tains the painted cells. In regression it is possible to find a
plan in which a single robot traverses and paints the whole
grid. This means that there may be a partial state in which
all the cells are either painted, clear or occupied by the first
robot while the position of the other robots remains un-
known. If we take into account the variables (which are in
fact invariant groups) that represent the position of the other
robots, we can see that there are no legal values for them,
as a robot cannot be at a painted cell, a clear cell or a cell
occupied by another robot. Such a state is spurious and thus
can be safely pruned.

Given an invariant group θ = f1, . . . , fn, two constraints
may be deduced: first, the set of all the mutexes of the form
¬(fi∧ fj) if fi 6= fj (which enforces that at most one fluent
can be true at the same time); second, the fact that at least

one fluent fi ∈ θ must be true in every reachable complete
state. The first constraint overlaps with the mutexes com-
puted with h2, so it does not make sense to include it as a
constraint of the problem if a mutex BDD is used. The latter
however can be encoded as an additional constraint of the
form f1 ∨ f2 ∨ . . . ∨ fn for every invariant group. Such a
constraint can be included in the mutex BDD, allowing to
prune spurious states like the one previously presented with
no further modification.

Pruning Spurious Operators
The use of constraints deduced from invariant groups is not
limited to states generated in regression. Any set of fluents
that does not correspond to a complete state can be detected
as unreachable by disambiguating it (Alcázar et al. 2013).
Disambiguating consists on solving a CSP using the invari-
ant groups for which there is no known fluent yet as variables
and the mutexes as constraints. If there is no valid assign-
ment for one or more invariant groups, then there is no state
in which all the fluents belonging to the set are true and so
the set of fluents is unreachable.

When grounding a planning instance, spurious operators
may be instantiated if done naively. Spurious operators do
not generate spurious states in progression because they are
never applicable, but they may have a negative impact when
combined with other techniques, like regression, abstrac-
tions and delete-relaxation heuristics. Most planners prune
instantiated operators with unreachable fluents in their pre-
conditions, but no additional method is used to detect spu-
rious operators. In this work we disambiguate the precondi-
tions of all the instantiated operators o ∈ O and prune those
operators with spurious sets of preconditions during the pre-
processing phase.

Encoding Constraints in the TRs
Mutexes allow pruning spurious states after they are gen-
erated. However, more efficient alternatives that avoid the
generation of the state exist. In particular, the use of e-
deletion (Vidal and Geffner 2005), another invariant of the
problem, avoids the generation of spurious states in explicit-
state search by modifying the definition of applicability in
regression (Alcázar et al. 2013). The definition of e-deletion
is as follows:
Definition 1. An operator o e-deletes a fluent f if f must be
false in every state resulting from the execution of an ordered
set of operators whose last operator is o.

There are three cases in which an operator e-deletes a
fluent f : it deletes f ; it has a set of preconditions mutex
with f and does not add f ; or it adds a set of fluents mutex
with f . For example, in Blocksworld the operator (stack b
c) e-deletes (on a b) because it adds (clear b), which is mu-
tex with (on a b). In multi-valued representations, deleting
a fluent means changing the value of the variable it corre-
sponds to, which is equivalent to adding a fluent mutex with
f . Hence, the first case is a particular instance of the third
case in multi-valued representations.

To avoid the generation of spurious states from a given
state s in regression, one must make sure not to use an op-
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erator that e-deletes some fluent f ∈ s to generate a succes-
sor state. Formally, if e-del(o) is the set of fluents e-deleted
by an operator o ∈ O, o is not applicable in regression in
a partial state s if e-del(o) ∩ s 6= ∅. An intuitive way of
understanding the concept of e-deletion in regression is to
consider the fluents fi ∈ e-del(o) as negative preconditions
of a in regression.

In explicit-state search a partial state with one or more
undefined variables may implicitly represent spurious states.
In symbolic search, however, some considerations are nec-
essary: first, there is no u value; second, the result of the
application of several operators is aggregated. This means
that it does not suffice to encode e-del(o) as negative effects
of an operator in a TR, as the union of the successor states
may generate a BDD that covers spurious states if the pre-
decessor sets covered spurious states as well.

A possibility could be replicating all the constraints in the
TRs, although this may lead to a great degree of redundancy.
Hence, a more succinct alternative is preferable. The first
step is pruning the spurious states in the BDD that repre-
sents s?. This is done by intersecting with the mutex BDD
as described before. Afterwards, the relevant constraints are
added as prevail conditions of the operators. This serves to
encode both e-deletion (fluents that must remain false “dur-
ing” the execution of an operator) and disambiguation of op-
erators (Alcázar et al. 2013), as the constraints may enforce
the value of some variables when the pre-image is computed.

Definition 2. Let a constraint c be a logical function over a
set of fluents m(c) such that ∀f ∈ m(c), f appears in c. Let
o ∈ O be an operator and Vu(o) ⊆ V = {vi : post(o)[vi] 6=
u∧ pre(o)[vi] = u}. Let Mo = {m(c1), . . . ,m(cn)} be the
set of fluent sets such that ∀m(ci) ∈Mo : (m(ci)∩pre(o) 6=
∅) ∨ (∃vi ∈ Vu(o) : m(ci) ∩Dvi 6= ∅).

Then, the e-deleting operator oe becomes o with prevail
conditions prev(oe) = prev(o) ∧

∧
∀m(ci)∈Mo

ci.

This suffices to guarantee that the successor set does not
cover spurious states.

Theorem 1. Let S ⊆ ¬mBDD be a state set that does not
contain states detected as spurious and oe the e-deleting ver-
sion of an operator o. Let S′ be the resulting state set from
applying oe in regression to S. Then, S′ ⊆ ¬mBDD does
not contain states that can be detected as spurious.

Proof. If state s′ ∈ S′ is generated using oe in regression
from state s ∈ S, then by definition s′[v] = s[v] ∀v 6∈
pre(o) ∪ Vu. As s ∈ ¬mBDD , s′ automatically satisfies all
the constraints not related to fluents in pre(o) or variables in
Vu. As prevail conditions of the operator must be true both
in s and s′, s′ satisfies all the constraints related to fluents in
Mo, that is, related to fluents in pre(o) or variables in Vu(o).
As TRs apply the semantics of the operators they encode
over sets of states, the result above can be extended to sets
of states in symbolic search.

After pruning the spurious states from s? the mutex BDD
is not needed anymore, so no intersections with it are neces-
sary and so the mutex BDD can be discarded.

BDD Minimization
The main motivation for using a mutex BDD is to prune
states so the BDDs that represent sets of states are smaller.
However, computing the difference with the mutex BDD
does not guarantee that the resulting BDD will be smaller.
Imagine the following case: a planning task has a single flu-
ent as goal, which means that at the layer 0 in regression
we have a BDD with a single inner node. If the mutex BDD
is used to prune unreachable states, the BDD resulting from
the difference of the original BDD with the mutex BDD will
be considerably bigger, as it will include additional informa-
tion. It will represent fewer states, as the states that contain
the goal fluent and violate some mutex will be effectively
pruned, but it will also increase in size, which may be detri-
mental to the search.

In symbolic search, the performance of the search algo-
rithm is often heavily linked to the size of the BDDs it works
with. Both memory and time (in terms of BDD manipula-
tion) benefit from working with BDDs that succinctly rep-
resent a given boolean function. In the literature, mainly in
works published by the Model Checking community, sev-
eral minimization algorithms have been proposed (Coudert
and Madre 1990; McMillan 1996; Hong and Beerel 1997).
These algorithms share in common that they work with a
function BDD f and they receive an additional constraint
BDD c (also called restrict or care BDD). The minimizing
algorithms aim to find a BDD g that represents f ’s func-
tion in an incompletely specified way and is smaller than the
conjunction (a logical and) of f and c.

It is easy to see that in regression f corresponds to the
BDDs that represent sets of states, whereas c can be any
BDD that imposes some kind of restriction over c. In our
case, both the closed list BDD and the mutex BDD corre-
spond to the definition of c. Hence, using minimization algo-
rithms instead of the conjunction is straightforward. These
operations are more expensive to compute than the con-
junction, but if g is smaller the computation of image and
pre-image (which are the most expensive operations in most
planning instances) may require less time. The following are
the minimization algorithms considered in this work:

• restrict (Coudert and Madre 1990): it performs sibling-
substitution recursively to prune the parents of such sib-
lings. If g is larger than f , f is returned instead.
• constrain (McMillan 1996): also known as generalized-

cofactor, it is the same as restrict but uses support vari-
ables to find additional matches between sibling nodes.

• don’t care minimization (Hong et al. 2000): also known
as leaf-identifying compaction, it assigns don’t cares to
binary values to avoid sibling-substitutions that cause the
growth of g. It ensures that g is smaller than f , as opposed
to restrict and constrain.
• non-polluting-and: same as restrict, but the variables in c

that do not appear in f are ignored.

Constrained Symbolic Abstraction Heuristics
The use of regression is not limited to backward search.
For instance, Pattern Databases (Culberson and Schaef-
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fer 1998) perform regression over the goals in an abstrac-
tion of the original problem to create a lookup table that
is used as the distance estimation in the original prob-
lem. Pattern Databases (PDBs) in explicit-search that make
use of mutexes are known as Constrained PDBs (Haslum
et al. 2007). Constrained PDBs prune transitions that go
through abstracted states that violate the constrains, which
may strengthen the derived heuristic. A symbolic version of
PDBs for their use in symbolic search has also been pro-
posed (Edelkamp 2002), so in this work we propose a con-
strained version of symbolic PDBs.

A more recent development, Symbolic Merge and Shrink
(SM&S) (Torralba, Linares López, and Borrajo 2013), pro-
posed deriving a heuristic from a backward symbolic search
that uses abstractions to reduce the size of the g-layers once
the BDDs that represented them surpassed a given size.
These abstractions are automatically derived using the M&S
algorithm (Helmert, Haslum, and Hoffmann 2007), origi-
nally defined in Model Checking (Dräger, Finkbeiner, and
Podelski 2009). M&S incrementally builds an abstraction,
using a shrinking policy such as bisimulation (Nissim, Hoff-
mann, and Helmert 2011) to keep its size bounded. As in
symbolic backward search, the use of a mutex BDD is also
possible, creating a constrained version of SM&S.

Experimentation

In this section we analyze the impact of using constraints
and BDD minimization in different settings, ranging from
symbolic blind search to the generation of symbolic abstrac-
tion heuristics. Our motivation is to check whether h2 mu-
texes and invariant groups improve over the constraints in-
herent to the SAS+ formulation of the problem and to see if
more complex BDD manipulation pays off.
h2 was implemented on top of FAST DOWNWARD. For

symbolic blind search and symbolic A∗ (BDD-A*) with
PDBs we use the GAMER planner (Kissmann and Edelkamp
2011). As each planner uses its own SAS+ variables, mutex
fluents are extrapolated to GAMER’s SAS+ encoding. All
the experiments with GAMER use the same variable order-
ing, which is optimized prior to the search. For the SM&S
abstractions with explicit-state A∗ we use the implementa-
tion in FAST DOWNWARD (Helmert 2006).

Results with different methods to prune spurious states
are reported. Unless otherwise stated, the mutex BDD con-
tains constraints from both h2 mutexes and invariant groups.
M∅ is the baseline version which does not use the mu-
tex BDD. M& computes the conjunction with the nega-
tion of the mutex BDD. The four aforementioned BDD-
minimization algorithms are used: don’t care minimiza-
tion(Mdcm ), restrict(Mres ), constrain(Mcon ) and non-
polluting-and(Mnp&). Finally e-del is the version in which
the TRs take into account e-deletion and invariant group
constraints instead of using a mutex BDD. Results are re-
ported with the regular set of operators (O) and with the set
of operators after pruning spurious operators found by dis-
ambiguating their preconditions (O−).

We run experiments on the benchmarks of the optimal

track of the International Planning Competition 20112. All
our experiments were run and validated with the IPC-2011
software on a single core of an Intel(R) Xeon(R) X3470 pro-
cessor at 2.93GHz. The experimental setting is the same as
in IPC-2011: 1800 seconds per problem and 6GB of avail-
able memory. Time score and coverage follow the same rules
as in IPC-2011 too. BDD operations are implemented using
Fabio Somenzi’s CUDD3 2.5.0 library. For the image and
pre-image computation we used a disjunctive partition of
the TRs , merging the TR of each operator up to a maxi-
mum size of 100,000 nodes. This method is simple and has
proved to be more efficient than other approaches (Torralba,
Edelkamp, and Kissmann 2013). The mutex BDD is created
by merging the conjunction of the individual pairs of fluents
that are mutex and the constraints from the invariant groups.
Similarly, if a single mutex BDD surpasses 100,000 nodes, it
is also encoded as several smaller ones.

In ELEVATORS and TRANSPORT neither additional h2
mutexes nor constraints from invariant groups were found.
In FLOORTILE, NOMYSTERY, OPENSTACKS, PARC-
PRINTER, PEG-SOLITAIRE and WOODWORKING the mu-
tex BDD had fewer than 10,000 nodes in all the problems.
More than one individual mutex BDD were needed in some
instances of the following domains (number of BDDs in the
worst case between parentheses): BARMAN (2), PARKING
(25), SCANALYZER (10), SOKOBAN (13), TIDYBOT (8) and
VISITALL (6). Overall neither the size of the mutex BDDs
nor the time spent pruning unreachable states was signifi-
cant. Note that the size of the mutex BDDs also depends on
the order of the variables: an order more suitable to their
representation might reduce their size.

When encoding the constraints in the TRs (e-del config-
uration), the sizes of the TRs vary. In BARMAN, TIDYBOT
and VISITALL the TRs actually become smaller in most
instances. In OPENSTACKS, PEG-SOLITAIRE and WOOD-
WORKING the size is roughly the same (±10%). In FLOOR-
TILE the TRs grow by more than 50%, in NOMYSTERY
and PARC-PRINTER they become several times bigger and
in SOKOBAN and specially in SCANALYZER the number of
individual TRs needed to encode the operators grows by a
significant amount. The worst case is PARKING, in which the
size of the TRs of the individual operators blows up when
the constraints are added and exceed the available memory
even before beginning the search. This is due to the high
number of mutexes that are found in this domain, as all vari-
ables in PARKING interact heavily with each other.

Using constraints to prune spurious operators reduces the
number of operators in six domains: TIDYBOT, WOOD-
WORKING, NOMYSTERY, SCANALYZER, BARMAN and
PARKING. The geometric mean of the percentage of pruned
operators is 85%, 46%, 37%, 36%, 28% and 10% respec-
tively. Additionally, in NOMYSTERY a few extra mutexes
are found if h2 is recomputed without the pruned operators
and in TIDYBOT some fluents are found to be unreachable.

2http://www.plg.inf.uc3m.es/ipc2011-deterministic
3http://vlsi.colorado.edu/ fabio/CUDD
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BACKWARD FORWARD

M∅ M& Mdcm Mres Mcon Mnp& e-del M∅
O O− O O− O− O− O− O− O− O O−

BARMAN 0.00 0.00 5.69 5.98 1.13 1.58 1.64 5.91 9.29 7.35 7.47
ELEVATORS 2.48 2.49 2.48 2.48 2.48 2.49 2.49 2.49 2.49 15.88 15.82
FLOORTILE 5.06 5.18 13.25 13.60 10.02 11.89 12.60 13.41 13.39 0.71 0.73

NOMYSTERY 10.46 10.96 10.21 10.95 10.48 10.61 10.41 10.94 11.04 9.63 9.33
OPENSTACKS 15.30 14.68 16.19 15.97 7.59 10.75 11.47 15.85 15.95 19.77 18.22

PARC-PRINTER 4.23 4.18 15.14 15.27 12.04 13.54 13.60 14.69 15.48 5.31 5.55
PARKING 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PEG-SOLITAIRE 0.00 0.00 2.07 1.92 0.85 0.85 0.85 1.92 2.20 16.74 16.38
SCANALYZER 8.72 8.48 8.38 8.43 3.08 3.65 3.62 8.45 9.00 8.49 8.20

SOKOBAN 0.27 0.27 16.48 16.68 11.15 12.35 14.50 16.12 16.64 15.87 14.96
TIDYBOT 0.00 1.00 2.71 6.65 0.87 0.93 0.87 4.74 6.80 10.05 13.92

TRANSPORT 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1.79 6.00 5.85
VISITALL 8.51 8.51 8.52 8.52 8.43 8.52 8.77 8.52 8.57 7.62 7.60

WOODWORKING 10.76 9.83 17.43 17.69 8.47 8.95 9.03 17.13 18.68 5.31 4.97
TOTAL 67.58 67.37 120.34 125.92 78.40 87.89 91.64 121.96 131.32 128.73 128.99

COVERAGE 92 94 144 148 113 121 122 145 150 149 149

Table 1: Time score and total coverage of unidirectional blind search.

Symbolic Unidirectional Blind Search
First we start with the simplest case, backward blind search.
We compare the performance of symbolic backward search
with and without constraints against symbolic forward
search. Table 1 shows the time score comparison of different
configurations of forward and backward blind search.

The impact of pruning spurious operators (O−) is small
except in TIDYBOT and sometimes does not compensate the
time spent computing h2 if this is only done to prune such
operators (forward and backwardM∅). As expected, it ben-
efits backward search more than forward search, as spuri-
ous operators may be applicable in regression. Additionally,
in versions that already compute h2 for other purposes, the
score with O− stays roughly the same or improves, so oper-
ator pruning is always recommended in these cases.

Using constraints to prune spurious states improves the
results by a very significant margin, almost doubling the
time score and solving 50% more problems overall. In BAR-
MAN, SOKOBAN, TIDYBOT and PEG-SOLITAIRE almost no
search was accomplished by backward search without mu-
texes, while pruning spurious states allows backward search
to solve some problems in those domains. For example, the
maximum g-layer expanded backwards without mutexes in
the first problem of BARMAN is 5, whereas with mutexes the
optimal solution, whose cost is 90, is found. Also, although
computing the mutex BDD requires some time and memory,
it does not harm in any domain.

The reported results include the invariant group con-
straints in all the configurations that use constraints. When
disabling the use of these constraints the same coverage
is obtained, although the time score worsens perceptibly
in SOKOBAN and slightly in WOODWORKING and OPEN-
STACKS, losing 6 points overall with theM& configuration.

BDD minimization is not useful in this setting. This is
because reducing the BDD that represents the set of prede-
cessor states by including some spurious states often means
that the set of successor states is bigger. This has no impact

in terms of memory, as the set of successor states can be min-
imized afterwards in the same way, but it affects negatively
the time required to compute the pre-image (apart from re-
quiring more time than a regular conjunction with the mutex
BDD). Overall and although in some cases a memory reduc-
tion of up to a third for some BDDs is obtained, the extra
time does not pay off. Thus, M& dominates all the BDD
minimization configurations in all domains.

Finally, encoding e-deletion (and invariant group con-
straints) in the TRs instead of using a mutex BDD is the
most efficient version. This is because e-del directly gen-
erates BDDs that do not contain spurious states, instead of
generating a potentially much bigger BDD with spurious
states and intersecting it with the mutex BDD afterwards.
Surprisingly, the size of the TRs does not affect the per-
formance, which means that the performance of pre-image
depends on the size of the resulting BDD rather than on the
size of the predecessor BDD and the TRs .

On a per domain comparison we can observe that the di-
rectionality of the domains has a huge impact on the perfor-
mance of the planner (Massey 1999). This hints that a bidi-
rectional approach is probably more efficient than unidirec-
tional search, which is explored in the following subsection.

Symbolic Bidirectional Blind Search
After assessing the viability of constraints in isolation, we
now use them in a state-of-the-art symbolic bidirectional
blind version of GAMER. Spurious operator pruning is en-
abled in all the configurations. The only other modifica-
tion with respect to the version of GAMER used in (Tor-
ralba, Edelkamp, and Kissmann 2013) is that we dynami-
cally check the time and memory consumed per step. During
a step, if it uses more than twice the memory or time than the
last step in the opposite direction, we interrupt it and switch
the direction of the search. This makesM∅ solve four fewer
problems in TIDYBOT (7 instead of 11), three of which are
recovered thanks to spurious operator pruning. We exclude
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M∅ M& e-del
BARMAN 5.46 8 9.78 11 12.00 12

ELEVATORS 18.13 19 18.17 19 17.92 19
FLOORTILE 5.89 10 13.56 14 13.46 14

NOMYSTERY 16.00 16 15.06 16 15.11 16
OPENSTACKS 17.68 20 18.93 20 19.16 20

PARC-PRINTER 5.79 8 14.09 15 15.37 16
PARKING 0.00 0 0.00 0 0.00 0

PEG-SOLITAIRE 14.65 17 18.42 19 18.38 19
SCANALYZER 8.52 9 8.28 9 9.00 9

SOKOBAN 13.63 19 18.49 19 18.21 19
TIDYBOT 8.98 10 15.53 16 15.33 16

TRANSPORT 8.67 9 8.83 9 8.67 9
VISITALL 10.98 11 10.95 11 10.84 11

WOODWORKING 10.81 16 17.74 19 18.47 19
TOTAL 145.17 172 187.83 197 191.94 199

Table 2: Time score and coverage of bidirectional blind
search.

BDD-minimization methods because, as shown in the uni-
directional case, they are not useful in the symbolic blind
search setting. Thus, we only compare the baseline with the
version that uses the mutex BDD (M&) and the one that uses
e-deletion (e-del), both of them also with invariant group
constraints.

Table 2 shows that symbolic bidirectional blind search is
able to improve over both forward and backward search.
As in the unidirectional version, a consistent improvement
is obtained when using constraints, increasing the coverage
from 172 problems to 199 with e-del. NOMYSTERY is the
only domain where applying mutexes actually makes the
search slightly slower, although this does not affect cover-
age. M& and e-del yield similar results in most domains
(a difference in score smaller than 0.5 points), although an
increase in performance is obtained by e-del in BARMAN,
PARC-PRINTER, SCANALYZER and WOODWORKING.

Overall the results of the bidirectional blind search ver-
sion of GAMER with e-deletion are remarkable, solving 14
more problems than the winner of IPC 2011, FAST DOWN-
WARD STONE SOUP (Helmert, Röger, and Karpas 2011).

BDD-A∗ with PDBs
After observing the positive impact of constraints on sym-
bolic blind search, we analyze the case of symbolic abstrac-
tion heuristics, in which symbolic backward search is per-
formed in an abstracted state space. We performed experi-
ments with BDD-A∗ guided by symbolic PDBs computed
as described by Kissmann and Edelkamp (2011). Table 3
shows the results. First, pruning spurious operators allows
solving four additional problems, one in BARMAN and 3 in
TIDYBOT. When using mutexes, the coverage goes up to
184 problems with both M& and e-del. The use of BDD-
minimization operators performed slightly worse thanM&

and e-del, so we did not include them for conciseness. The
time score was also left out because BDD-A∗ spends half
of the available time computing the PDBs, which skews the
time score and makes it not as representative.

Comparing the results of Tables 1 and 3 we can see that

M∅ (O) M∅ (O−) M& e-del
BARMAN 6 7 8 8

ELEVATORS 19 19 19 19
FLOORTILE 12 12 14 14

NOMYSTERY 14 14 14 14
OPENSTACKS 20 20 20 20

PARC-PRINTER 9 9 9 9
PARKING 1 1 1 1

PEG-SOLITAIRE 17 17 17 17
SCANALYZER 9 9 9 9

SOKOBAN 20 20 20 20
TIDYBOT 14 17 17 17

TRANSPORT 6 6 6 6
VISITALL 11 11 11 11

WOODWORKING 19 19 19 19
TOTAL 177 181 184 184

Table 3: Coverage of Symbolic PDBs + BDD-A∗.

constraints have a smaller impact when using abstractions.
PDB heuristics are only useful in PARKING, SOKOBAN
and TIDYBOT, where an additional problem per domain is
solved. Constraints helped more in cases in which backward
blind search was not feasible at all, as the number of prob-
lems in which a single step backward is not possible is re-
duced when using them. Overall, bidirectional blind search
performs almost as good or better than BDD-A∗ with sym-
bolic PDBs, as it can exploit the directionality of the plan-
ning instances better.

We can conclude that the pruning power of constraints
is reduced considerably in abstracted spaces: the constraints
in which abstracted variables appear are of no use and the
abstracted space is less constrained than the original one, so
there is less margin for improvement. Nevertheless the use
of constraints never hurts and is in all cases equal or better
than the configuration with no mutexes, so there is no reason
why constraints should not be used.

Symbolic Merge-and-Shrink
Now we analyze a different type of abstraction heuris-
tic: Symbolic Merge-and-Shrink (SM&S) (Torralba, Linares
López, and Borrajo 2013) with explicit-state A∗. SM&S
does symbolic backward search until the size of the BDD
surpasses a given threshold. The BDD is then reduced using
shrinking strategies until its size is again below the thresh-
old so the search can be continued. SM&S does not discard
variables, so most constraints are useful during the whole
generation of the heuristic, and initially performs search
in the original space, which means that the full potential
of constraints is exploited until shrinking is necessary. Ta-
ble 4 shows the experimentation done with SM&S. All the
configurations have spurious operator pruning enabled and
use a threshold of 10,000 abstract states when shrinking the
M&S abstractions. Both FAST DOWNWARD and GAMER
variable orderings have been used. For each setting bisim-
ulation (bop) and greedy bisimulation were tested. Among
the BDD-minimizing operationsMnp& performed well, so
its results are also included. Time score is obviated for the
same reasons as for BDD-A∗.

181



FAST DOWNWARD GAMER

M∅ M& Mnp& M∅ M& Mnp&

bop gop bop gop bop gop bop gop bop gop bop gop
BARMAN 4 4 8 8 8 8 4 4 8 8 8 8

ELEVATORS 18 18 18 18 18 18 19 19 19 19 19 19
FLOORTILE 12 12 14 14 14 14 12 12 14 14 14 14

NOMYSTERY 18 16 18 16 18 16 16 14 16 14 16 14
OPENSTACKS 15 15 16 16 16 16 16 16 16 16 16 16

PARC-PRINTER 12 12 12 12 12 12 12 12 12 12 12 12
PARKING 6 7 3 4 3 5 6 1 6 1 6 1

PEG-SOLITAIRE 20 20 20 20 20 20 19 19 19 19 19 19
SCANALYZER 9 10 9 10 9 10 9 9 9 9 9 9

SOKOBAN 19 19 19 19 19 19 20 20 20 20 20 20
TIDYBOT 13 13 12 13 13 12 13 12 9 9 11 10

TRANSPORT 7 7 7 7 7 7 8 8 8 8 8 8
VISITALL 12 12 12 12 12 12 13 13 13 13 12 12

WOODWORKING 7 8 7 8 7 8 12 12 16 16 16 16
TOTAL 172 173 175 177 176 177 179 171 185 178 186 178

Table 4: Coverage of Explicit-A∗ with the SM&S heuristic.

In all the configurations the use of constraints improves
the overall coverage, although in some domains some prob-
lems are lost. This loss of performance is due to the extra
information that constraints add, which may cause the BDD
to grow beyond the threshold earlier, forcing shrinking be-
fore it is really necessary. This is further increased when the
variable order is not suitable for representing the set of spu-
rious states, explaining the poor performance of constraints
in TIDYBOT with the GAMER ordering. The most success-
ful configuration,Mnp& with bisimulation and the GAMER
ordering, solves 186 problems, 7 more than the most suc-
cessful configuration without constraints. As expected, the
benefit of using constraints with SM&S lies between regular
search and symbolic PDBs. An important remark is that, un-
like the regular (tabular) Merge-and-Shrink in explicit-state
search, in which taking into account mutexes is not trivial,
the use of constraints in SM&S is straightforward.

Discussion
In this work we showed the relative pruning power of h2
mutexes in symbolic search, proving that the constraints en-
coded in the SAS+ formulation do not suffice to detect
a significant amount of spurious states in many domains.
Additional constraining techniques were successfully em-
ployed, and the impact of BDD-minimization operations
that work with constraining BDDs was tested. Note that h2
mutexes were implicitly used before (Jensen et al. 2006),
although the reported results did not show a significant in-
crease in performance.

The results seem to contradict the assumption in planning
that progression is more robust than regression, at least in
optimal symbolic search. Previous results on both symbolic
and explicit-state search suggested that forward search out-
performed backward search in the IPC benchmarks. For ex-
ample, in (Torralba, Edelkamp, and Kissmann 2013) it is re-
ported that the percentage of forward search performed by
GAMER with bidirectional blind search is greater than 90%
for 6 out of 14 domains and 75% overall. Only in FLOOR-

TILE and WOODWORKING backward search was superior
to forward search. Another example is Patrik Haslum’s for-
ward version of HSPr in the IPC 20084, which was as good
or better than the original backward version in all the do-
mains except SCANALYZER. However, the results shown in
Table 1 change this picture: when using h2 mutexes, the re-
sults of backward and forward symbolic search are close,
with a relatively high degree of variability between different
domains.

An important conclusion to be drawn is that symbolic
search seems to work better in regression than explicit-state
search. The underlying reason is subsumption of states in re-
gression. This occurs when the set of fluents that compose
a partial state is a subset of the set of fluents of a newly
generated one. In this case the latter should be reported as a
duplicate of the former, which is seamlessly detected when
using a symbolic closed list but which is not trivially de-
tected when using a closed list in Disjunctive Normal Form,
as it happens in explicit-state search. Similarly, the detection
of the collision of frontiers in bidirectional search is trivial
if the backward search is symbolic (the forward search can
be either symbolic or explicit-state), which tips the scales
further in favor of symbolic search in regression.

Regarding the good performance of symbolic bidirec-
tional blind search, the impact of the directionality of the do-
mains (Massey 1999) explains why this configuration fares
so well, as a simple alternating strategy allows choosing the
direction in which the problem may be more easily solved.
We leave the implementation of a bidirectional version of
BDD-A∗ that uses constraints as future work. We also plan
on investigating whether variable orders derived from the
constraints may be more useful than the range of orderings
tested in the literature (Kissmann and Hoffmann 2013). Such
orderings may provide a more concise representation of the
set of spurious states, which could overcome the drawbacks
of using constraints in domains like PARKING, in which the
mutex BDD becomes too large to be manageable.

4http://ipc.informatik.uni-freiburg.de/Results
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