
C# Exercises

This note contains a set of C# exercises originally developed by Peter Sestoft

Exercise C# 1.1 The purpose of the first four exercises is to get used to the C# compiler and to get experience
with properties, operator overloading and user-defined conversions.

A Time value stores a time of day such as 10:05 or 00:45 as the number of minutes since midnight (that is,
605 and 45 in these examples). A struct type Time can be declared as follows:

public struct Time {
private readonly int minutes;
public Time(int hh, int mm) {

this.minutes = 60 * hh + mm;
}
public override String ToString() {

return minutes.ToString();
}

}

Create a VS2005 C# project called TestTime. Modify the Main method to declare variables of type Time,

assign values of type Time to them, and print the Time value using Console.WriteLine. Compile and run
your program.
The next few exercises use this type.

Exercise C# 1.2 In the Time struct type, declare a read-only property Hour returning the number of hours and
a read-only property Minute returning the number of minutes. For instance, new Time(23, 45).Minute
should be 45.

Modify the ToString() method so that it shows a Time in the format hh:mm, for instance 10:05, instead
of 605. You may use String.Format to do the formatting. Use these facilities in your Main method.

Exercise C# 1.3 In the Time struct type, define two overloaded operators:

• Overload (+) so that it can add two Time values, giving a Time value.

• Overload (-) so that it can subtract two Time values, giving a Time value.

It is convenient to also declare an additional constructor Time(int). Use these facilities in your Main method.
For instance, you should be able to do this:

Time t1 = new Time(9,30);
Console.WriteLine(t1 + new Time(1, 15));
Console.WriteLine(t1 - new Time(1, 15));

Exercise C# 1.4 In struct type Time, declare the following conversions:

• an implicit conversion from int (minutes since midnight) to Time

• an explicit conversion from Time to int (minutes since midnight)

Use these facilities in your Main method. For instance, you should be able to do this:

Time t1 = new Time(9,30);
Time t2 = 120; // Two hours
int m1 = (int)t1;
Console.WriteLine("t1={0} and t2={1} and m1={2}", t1, t2, m1);
Time t3 = t1 + 45;

Why is the addition in the initialization of t3 legal? What is the value of t3?

Exercise C# 1.5 The purpose of this exercise and the next one is to understand the differences between structs
and classes.

Try to declare a non-static field of type Time in the struct type Time. Why is this illegal? Why is it legal for a
class to have a non-static field of the same type as the class?

Can you declare a static field noon of type Time in the struct type? Why?

Exercise C# 1.6 Make the minutes field of struct type Time public (and not readonly) instead of private
readonly. Then execute this code:

Time t1 = new Time(9,30);
Time t2 = t1;
t1.minutes = 100;
Console.WriteLine("t1={0} and t2={1}", t1, t2);

What result do you get? Why? What result do you get if you change Time to be a class instead of a struct type?
Why?

Exercise C# 1.7 The purpose of this exercise is to illustrate virtual and non-virtual instance methods.
In a new source file TestMethods.cs, declare this class that has a static method SM(), a virtual instance

method VIM(), and a non-virtual instance method NIM():

class B {
public static void SM() { Console.WriteLine("Hello from B.SM()"); }
public virtual void VIM() { Console.WriteLine("Hello from B.VIM()"); }
public void NIM() { Console.WriteLine("Hello from B.NIM()"); }

}

Declare a subclass C of B that has a static method SM() that hides B’s SM(), has a virtual instance method VIM
that overrides B’s VIM, and has a non-virtual instance method NIM() that hides B’s NIM(). Make C’s methods
print something that distinguish them from B’s methods.

In a separate class (but possibly in the same source file), write code that calls the static methods of B and C.
Also, write code that creates a single C object and assigns it to a variable b of type B and a variable c of type

C, and then call b.VIM() and b.NIM() and c.VIM() and c.NIM(). Explain the results.
Which of the methods SM() and VIM() and NIM() work as in Java?

Exercise C# 1.8 The purpose of this exercise is to illustrate delegates and (quite unrelated, really) the foreach
statement.

In a new source file TestDelegate.cs, declare a delegate type IntAction that has return type void and
takes as argument an int.

Declare a static method PrintInt that has return type void and takes a single int argument that it prints
on the console.

Declare a variable act of type IntAction and assign method PrintInt (as a delegate) to that variable. Call
act(42).

Declare a method

static void Perform(IntAction act, int[] arr) { ... }

that applies the delegate act to every element of the array arr. Use the foreach statement to implement
method Perform. Make an int array arr and call Perform(PrintInt, arr).

Exercise C# 1.9 The purpose of this exercise is to illustrate variable-arity methods and parameter arrays.
Modify the Perform method above so that it can take as argument an IntAction and any number of integers.

It should be possible to call it like this, for instance:

Perform(PrintInt, 2, 3, 5, 7, 11, 13, 17);

2

The first two pages of exercises concern generic types and methods; the last page concerns attributes.

Exercise C# 2.1 The purpose of this exercise is to understand the declaration of a generic type in C# 2.0. The
exercise concerns a generic struct type because structs are suitable for small value-oriented data, but declaring a
generic class would make little difference.

A generic struct type Pair<T,U> can be declared as follows (C# Precisely example 182):

public struct Pair<T,U> {
public readonly T Fst;
public readonly U Snd;
public Pair(T fst, U snd) {

this.Fst = fst;
this.Snd = snd;

}
public override String ToString() {

return "(" + Fst + ", " + Snd + ")";
}

}

(a) In a new source file, write a C# program that includes this declaration and also a class with an empty Main
method. Compile it to check that the program is well-formed.

(b) Declare a variable of type Pair<String, int> and create some values, for instance
new Pair<String,int>("Anders", 13), and assign them to the variable.

(c) Declare a variable of type Pair<String, double>. Create a value such as
new Pair<String,double>("Phoenix", 39.7) and assign it to the variable.

(d) Can you assign a value of type Pair<String,int> to a variable of type Pair<String,double>? Should this
be allowed?

(e) Declare a variable grades of type Pair<String,int>[], create an array of length 5 with element type
Pair<String,int> and assign it to the variable. (This shows that in C#, the element type of an array may be a type
instance.) Create a few pairs and store them into grades[0], grades[1] and grades[2].

(f) Use the foreach statement to iterate over grades and print all its elements. What are the values of those
array elements you did not assign anything to?

(g) Declare a variable appointment of type Pair<Pair<int,int>,String>, and create a value of this type
and assign it to the variable. What is the type of appointment.Fst.Snd? This shows that a type argument
may itself be a constructed type.

(h) Declare a method Swap() in Pair<T,U> that returns a new struct value of type Pair<U,T> in which the
components have been swapped.

Exercise C# 2.2 The purpose of this exercise and the next one is to experiment with the generic collection classes
of C# 2.0. Don’t forget the directive using System.Collections.Generic;.

Create a new source file. In a method, declare a variable temperatures of type List<double>. (The C#
collection type List<T> is similar to Java’s ArrayList<T>). Add some numbers to the list. Write a foreach loop
to count the number of temperatures that equal or exceed 25 degrees.

Write a method GreaterCount with signature

static int GreaterCount(List<double> list, double min) { ... }

that returns the number of elements of list that are greater than or equal to min. Note that the method is not
generic, but the type of one of its parameters is a type instance of the generic type List<T>.

Call the method on your temperatures list.

Exercise C# 2.3 Write a generic method with signature

static int GreaterCount(IEnumerable<double> eble, double min) { ... }

that returns the number of elements of the enumerable eble that are greater than or equal to min. Call the method
on an array of type double[]. Can you call it on an array of type int[]?

Now call the method on temperatures which is a List<double>. If you just call
GreaterCount(temperatures, 25.0) you’ll actually call the GreaterCount method declared in ex-
ercise 2.2 because that method is a better overload (more specific signature) than the new GreaterCount
method. To call the new one, you must cast temperatures to type IEnumerable<double> — and that’s legal
in C#.

In C# it is legal to overload a method on type instances of generic types. You may try this by declaring also

static int GreaterCount(IEnumerable<String> eble, String min) { ... }

This methods must have a slightly different method body, because the operators (<=) and (>=) are not defined on
type String. Instead, use method CompareTo(...). Maybe insert a Console.WriteLine(...) in each
method to be sure which one is actually called.

Exercise C# 2.4 The purpose of this exercise is to investigate type parameter constraints. You may continue with
the same source file as in the previous two exercises.

We want to declare a method similar to GreaterCount above, but now it should work for an enumerable
with any element type T, not just double. But then we need to know that values of type T can be compared to
each other. Therefore we need a constraint on type T:

static int GreaterCount<T>(IEnumerable<T> eble, T x) where T : ... { ... }

(Note that in C# methods can be overloaded also on the number of type parameters; and the same holds for generic
classes, interfaces and struct types). Complete the type constraint and the method body. Try the method on your
List<double> and on various array types such as int[] and String[]. This should work because whenever
T is a simple type or String, T implements IComparable<T>.

Exercise C# 2.5 Create a new source file GenericDelegate.cs and declare a generic delegate type Ac-
tion<T> that has return type void and takes as argument a T value. This is a generalization of yesterday’s delegate
type IntAction.

Declare a class that has a method

static void Perform<T>(Action<T> act, params T[] arr) { ... }

This method should apply the delegate act to every element of the array arr. Use the foreach statement when
implementing method Perform<T>.

Exercise C# 2.6 (Optional) As you know, C# does not have wildcard type parameters. However, most uses of
wildcards in the parameter types of methods can be simulated using extra type parameters on the method. For
instance, in the case of the GreaterCount<T>(IEnumerable<T> eble, T x) method, it is not really
necessary to require that T implements IComparable<T>. It suffices that there is a supertype U of T such that
U implements IComparable<U>. This would be expressed with a wildcard type in Java, but in C# 2.0 it can be
expressed like this:

static int GreaterCount<T,U>(IEnumerable<T> eble, T x)
where T : U
where U : IComparable<U>

{ ... }

When you call this method, you may find that the C# compiler’s type inference sometimes cannot figure out the
type arguments to a method. In that case you need to give the type arguments explicitly in the methods call, like
this:

int count = GreaterCount<Car,Vehicle>(carList, car);

Exercise C# 2.7 The purpose of this exercise is to illustrate the use and effect of a predefined attribute.
The predefined attribute Obsolete (see C# Precisely section 28) may be put on classes, methods, and so on that

should not be used — it corresponds to the ‘deprecated’ warnings so well known from the Java class library.
Declare a class containing a method

static void AcousticModem() {
Console.WriteLine("beep buup baap bzfttfsst %^@~#&&^@CONNECTION LOST");

}

Put an Obsolete attribute on the AcousticModem method and call the method from your Main method. What
message do you get from the C# compiler? Does the message concern the declaration or the use of the AcousticModem
method?

Exercise C# 2.8 The purpose of this exercise is to show how to declare a new attribute, how to put it on various
targets, and how to detect at run-time what attributes have been put of a given target (in this case, a method).

Create a new source file. Declare a custom attribute BugFixed that can be used on class declarations, struct type
declarations and method declarations. It must be legal to use BugFixed multiple times on each target declaration.

There must be two constructors in the attribute class: one taking both a bug report number (an int) and a bug
description (a string), and another one taking only a description. (Presumably the latter is used when a bug does
not get reported through the official channels). When no bug number is given explicitly, the number −1 (minus
one) is used. The attribute class should have a ToString() method that shows the bug number and description
if the bug number is positive, otherwise just the description.

It should be legal to use the BugFixed attribute like this:

class Example {
[BugFixed(4, "Performance: Uses SortedDictionary")]
[BugFixed(3, "Throws IndexOfOutRangeException on empty array")]
[BugFixed("Performance: Uses repeated string concatenation in for-loop")]
[BugFixed(2, "Loops forever on one-element array")]
[BugFixed(1, "Spelling mistakes in output")]
public static String PrintMedian(int[] xs) {

/* ... */
return "";

}

[BugFixed(67, "Rounding error in quantum mechanical simulation")]
public double CalculateAgeOfUniverse() {

/* ... */
return 11.2E9;

}
}

Write an additional class with a Main method that uses reflection to get the public methods of class Exam-
ple, gets the BugFixed attributes from each such method, and prints them. If mif is a MethodInfoObject, then
mif.GetCustomAttributes(typeof(t), false) returns an array of the type t attributes.

Some inspiration may be found in the full source code for C# Precisely example 208, which can be downloaded
from the book’s homepage http://www.dina.kvl.dk/~sestoft/csharpprecisely/.

There are probably too many exercises here. When you get tired of enumerables, jump to the last exercise so you
get to use nullable types also.

Exercise C# 4.1 The purpose of this exercise is to illustrate the use of delegates and especially anonymous method
expressions of the form delegate(...) { ... }.

Get the file http://www.itu.dk/people/sestoft/csharp/IntList.cs. The file declares some
delegate types:

public delegate bool IntPredicate(int x);
public delegate void IntAction(int x);

The file further declares a class IntList that is a subclass of .Net’s List<int> class (which is an arraylist; see C#
Precisely section 24.4). Class IntList uses the delegate types in two methods that take a delegate as argument:

• list.Act(f) applies delegate f to all elements of list.

• list.Filter(p) creates a new IntList containing those elements x from list for which p(x) is true.

Add code to the file’s Main method that creates an IntList and calls the Act and Filter methods on that list
and various anonymous delegate expressions. For instance, if xs is an IntList, you can print all its elements like
this:

xs.Act(Console.WriteLine);

This works because there is an overload of Console.WriteLine that takes an int argument and therefore
conforms to the IntAction delegate type.

You can use Filter and Act to print only the even list elements (those divisible by 2) like this:

xs.Filter(delegate(int x) { return x%2==0; }).Act(Console.WriteLine);

Explain what goes on above: How many IntList are there in total, including xs?
Further, use anonymous methods to write an expression that prints only those list elements that are greater

than or equal to 25.
An anonymous method may refer to local variables in the enclosing method. Use this fact and the Actmethod

to compute the sum of an IntList’s elements (without writing any loops yourself).
Note: If you have an urge to make this exercise more complicated and exciting, you could declare a generic

subclass MyList<T> of List<T> instead of IntList, and make everything work for generic lists instead of just
IntLists. You need generic delegate types Predicate<T> and Action<T>, but in fact these are already declared in
the .Net System namespace.

Exercise C# 4.2 This exercise and the next one explore some practical uses of enumerables and the yield
statement.

Declare a static method ReadFile to read a file and return its lines as a sequence of strings:

static IEnumerable<String> ReadFile(String fileName) { ... }

C# Precisely section 22.4 describes TextReader and example 153 shows how to create a StreamReader by opening
a file. (The good student will of course use a using statement — C# Precisely section 13.10 — to bind the
TextReader to make sure the file gets closed again, even in case of errors).

The ReadFilemethod should read lines from the TextReader, using the yield return statement to hand
the lines to the ‘consumer’ as they are produced. The consumer may be a foreach statement such as
foreach (String line in ReadFile("foo.txt")) Console.WriteLine(s);.

Exercise C# 4.3 Declare a static method SplitLines that takes as argument a stream of lines (strings) and
returns a stream of the words on those lines (also strings)

static IEnumerable<String> SplitLine(IEnumerable<String> lines) { ... }

C# Precisely example 191 shows how a regular expression (of class System.Text.RegularExpressions.Regex) can
be used to split a string into words, where a ‘word’ is a non-empty contiguous sequence of the letters a–z or A–Z
or the digits 0–9.

The SplitLinemethod should use a foreach loop to get lines of text from the given enumerable lines,
and use the yield return statement to produce words.

It should be possible to e.g. find the average length of words in a file by combining the two methods:

int count = 0, totalLength = 0;
foreach (String word in SplitLines(ReadFile "foo.txt")) {
count++;
totalLength += word.Length;

}
double averageLength = ((double)totalLength)/count;

Note that in this computation, only a single line of the file needs to be kept in memory at any one time. In particular,
the call to ReadFile does not read all lines from the file before SplitLines begin to produce words. That
would have been the case if the methods had returned lists instead of enumerables.

Exercise C# 4.4 The purpose of this exercise and the next one is to emphasize the power of enumerables and the
yield and foreach statements.

Declare a generic static method Flatten that takes as argument an array of IEnumerable<T> and returns an
IEnumerable<T>. Use foreach statements and the yield return statement. The method should have this
header:

public static IEnumerable<T> Flatten<T>(IEnumerable<T>[] ebles) { ... }

If you call the method as shown below, you should get 2 3 5 7 2 3 5 7 2 3 5 7:

IEnumerable<int>[] ebles = new IEnumerable<int>[3];
ebles[0] = ebles[1] = ebles[2] = new int[] { 2, 3, 5, 7 };
foreach (int i in Flatten<int>(ebles))
Console.Write(i + " ");

Exercise C# 4.5 (If you enjoy challenges) Redo the preceding exercise without using the yield statement.

Exercise C# 4.6 The purpose of this exercise is to illustrate computations with nullable types over simple types
such as double.

To do this, implement methods that work like SQL’s aggregate functions. We don’t have a database query at
hand, so instead let each method take as argument an IEnumerable<double?>, that is, as sequence of nullable
doubles:

• Count should return an int which is the number of non-null values in the enumerable.

• Min should return a double? which is the minimum of the non-null values, and which is null if there
are no non-null values in the enumerable.

• Max is similar to Min and there is no point in implementing it.

• Avg should return a double? which is the average of the non-null values, and which is null if there
are no non-null values in the enumerable.

• Sum should return a double? which is the sum of the non-null values, and which is null if there are
no non-null values. (Actually, this is weird: Mathematically the sum of no elements is 0.0, but the SQL
designers decided otherwise. This design mistake will also make your implementation of Sum twice as
complicated as necessary: 8 lines instead of 4).

When/if you test your method definitions, note that null values of any type are converted to the empty string
when using String.Format or Console.WriteLine.

	exercise-csharp-monday.pdf
	exercise-csharp-tuesday.pdf
	exercise-csharp-wednesday.pdf

