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CHAPTER

SOFTWARE TESTING
STRATEGIES

KEYWORDS strategy for software testing integrates software test case design meth-
alpha/beta ods into a well-planned series of steps that result in the successful con-
e, el o struction of software. The strategy provides a road map that describes
ariteria for the steps to be conducted as part of testing, when these steps are planned and
comphetion ... i then undertaken, and how much effort, time and resources will be required.
debugging..... 485 Therefore, any testing strategy must incorporate test planning, test case design,
incremental 4 test execution, and resultant data collection and evaluation.
o g “ A software testing strategy should be flexible enough to promote a cus-
"""""" tomized testing approach. At the same time, it must be rigid enough to promote
w _____ 475 reasonable planning and management tracking as the project progresses.
Shooman [SHO83] discusses these issues:
:::;“ _____ 478 In many ways, testing is an individualistic process, and the number of different
smoke testing . . 480 types of tests varies as much as the different development approaches. For many
years, our only defence against programming errors was careful design and the
o g 490 native intelligence of the programmer. We are now in an era in which modern
it SN e design techniques [and formal technical reviews] are helping us to reduce the num-
y :::_ _____ I ber of initial errors that are inherent in the code. Similarly, different test methods
v e w are beginning to cluster themselves into several distinct approaches and philoso-

phies.

What is it? Designing effective project effort than any other software engineering

QUICK

test cases (Chapter 17) is impor- activity. If it is conducted haphazardly, time is

LOOK

tant, but so is the strategy you use wasted, unnecessary effort is expended, and even

to execute them. Should you develop a formal plan
for your tests? Should you test the entire program
as a whole or run tests only on a small part of it?
Should you rerun tests you've already conducted as
you add new components to a large system? When
should you involve the customer? These and many
other questions are answered when you developa
software testing strategy.

Who does it? A strategy for software testing is devel-
oped by the project manager, software engineers,
and testing specialisis.

Why is it important? Testing often accounts for more

worse, errors sneak through undetected. It would
therefore seem reasonable to establish a system-

atic strategy for testing software.

What are the steps? Testing begins “in the small” and

progresses “to the large.” By this we mean that early
testing focuses on a single component and
applies white and black-box tests to uncover errors
in program logic and function. Aiter individual
components are tested they must be integrated.
Testing continues as the software is constructed.
Finally, a series of high order tests are executed

once the full program is operational. These tests are

465
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These “approaches and philosophies” are what we shall call strategy. In Chapter
17, the technology of software testing was presented.! In this chapter, we focus our
attention on the strategy for software testing.

WebRef

Useful information on
softwore festing strotegies
is provided by the

Newslatter at:
www.ondaweb.com
/sfi/newslir.itm

Testing is a set of activities that can be planned in advance and conducted system-
atically. For this reason a template for software testing—a set of steps into which we
can place specific test case design techniques and testing methods—should be defined
for the software process.

A number of software testing strategies have been proposed in the literature. All
provide the software developer with a template for testing and all have the follow-
ing generic characteristics:

. Testing begins at the component level2 and works “outward” toward the inte-

gration of the entire computer-based system.

Different testing techniques are appropriate at different points in time.

. Testing is conducted by the developer of the software and (for large projects)
an independent test group.

. Testing and debugging are different activities, but debugging must be accom-
modated in any testing strategy.

A strategy for software testing must accommodate low level tests that are necessary
to verify that a small source code segment has been correctly implemented as well
as high level tests that validate major system functions against customer require-
ments. A strategy must provide guidance for the practitioner and a set of milestones
for the manager. Because the steps of the test strategy occur at a time when dead-
line pressure begins to rise, progress must be measurable and problems must sur-
face as early as possible.

1 Testing for object-oriented systems is discussed in Chapter 23.
2 For object-oriented systems, testing begins at the class or object level. See Chapter 23 for details.
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CHAPTER 18 SOFTWARE TESTING STRATEGIES

18.1.1 Verification and Validation

Software testing Is one element of a broader topic that is often referred to as verifi-
cation and validation (V&V). Verification refers to the set of activities that ensure that
software correctly implements a specific function. validation refers to a different set

of activities that ensure that the software that has been bulilt is traceable to customer
requirements. Boehm [BOES81] states this another way:

Verification: »Are we building the product right?”
validation: “Are we building the right product?”

The definition of V&V encompasses many of the activities that we have referred to
as software quality assurance (SQA).

verification and validation encompasses a wide array of SQA activities that include:
formal technical reviews, quality and configuration audits, performance monitoring,
ctrmaslmtbon fmacihilite atudy documentation review, database review, algorithm analy-
sis, development testing, qualification testing, and installation testing [WALBS]).
Although testing plays an extremely important role in V&v, many other activities are
also necessary

Testing does provide the last bastion from which quality can be assessed and, more
pragmatically, errors can be uncovered. But testing should not be viewed as a safety
net. As they say, "You can’t test in gquality. If it’s not there before you begin testing, it
won't be there when you're finished testing.” Quality is incorporated into software
throughout the process of software engineering. Proper application of methods and
tools, effective formal technical reviews and solid management and measurement
all lead to quality that is confirmed during testing.
b AR PRI : EITICICTTY It L0l v SlLnni L ot g - et g T g -
underlying motivation of program testing is to affirm software quality with methods

that can be economically and effectively applied to both large-scale and small-scale
systems."”

A

18.1.2 Organizing for Software Testing

For every software project, there is an inherent conflict of interest that occurs as test-
ing begins. The people who have built the software are now asked to test the soft-
ware. This seems harmless in itself; after all, who knows the program better than its
developers? Unfortunately, these same developers have a vested interest in demon-
mtemtime that the aeaoram is error free. that it works according to customer require-
ments and that it will be completed on schedulé and Within BUaget’ Bicn or tese
interests mitigate against thorough testing.

From a psychological point of view, software analysis and design (along with cod-
ing) are constructive tasks. The Boltware enginesr creates’ a'computer prograin, its
documentation, and related data structures, Like any builder, the software engineecr
is proud of the edifice that has been bullt and looks askance at anyone who attempits

NP AT NS TSI T
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to tear it down. When testing commences, there is a subtle, yet definite, attempt to
“break” the thing that the software engineer has built. From the point of view of the
builder, testing can be considered to be (psychologically) destructive. So the builder
treads lightly, designing and executing tests that will demonstrate that the program
works, rather than uncovering errors. Unfortunately, errors will be present. And if the
software engineer doesn't find them, the customer will!
There are often a number of misconceptions that can be erroneously inferred from
the above discussion: (1) that the developer of software should do no testing at all;
(2) that the software should be “tossed over the wall” to strangers who will test it
mercilessly; (3) that testers get involved with the project only when the testing steps
are about to begin. Each of these statements is incorrect.
[ A The software developer is always responsible for testing the individual units (mod-
% ules) of the program, ensuring that each performs the function for which it was
PO'NT designed. In many cases, the developer also conducts integration testing—a testing
An indapenden fes step that leads to the construction (and test) of the complete program structure. Only

i@mﬂm after the software architecture is complete does an independent test group become

interest” that builders  involved.

of the software have. The role of an independent test group (ITG) is to remove the inherent problems
associated with letting the builder test the thing that has been built. Independent test
removes the conflict of interest that may otherwise be present. After all, personnel in

the independent group team are paid to find errors.
However, the software engineer doesn't turn the program over to ITG and walk
Gpwc" away. The developer and the ITG work closely throughout a software project to ensure
that thorough tests will be conducted. While testing is conducted, the developer must

If an ITG does not :
oxist within your be available to correct errors that are uncovered.
organization, you'll The ITG is part of the software development project team in the sense that it

haove fo take its point  becomes involved during the specification activity and stays involved (planning and
"fw"”ﬂ“'y m"""m specifying test procedures) throughout a large project. However, in many cases the
p- iy ITG reports to the software quality assurance organization, thereby achieving a degree

of independence that might not be possible if it were a part of the software engi-

neering organization.

18.1.3 A Software Testing Strategy

The software engineering process may be viewed as a spiral illustrated in Figure 18.1.
Initially, system engineering or information engineering defines the role of software
and leads to software requirements analysis, where the information domain, func-
tion, behaviour, performance, constraints, and validation criteria for software are
established. Moving inward along the spiral, we come to design and finally to cod-
ing. To develop computer software, we spiral inward along streamlines that decrease
the level of abstraction on each turn.
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A strategy for software testing may also be viewed in the context of the spiral (Fig-
ure 18.1). Unit testing begins at the vortex of the spiral and concentrates on each unit
(i.e., component) of the software as implemented in source code. Testing progresses
by moving outward along the spiral to integration testing, where the focus is on design
and the construction of the software architecture. Taking another turn outward on
the spiral, we encounter validation testing, where requirements established as part of
software requirements analysis are validated against the software that has been con-
structed. Finally, we arrive at system testing, where the software and other system
elements are tested as a whole. To test computer software, we spiral out along stream-
lines that broaden the scope of testing with each turn.

Considering the process from a procedural point of view, testing within the con-
text of software engineering is actually a series of four steps that are implemented
sequentially. The steps are shown in Figure 18.2. Initially, tests focus on each com-
ponent individually, ensuring that it functions properly as a unit. Hence, the name
unit testing. Unit testing makes heavy use of white-box testing techniques, exercis-
ing specific paths in a module's control structure to ensure complete coverage and
maximum error detection. Next, components must be assembled or integrated to
form the complete software package. Integration testing addresses the issues asso-
ciated with the dual problems of verification and program construction. Black-box
test case design techniques are the most prevalent during integration, although a lim-
ited amount of white-box testing may be used to ensure coverage of major control
paths. After the software has been integrated (constructed), a set of high-order tests
are conducted. Validation criteria (established during requirements analysis) must be
tested. Validation testing provides final assurance that software meets all functional,
behavioural, and performance requirements. Black-box testing techniques are used
exclusively during validation.

The last high-order testing step falls outside the boundary of software engineer-
ing and into the broader context of computer system engineering. Software, once



470

FIGURE 18.2

Software test-
ing steps

When are
we done

testing?

testing
“direction”

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

validated, must be combined with other system elements (e.g., hardware, people,
data bases). System testing verifies that all elements mesh properly and that overall
system function/performance is achieved.

18.1.4 Criteria for Completion of Testing

A classic question arises every time software testing is discussed: “When are we done
testing—how do we know that we've tested enough?” Sadly, there is no definitive
answer to this question, but there are a few pragmatic responses and early attempts
at empirical guidance.

One response to the above question is: “You're never done testing, the burden sim-
ply shifts from you (the software engineer) to your customer.” Every time the cus-
tomer/user executes a computer program, the program is being tested on a new set
of data. This sobering fact underlines the importance of other software quality assur-
ance activities. Another response (somewhat cynical, but nonetheless accurate) is:
“You're done testing when you run out of time or you run out of money."

Although few practitioners would argue with these responses, a software engi-
neer needs more rigorous criteria for determining when sufficient testing has been
conducted. Musa and Ackerman [MUS89] suggest a response that is based on sta-
tistical criteria: “No, we cannot be absolutely certain that the software will never fail,
but relative to a theoretically sound and experimentally validated statistical model,
we have done sufficient testing to say with 95 percent confidence that the probabil-
ity of 1000 CPU hours of failure free operation in a probabilistically defined environ-
ment is at least 0.995.”

Using statistical modelling and software reliability theory, models of software fail-
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ures (uncovered during testing) as a function of execution time can be developed
[MUS89]. A version of the failure model, called a logarithmic Poisson execution-time

model, takes the form:
Ay =(1/p) In [lo pt + 1)] (18-1)

where  fit) = cumulative number of failures that are expected to occur once the
software has been tested for a certain amount of execution time, ¢,
I, = the initial software failure intensity (failures per unit time) at the begin-
ning of testing,
p = the exponential reduction in failure intensity as errors are uncovered
and repairs are made.
The instantaneous failure intensity, /(t) can be derived by taking the derivative of

ﬂn:
1) =l / Uppt+1) (18-2)

Using the relationship noted in equation (18-2), testers can predict the drop-off of
errors as testing progresses. The actual error intensity can be plotted against the pre-
dicted curve (Figure 18.3). If the actual data gathered during testing and the loga-
rithmic Poisson execution time model are reasonably close to one another over a
number of data points, the model can be used to predict total testing time required
to achieve an acceptably low failure intensity.

By collecting metrics during software testing and making use of existing software
reliability models, it is possible to develop meaningful guidelines for answering
the question: “When are we done testing?” There is little debate that further
work remains to be done before quantitative rules for testing can be established,
but the empirical approaches that currently exist are considerably better than raw

intuition.
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What

leadfo
successful testing
strategy?

Later in this chapter, we explore a systematic strategy for software testing. But even
the best strategy will fail if a series of overriding issues are not addressed. Tom Gilb
[GIL95] argues that the following issues must be addressed if a successful software
testing strategy is to be implemented:

Specify product requirements in a quantifiable manner long before testing com-
mences. Although the overriding objective of testing is to find errors, a good
testing strategy also assesses other quality characteristics such as portability,
maintainability, and usability (Chapter 19). These should be specified in a way
that is measurable so that testing results are unambiguous.

State testing objectives explicitly. The specific objectives of testing should be
stated in measurable terms. For example, test effectiveness, test coverage,
mean time to failure, the cost to find and fix defects, remaining defect density
or frequency of occurrence, test work-hours per regression test should all be
stated within the test plan. [GIL95]

Understand the users of the software and develop a profile for each user cate-
gory. Use-cases that describe the interaction scenario for each class of user
can reduce overall testing effort by focusing testing on actual use of the prod-
uct.

Develop a testing plan that emphasizes “rapid cycle testing.” Gilb [GIL95] rec-
ommends that a software engineering team “learn to test in rapid cycles (2
percent of project effort) of customer-useful, at least field “trialable,” incre-
ments of functionality and/or quality improvement.” The feedback generated
from these rapid cycle tests can be used to control quality levels and the cor-
responding test strategies.

Build “robust” software that is designed to test itself. Software should be
designed in a manner that uses antibugging (Section 18.3.1) techniques. That
is, software should be capable of diagnosing certain classes of errors. In
addition the design should accommodate automated testing and regression
testing.

Use effective formal technical reviews as a filter prior to testing. Formal technical
reviews (Chapter 8) can be as effective as testing in uncovering errors. For
this reason, reviews can reduce the amount of testing effort that is required
to produce high quality software.

Conduct formal technical reviews to assess the test strategy and test cases them-
selves. Formal technical reviews can uncover inconsistencies, omissions, and
outright errors in the testing approach. This saves time and also improves
product quality.
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Develop a continuous improvement approach for the testing process. The

test strategy should be measured. The metrics collected during testing
should be used as part of a statistical process control approach for software
testing.

Unit testing focuses verification effort on the smallest unit of software design—the
software component or module.

18.3.1 Unit Test Considerations

The tests that occur as part of unit tests are illustrated schematically in Figure 18.4.
The module interface is tested to ensure that information properly flows into and out
of the program unit under test. The local data structure is examined to ensure that
data stored temporarily maintains its integrity during all steps in an algorithm'’s exe-
cution. Boundary conditions are tested to ensure that the module operates properly
at boundaries established to limit or restrict processing. All independent paths (basis
paths) through the control structure are exercised to ensure that all statements in a
module have been executed at least once. An finally, all error handling paths are
tested.

Tests of data flow across a module interface are required before any other test is
initiated. If data do not enter and exit properly, all other tests are moot. In addition,
local data structures should be exercised and the local impact on global data should
be ascertained (if possible) during unit testing.

interface

local data structures
boundary conditions
independent paths
error handling paths

test
cases




474

What errors
commonly found

during nit
testing?

Cov:

Be sure that you

design tests fo execute

every eror handling
path. If you don’t, the
path may foil when it
is invoked,
exacerbating on

already dicey sifuation.

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

Selective testing of execution paths is an essential task during the unit test. Test
cases should be designed to uncover errors due to erroneous computations, incor-
rect comparisons, or improper control flow. Basis path and loop testing are effective
techniques for uncovering a broad array of path errors.

Among the more common €ITors in computation are: (1) misunderstood or incor-
rect arithmetic precedence; (2) mixed mode operations; (3) incorrect initialization;
(4) precision inaccuracy; (5) incorrect symbolic representation of an expression. Com-
parison and control flow are closely coupled to one another (i.e., change of flow fre-
quently occurs after a comparison). Test cases should uncover errors such as: (1)
comparison of different data types; (2) incorrect logical operators or precedence; (3)
expectation of equality when precision error makes equality unlikely; (4) incorrect
comparison of variables; (5) improper or non-existent loop termination; (6) failure to
exit when divergent iteration is encountered, and (7) improperly modified loop vari-
ables.

Good design dictates that error conditions be anticipated and error-handling paths
set up to re-route or cleanly terminate processing when an error does occur. Your-
don [YOU?75] calls this approach antibugging. Unfortunately, there is a tendency to
incorporate error handling into software and then never test it. A true story may serve
to illustrate:

A major interactive design system was developed under contract. In one transaction pro-
cessing module, a practical joker placed the following error handling message after a series
of conditional tests that invoked various control flow branches: ERROR! THERE IS NO WAY
YOU CAN GET HERE. This “error message” was uncovered by a customer during user train-
ing!

Among the potential errors that should be tested when error handling is evaluated
are:

—

Error description is unintelligible.
Error noted does not correspond to error encountered.
Error condition causes system intervention prior to error handling.

Exception-condition processing is incorrect.

LR

Error description does not provide enough information to assist in the loca-
tion of the cause of the error.

Boundary testing is the last (and probably most important) task of the unit test
step. Software often fails at its boundaries. That is, errors often occur when the nth
element of an n-dimensional array is processed; when the ith repetition of a loop with
i passes is invoked; when the maximum or minimum allowable value is encountered.
Test cases that exercise data structure, control flow, and data values just below, at,
and just above maxima and minima are very likely to uncover errors.
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18.3.2 Unit Test Procedures
Because a component is not a stand-alone program, driver and/or stub software
must be developed for each unit test. The unit test environment is illustrated in Fig-
ure 18.5. In most applications a driver is nothing more than a “main program” that
e accepts test case data, passes such data to the component (to be tested), and prints
”w"’ relevant results. Stubs serve to replace modules that are subordinate (called by) the
TﬁEfé‘_ﬂf& some. component to be tested. A stub or “dummy subprogram” uses the subordinate mod-
i:;i"g’r";;"wﬂé YU yle’s interface, may do minimal data manipulation, prints verification of entry, and
—” returns control to the module undergoing testing.
comprehensive unit Drivers and stubs represent overhead. That is, both are software that must be writ-
festing. Select aifical  ten (formal design is not commonly applied) but that is not delivered with the final
modules odthose  software product. If drivers and stubs are kept simple, actual overhead is relatively
with high cyclomatic : e
comphty snd skt low. Unfortunately, many components cannot be adequately unit tested with “sim-
test only them. ple” overhead software. In such cases, complete testing can be postponed until the
integration test step (where drivers or stubs are also used).
Unit testing is simplified when a component with high cohesion is designed. When
only one function is addressed by a component, the number of test cases is reduced

and errors can be more easily predicted and uncovered.

18.4 INTEGRATION TESTING®

A neophyte in the software world might ask a seemingly legitimate question once all
modules have been unit tested: “If they all work individually, why do you doubt that

3 Integration strategies for object-oriented systems are discussed in Chapter 23.
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they'll work when we put them together?” The problem, of course, is “putting them
together’—interfacing. Data can be lost across an interface; one module can have an
inadvertent, adverse affect on another; subfunctions, when combined, may not pro-
duce the desired major function; individually acceptable imprecision may be magni-
fied to unacceptable levels; global data structures can present problems. Sadly, the
list goes on and on.

Integration testing is a systematic technique for constructing the program struc-
ture while at the same time conducting tests to uncover errors associated with inter-
facing. The objective is to take unit tested components and build a program structure
that has been dictated by design.

There is often a tendency to attempt non-incremental integration; that is,
to construct the program using a “big bang” approach. All components are
combined in advance. The entire program is tested as a whole. And chaos usually
results! A set of errors are encountered. Correction is difficult because isolation of
causes is complicated by the vast expanse of the entire program. Once these errors
are corrected, new ones appear and the process continues in a seemingly endless
loop.

Incremental integration is the antithesis of the big bang approach. The program
is constructed and tested in small increments, where errors are easier to isolate and
correct; interfaces are more likely to be tested completely, and a systematic test
approach may be applied. In the sections that follow, a number of different incre-
mental integration strategies are discussed.

18.4.1 Top-Down Integration

Top-down integration testing is an incremental approach to construction of program
structure. Modules are integrated by moving downward through the control hierar-
chy, beginning with the main control module (main program). Modules subordinate
(and ultimately subordinate) to the main control module are incorporated into the
structure in either a depth-first or breadth-first manner.

Referring to Figure 18.6, depth-first integration would integrate all components on
a major control path of the structure. Selection of a major path is somewhat arbitrary
and depends on application specific characteristics. For example, selecting the left-
hand path, components M;, M, Mg would be integrated first. Next, Mg or (if neces-
sary for proper functioning of Mp) Mg would be integrated. Then, the central and
right-hand control paths are built. Breadth first integration incorporates all compo-
neats directly subordinate at each level, moving across the structure horizontally.
From the figure, components My, M3 and My (a replacement for stub, S4) would be
integrated first. The next control level, Ms, Mg, and so on, follows.

The integration process is performed in a series of five steps:

1. The main control module is used as a test driver and stubs are substituted for
all components directly subordinate to the main control module.
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Mg

2. Depending on the integration approach selected (i.e., depth or breadth-first),
subordinate stubs are replaced one at a time with actual components.

Tests are conducted as each component is integrated.

On completion of each set of tests, another stub is replaced with the real
component.

5.  Regression testing (Section 18.4.3) may be conducted to ensure that new
errors have not been introduced.

The process continues from step 2 until the entire program structure is built.

The top-down integration strategy verifies major control or decision points early
in the test process. In a well-factored program structure, decision making occurs at
upper levels in the hierarchy and is therefore encountered first. If major control prob-
lems do exist, early recognition is essential. If depth-first integration is selected, a
complete function of the software may be implemented and demonstrated. For exam-
ple, consider a classic transaction structure (Chapter 14) in which a complex series
of interactive inputs are requested, acquired and validated via an incoming path. The
incoming path may be integrated in a top down manner. All input processing (for
subsequent transaction dispatching) may be demonstrated before other elements of
the structure have been integrated. Early demonstration of functional capability is a
confidence builder for both the developer and the customer.

Top down strategy sounds relatively uncomplicated, but in practice, logistical prob-
lems can arise. The most common of these problems occurs when processing at low
levels in the hierarchy is required to adequately test upper levels. Stubs replace low
level modules at the beginning of top down testing; therefore, no significant data can
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flow upward in the program structure. The tester is left with three choices: (1) delay
many tests until stubs are replaced with actual modules, (2) develop stubs that per-
form limited functions that simulate the actual module or (3) integrate the software
from the bottom of the hierarchy upward.

The first approach (delay tests until stubs are replaced by actual modules) causes
us to lose some control over correspondence between specific tests and incorpora-
tion of specific modules. This can lead to difficulty in determining the cause of errors
and tends to violate the highly constrained nature of the top down approach. The
second approach is workable, but can lead to significant overhead, as stubs become
more and more complex. The third approach, called bottom-up testing is discussed
in the next section.

18.4.2 Bottom-Up Integration
Bottom-up integration testing, as its name implies, begins construction and testing
with atomic modules (i.e., components at the lowest levels in the program structure).
Because components are integrated from the bottom up, processing required for com-
ponents subordinate to a given level is always available and the need for stubs is
eliminated.

A bottom-up integration strategy may be implemented with the following steps:

1. Low level components are combined into clusters (sometimes called builds)
that perform a specific software subfunction.

2. Adriver (a control program for testing) is written to coordinate test case
input and output.

3.  The cluster is tested.

4. Drivers are removed and clusters are combined moving upward in the pro-
gram structure.

Integration follows the pattern illustrated in Figure 18.7. Components are com-
bined to form clusters 1, 2 and 3. Each of the clusters is tested using a driver (shown
as a dashed block). Components in clusters 1 and 2 are subordinate to M,. Drivers
D, and D, are removed and the clusters are interfaced directly to M,. Similarly, dri-
ver Dj for cluster 3 is removed prior to integration with module My,. Both M, and My,
will ultimately be integrated with component M, and so forth.

As integration moves upward, the need for separate test drivers lessens. In fact,
if the top two levels of program structure are integrated top-down, the number of dri-
vers can be reduced substantially and integration of clusters is greatly simplified.

18.4.3 Regression Testing

Each time a new module is added as part of integration testing, the software changes.
New data flow paths are established, new 1/0 may occur, and new control logic is
invoked. These changes may cause problems with functions that previously worked
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flawlessly. In the context of an integration test strategy, regression testing is the re-
execution of some subset of tests that have already been conducted to ensure that
changes have not propagated unintended side effects.

In a broader context, successful tests (of any kind) result in the discovery of errors,
and errors must be corrected. Whenever software is corrected, some aspect of the
software configuration (the program, its documentation, or the data that support it)
is changed. Regression testing is the activity that helps to ensure that changes (due
to testing or for other reasons) do not introduce unintended behaviour or additional
EITOrS.

Regression testing may be conducted manually, by re-executing a subset of all test
cases or using automated capture-playback tools. Capture-playback tools enable the
software engineer to capture test cases and results for subsequent playback and com-
parison.

The regression test suite (the subset of tests to be executed) contains three differ-
ent classes of test cases:

. a representative sample of tests that will exercise all software functions;

. additional tests that focus on software functions that are likely to be affected
by the change;
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. tests that focus on the software components that have been changed.

As integration testing proceeds, the number of regression tests can grow quite large.
Therefore, the regression test suite should be designed to include only those tests
that address one or more classes of errors in each of the major program functions. It
is impractical and inefficient to re-execute every test for every program function once
a change has occurred.

' 18.4.4 Smoke Testing

Smoke testing is an integration testing approach that is commonly used when “shrink-

wrapped" software products are being developed. It is designed as a pacing mecha-

nism for time critical projects, allowing the software team to assess its project on a

frequent basis. In essence, the smoke testing approach encompasses the following

activities:

1. Software components that have been translated into code are integrated into
a “build.” A build includes all data files, libraries, reusable modules, and engi-
neered components that are required to implement one or more product
functions.

2 A series of tests are designed to expose errors that will keep the build from
properly performing its function. The intent should be to uncover “show stop-
per” errors that have the highest likelihood of throwing the software project
behind schedule.

3. The build is integrated with other builds and the entire product (in its current
form) is smoke tested daily. The integration approach may be top-down or
bottom-up.

The daily frequency of testing the entire product may surprise some readers. How-
ever, frequent tests give both managers and practitioners a realistic assessment of
integration testing progress. McConnell [MCO96] describes the smoke test in the fol-
lowing manner: '

The smoke test should exercise the entire system from end to end. It does not have to be
exhaustive, but it should be capable of exposing major problems. The smoke test should
be thorough enough that if the build passes, you can assume that it is stable enough to be
tested more thoroughly.

Smoke testing provides a number of benefits when it is applied on complex, time-
critical software engineering projects:

. Integration risk is minimized. Because smoke tests are conducted daily,
incompatibilities and other show stopper errors are uncovered early, thereby
reducing the likelihood of serious schedule impact when errors are uncov-
ered.
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. The quality of the end-product is improved. Because it is a construction (inte-
gration) oriented approach, smoke testing is likely to uncover both functional
errors and also architectural and component-level design defects. If these
defects are corrected early, better product quality will result.

Error diagnosis and correction are simplified. Like all integration testing
approaches, errors uncovered during smoke testing are likely to be associ-
ated with “new software increments’—that is, the software that has just been
added to the build(s) is a probable cause of a newly discovered error.

e«  Progressis easier to assess. With each passing day, more of the software has
been integrated and more has been demonstrated to work. This improves
team morale and gives managers a good indication that progress is being
made.

18.4.5 Comments on Integration Testing

There has been much discussion (e.g., [BEI&84]) of the relative advantages and dis-
advantages of top-down versus bottom-up integration testing. In general, the advan-
tages of one strategy tend to result in disadvantages for the other strategy. The major
disadvantage of the top-down approach is the need for stubs and the attendant test-
ing difficulties that can be associated with them. Problems associated with stubs may
be offset by the advantage of testing major control functions early. The major disad-
vantage of bottom-up integration is that “the program as an entity does not exist until
the last module is added” [MYE79]. This drawback is tempered by easier test case
design and a lack of stubs.

Selection of an integration strategy depends upon software characteristics and
sometimes, project schedule. In general, a combined approach (sometimes called
sandwich testing) that uses top-down for upper levels of the program structure, cou-
pled with a bottom-up for subordinate levels may be the best compromise.

As integration testing is conducted, the tester should identify critical modules. A
critical module has one or more of the following characteristics: (1) addresses sev-
eral software requirements; (2) has a high level of control (resides relatively high in
the program structure); (3) is complex or error-prone (cyclomatic complexity may be
used as an indicator), or (4) has definite performance requirements. Critical modules
should be tested as early as is possible. In addition, regression tests should focus on
critical module function.

VALIDATION TESTING

At the culmination of integration testing, software is completely assembled as a pack-
age; interfacing errors have been uncovered and corrected, and a final series of soft-
ware tests—validation testing—may begin. Validation can be defined in many ways,



PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

but a simple (albeit harsh) definition is that validation succeeds when software func-
tions in a manner that can be reasonably expected by the customer. At this point a
battle-hardened software developer might protest: “Who or what is the arbiter of rea-
sonable expectations?”

Reasonable expectations are defined in the Software Requirements Specification—
a document (Chapter 12) that describes all user-visible attributes of the software. The
specification contains a section called Validation Criteria. Information contained in
that section forms the basis for a validation testing approach.

18.5.1 Validation Test Criteria

Software validation is achieved through a series of black-box tests that demonstrate
conformity with requirements. A test plan outlines the classes of tests to be conducted
and a test procedure defines specific test cases that will be used to demonstrate con-
formity with requirements. Both the plan and procedure are designed to ensure that
all functional requirements are satisfied; all behavioural characteristics are achieved;
all performance requirements are attained; documentation is correct and human-
engineered, and other requirements are met (€.g., transportability, compatibility, error
recovery, maintainability).

After each validation test case has been conducted, one of two possible condi-
tions exist: (1) the function or performance characteristics conform to specification
and are accepted, or (2) a deviation from specification is uncovered and a deficiency
list is created. Deviation or error discovered at this stage in a project can rarely be
corrected prior to scheduled delivery. It is often necessary to negotiate with the cus-
tomer to establish a method for resolving deficiencies.

1852 Configuration Review

An important element of the validation process is a configuration review. The intent
of the review is to ensure that all elements of the software configuration have been
properly developed; are catalogued, and have the necessary detail to bolster the sup-
port phase of the software life cycle. The configuration review, sometime called an
audit, has been discussed in more detail in Chapter 9.

18.5.3 Alpha and Beta Testing
It is virtually impossible for a software developer to foresee how the customer will
| really use a program. Instructions for use may be misinterpreted; strange combina-
i Il tions of data may be regularly used; output that seemed clear to the tester may be
| ‘l } unintelligible to a user in the field.

|

When custom software is built for one customer, a series of acceptance tests are

| 1 conducted to enable the customer to validate all requirements. Conducted by the end-
‘[ { user rather than software engineers, an acceptance test can range from an informal
il “test drive” to a planned and systematically executed series of tests. In fact, accep-
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tance testing can be conducted over a period of weeks or months, thereby uncover-
ing cumulative errors that might degrade the system over time.

If software is developed as a product to be used by many customers, it is imprac-
tical to perform formal acceptance tests with each one. Most software product builders
use a process called alpha and beta testing to uncover errors that only the end-user
seems able to find.

The alpha test is conducted at the developer’s site by a customer. The software is
used in a natural setting with the developer “looking over the shoulder” of the user
and recording errors and usage problems. Alpha tests are conducted in a controlled
environment.

The beta test is conducted at one or more customer sites by the end user of the
software. Unlike alpha testing, the developer is generally not present. Therefore, the
beta test is a “live” application of the software in an environment that cannot be con-
trolled by the developer. The customer records all problems (real or imagined) that
are encountered during beta testing and reports these to the developer at regular
intervals. As a result of problems reported during beta test, software engineers make
modifications and then prepare for release of the software product to the entire cus-
tomer base.

SYSTEM TESTING

At the beginning of this book, we stressed the fact that software is only one element
of a larger computer-based system. Ultimately, software is incorporated with other
system elements (e.g., hardware, people, information), and a series of system inte-
gration and validation tests are conducted. These tests fall outside the scope of the
software process and are not conducted solely by software engineers. However, steps
taken during software design and testing can greatly improve the probability of suc-
cessful software integration in the larger system.

A classic system testing problem is “finger pointing.” This occurs when an error
is uncovered, and each system element developer blames the other for the problem.
Rather than indulging in such nonsense, the software engineer should anticipate
potential interfacing problems and (1) design error-handling paths that test all infor-
mation coming from other elements of the system; (2) conduct a series of tests that
simulate bad data or other potential errors at the software interface; (3) record the
results of tests to use as “evidence” if finger pointing does occur, and (4) participate
in planning and design of system tests to ensure that software is adequately tested.

System testing is actually a series of different tests whose primary purpose is to
fully exercise the computer-based system. Although each testhas a different purpose,
all work to verify that system elements have been properly integrated and perform
allocated functions. In the sections that follow, we discuss the types of system tests
[BEI84] that are worthwhile for software-based systems.
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18.6.1 Recovery Testing

Many computer based systems must recover from faults and resume processing within
a prespecified time. In some cases, a system must be fault tolerant, i.e., processing
faults must not cause overall system function to cease. In other cases, a system fail-
ure must be corrected within a specified period of time or severe economic damage
will occur.

Recovery testing is a system test that forces the software to fail in a variety of ways
and verifies that recovery is properly performed. If recovery is automatic (performed
by the system itself), re-initialization, checkpointing mechanisms, data recovery and
restart are each evaluated for correctness. If recovery requires human intervention,
the mean time to repair (MTTR) is evaluated to determine whether it is within accept-
able limits.

18.6.2 Security Testing

Any computer-based system that manages sensitive information or causes actions
that can improperly harm (or benefit) individuals is a target for improper or illegal
penetration. Penetration spans a broad range of activities: hackers who attempt to
penetrate systems for sport; disgruntled employees who attempt to penetrate for
revenge; dishonest individuals who attempt to penetrate for illicit personal gain.

Security testing attempts to verify that protection mechanisms built into a system
will, in fact, protect it from improper penetration. To quote Beizer [BEI84]: “The sys-
tem'’s security must, of course, be tested for invulnerability from frontal attack—but
must also be tested for invulnerability from flank or rear attack.”

During security testing, the tester plays the role(s) of the individual who desires to
penetrate the system. Anything goes! The tester may attempt to acquire passwords
through external clerical means, may attack the system with custom software designed
to break down any defences that have been constructed; may overwhelm the sys-
tem, thereby denying service to others; may purposely cause system errors, hoping
to penetrate during recovery; may browse through insecure data, hoping to find the
Key to system entry.

Given enough time and resources, good security testing will ultimately penetrate
a system. The role of the system designer is to make penetration cost more than the
value of the information that will be obtained.

18.6.3 Stress Testing

During earlier software testing steps, white-box and black-box techniques resulted
in thorough evaluation of normal program functions and performance. Stress tests
are designed to confront programs with abnormal situations. In essence, the tester
who performs stress testing asks: “How high can we crank this up before it fails?”
Stress testing executes a system in a manner that demands resources in abnormal
quantity, frequency, or volume. For example, (1) special tests may be designed that



WebRef
BugNet tracks security
problems and bugs in PC-
bosed software and
provides useful informat
on debugging topics:
www.bugnet.com

THE A

CHAPTER 18 SOFTWARE TESTING STRATEGIES 485

generate 10 interrupts per second, when one or two is the average rate; (2) input data
rates may be increased by an order of magnitude to determine how input functions
will respond; (3) test cases that require maximum memory or other resources are
executed:; (4) test cases that may cause thrashing in a virtual operating system are
designed; (5) test cases that may cause excessive hunting for disk resident data are
designed. Essentially, the tester attempts to break the program.

A variation of stress testing is a technique called sensitivily testing. In some situa-
tions (the most common occur in mathematical algorithms) a very small range of
data contained within the bounds of valid data for a program may cause extreme and
even erroneous processing or profound performance degradation. Sensitivity testing
attempts to uncover data combinations within valid input classes that may cause
instability or improper processing.

18.6.4 Performance Testing

For real-time and embedded systems, software that provides required function but
does not conform to performance requirements is unacceptable. Performance testing
is designed to test run-time performance of software within the context of an inte-
grated system. Performance testing occurs throughout all steps in the testing process.
Even at the unit level, the performance of an individual module may be assessed as
white-box tests are conducted. However, it is not until all system elements are fully
integrated that the true performance of a system can be ascertained.

Performance tests are often coupled with stress testing and usually require both
hardware and software instrumentation. That is, it is often necessary to measure
resource utilization (e.g., processor cycles) in an exacting fashion. External instru-
mentation can monitor execution intervals, log events (e.g., interrupts) as they occur,
and sample machine states on a regular basis. By instrumenting a system, the tester
can uncover situations that lead to degradation and possible system failure.

RT OF DEBUGGING

Software testing is a process that can be systematically planned and specified. Test
case design can be conducted, a strategy can be defined, and results can be evalu-
ated against prescribed expectations.

Debugging occurs as a consequence of successful testing. That is, when a test case
uncovers an error, debugging is the process that results in the removal of the error.
Although debugging can and should be an orderly process, it is still very much an art.
A software engineer, evaluating the results of a test, is often confronted with a “symp-
tomatic” indication of a software problem. That is, the external manifestation of the
error and the internal cause of the error may have no obvious relationship to one
another. The poorly understood mental process that connects a symptom to a cause
is debugging.
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18.7.1 The Debugging Process

Debugging is not testing, but always occurs as a consequence of testing.4 Referring
to Figure 18.8, the debugging process begins with the execution of a test case. Results
are assessed and a lack of correspondence between expected and actual is encoun-
tered. In many cases, the non-corresponding data is a symptom of an underlying
cause as yet hidden. The debugging process attempts to match symptom with cause,
thereby leading to error correction.

The debugging process will always have one of two outcomes: (1) the cause will
be found, corrected and removed, or (2) the cause will not be found. In the latter case,
the person performing debugging may suspect a cause, design a test case to help val-
idate her suspicion, and work toward error correction in an iterative fashion.

Why is debugging so difficult? In all likelihood, human psychology (see the next
section) has more to do with an answer that software technology. However, a few
characteristics of bugs provide some clues:

1. The symptom and the cause may be geographically remote. That is, the
symptom may appear in one part of a program, while the cause may actually
be located at a site that is far removed. Highly coupled program structures
(Chapter 13) exacerbate this situation.

The symptom may disappear (temporarily) when another error is corrected.
The symptom may actually be caused by non-errors (e.g., round-off inaccura-
cies).

The symptom may be caused by human error that is not easily traced.

5. The symptom may be a result of timing problems, rather than processing
problems.

6. It may be difficult to accurately reproduce input conditions (e.g., a real-time
application in which input ordering is indeterminate).

7.  The symptom may be intermittent. This is particularly common in embedded
systems that couple hardware and software inextricably.

8.  The symptom may be due to causes that are distributed across a number of
tasks running on different processors [CHE90].

During debugging, we encounter errors that range from mildly annoying (€.g., an
incorrect output format) to catastrophic (e.g., the system fails, causing serious eco-
nomic or physical damage). As the consequences of an error increase, the amount
of pressure to find the cause also increases. Often, pressure sometimes forces a soft-
ware developer to fix one error and at the same time introduce two more.

4 In making this statement, we take the broadest possible view of testing. Not only does the devel-
oper test software prior to release, but the customer/user tests software every time it is used!
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18.7.2 Psychological Considerations
Unfortunately, there appears to be some evidence that debugging prowess is an innate
human trait. Some people are good at it, and others aren't. Although experimental
evidence on debugging is open to many interpretations, large variances in debug-
ging ability have been reported for programmers with the same educational and expe-
riential background.

Commenting on the human aspects of debugging, Shneiderman [SHN80] states:

Debugging is one of the more frustrating parts of programming. It has elements of problem
solving or brain teasers, coupled with the annoying recognition that you have made a mis-
take. Heightened anxiety and the unwillingness to accept the possibility of errors, increases
the task difficulty. Fortunately, there is a great sigh of reliefand a lessening of tension when
the bug is ultimately ... corrected.

Although it may be difficult to “learn” debugging, a number of approaches to the prob-
lem can be proposed. We examine these in the next section.

18.7.3 Debugging Approaches
Regardless of the approach that is taken, debugging has one overriding objective: to
find and correct the cause of a software error. The objective is realized by a combi-
nation of systematic evaluation, intuition, and luck. Bradley [BRA85] describes the
debugging approach in this way:
Debugging is a straightforward application of the scientific method that has been devel-
oped over 2,500 years. The basis of debugging is to locate the problem’s source [the cause]
by binary partitioning, through working hypotheses that predict new values to be exam-
ined.



Set a time limit, say 2
hours, on the amount
of time you spend
frying to debug o
problem on your own.
Affer that, get help!

(ASE Tools
Testing ond Debugging

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

Take a simple non-software example: A lamp in my house does not work. If nothing
in the house works, the cause must be in the main circuit breaker or outside; I look around
to see whether the neighbourhood is blacked out. 1 plug the suspect lamp into a working
socket and a working appliance into the suspect circuit. So goes the alternation of hypoth-
esis and test.

In general, three categories for debugging approaches may be proposed [MYE79]: (1)
brute force, (2) backtracking, and (3) cause elimination.

The brute force category of debugging is probably the most common and least effi-
cient method for isolating the cause of a software error. We apply brute force debug-
ging methods when all else fails. Using a “let the computer find the error” philosophy,
memory dumps are taken, run-time traces are invoked, and the program is loaded
with WRITE statements. We hope that somewhere in the morass of information that
is produced we will find a clue that can lead us to the cause of an error. Although the
mass of information produced may ultimately lead to success, it more frequently leads
to wasted effort and time. Thought must be expended first!

Backtracking is a fairly common debugging approach that can be used success-
fully in small programs. Beginning at the site where a symptom has been uncovered,
the source code is traced backward (manually) until the site of the cause is found.
Unfortunately, as the number of source lines increases, the number of potential back-
ward paths may become unmanageably large.

The third approach to debugging—cause elimination—is manifested by induction
or deduction and introduces the concept of binary partitioning. Data related to the
error occurrence are organized to isolate potential causes. A “cause hypothesis” is
devised and the above data are used to prove or disprove the hypothesis. Alterna-
tively, a list of all possible causes is developed and tests are conducted to eliminate
each. If initial tests indicate that a particular cause hypothesis shows promise, data
are refined in an attempt to isolate the bug.

Each of the above debugging approaches can be supplemented with debugging
tools. We can apply a wide variety of debugging compilers, dynamic debugging aids
(“tracers”), automatic test case generators, memory dumps, and cross reference maps.
However, tools are not a substitute for careful evaluation based on a complete soft-
ware design document and clear source code.

Any discussion of debugging approaches and tools is incomplete without mention
of a powerful ally—other people! Each of us can recall puzzling for hours or days over
a persistent bug. A colleague wanders by and in desperation we explain the problem
and throw open the listing. Instantaneously (it seems), the cause of the error is uncov-
ered. Smiling smugly, our colleague wanders off. A fresh viewpoint, unclouded by
hours of frustration, can do wonders. A final maxim for debugging might be: “When
all else fails, get help!”

Once a bug has been found, it must be corrected. But as we have already noted,
the correction of a bug can introduce other errors and therefore do more harm than
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good. Van Vleck [VAN89] suggests three simple questions that every software engi-
neer should ask before making the “correction” that removes the cause of a bug:

1. Is the cause of the bug reproduced in another part of the program? In many situ-
ations, a program defect is caused by an erroneous pattern of logic that may
be reproduced elsewhere. Explicit consideration of the logical pattern may
result in the discovery of other errors.

2. What “next bug” might be introduced by the fix I'm about to make? Before the
correction is made, the source code (or better, the design) should be evalu-
ated to assess coupling of logic and data structures. If the correction is to be
made in a highly coupled section of the program, special care must be taken
when any change is made.

3.  What could we have done to prevent this bug in the first place? This question is
the first step toward establishing a statistical software quality assurance
approach (Chapter 8). If we correct the process as well as the product, the
bug will be removed from the current program and may be eliminated from
all future programs.

SUMMARY

Software testing accounts for the largest percentage of technical effort in the soft-
ware process. Yet we are only beginning to understand the subtleties of systematic
test planning, execution and control.

The objective of software testing is to uncover errors. To fulfil this objective, a
series of test steps—unit, integration, validation, and system tests—are planned and
executed. Unit and integration tests concentrate on functional verification of a mod-
ule and incorporation of modules into a program structure. Validation testing demon-
strates traceability to software requirements, and system testing validates software
once it has been incorporated into a larger system.

Each test step is accomplished through a series of systematic test techniques that
assist in the design of test cases. With each testing step, the level of abstraction with
which software is considered is broadened.

Unlike testing (a systematic, planned activity), debugging must be viewed as an art.
Beginning with a symptomatic indication of a problem, the debugging activity must
track down the cause of an error. Of the many resources available during debugging,
the most valuable is the counsel of other members of the software engineering staff.

The requirement for higher quality software demands a more systematic approach
to testing. To quote Dunn and Ullman [DUN82]:

-l

What is required is an overall strategy, spanning the strategic test space, quite as deliber-
ate in its methodology as was the systematic development on which analysis, design and
code were based.
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In this chapter, we have examined the strategic test space, considering the steps that
have the highest likelihood of meeting the overriding test objective: to find and remove
errors in an orderly and effective manner.
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18.1. Using your own words, describe the difference between verification and val-
idation. Do both make use of test case design methods and testing strategies?
18.2. List some problems that might be associated with the creation of an
independent test group. Are an ITG and an SQA group made up of the same
people?

18.3. Is it always possible to develop a strategy for testing software that uses the
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sequence of testing steps described in Section 18.1.3? What are possible complica-
tions that might arise for embedded systems?

18.4. If you could only select three test case design methods to apply during unit
testing, what would they be and why?

18.5. Why s it that a highly-coupled module is difficult to unit test?

18.6. Develop an integration testing strategy for any one of the systems imple-
mented in Problems 16.4 through 16.11. Define test phases, note the order of inte-
gration, specify additional test software and justify your order of integration. Assume
that all modules (or classes) have been unit tested and are available. Note: it may be
necessary to do a bit of design work first.

18.7. How can project scheduling affect integration testing?

18.8. Is unit testing possible or even desirable in all circumstances? Provide exam-
ples to justify your answer.

18.9. Who should perform the validation test—the software developer or the soft-
ware user? Justify your answer.

18.10. Develop a complete test strategy for the SafeHome system discussed earlier
in this book. Document it in a Test Specification.

18.11. Asaclass project, develop a Debugging Guide for your installation. The guide
should provide language and system-oriented hints that have been learned through
the school of hard knocks! Begin with an outline of topics that will be reviewed by
the class and your instructor. Publish the guide for others in your local environment.

FURTHER READINGS AND INFORMATION BRESOURCES

Books by Black (Managing the Testing Process, Microsoft Press, 1999), Dustin, Rashka
and Paul (Test Process Improvement: Step-By-Step Guide to Structured Testing, Addi-
son-Wesley, 1999), Perry (Surviving the Top Ten Challenges of Software Testing: A Peo-
ple-Oriented Approach, Dorset House, 1997), and Kit and Finzi (Software Testing in the
Real World: Improving the Process, Addison-Wesley, 1995) address software testing
strategies.

Kaner, Nguyen, and Falk (Testing Computer Software, Wiley, 1999), Hutcheson (Soft-
ware Testing Methods and Metrics: The Most Important Tests McGraw Hill, 1997), Mar-
ick (The Craft of Software Testing: Subsystem Testing Including Object-Based and
Object-Oriented Testing, Prentice Hall, 1995), Jorgensen (Software Testing: A Crafts-
man’s Approach, CRC Press, 1995) present treatments of the subject that consider test-
ing methods and strategies.

In addition, older books by Evans (Productive Software Test Management, Wiley-
Interscience, 1984), Hetzel (The Complete Guide to Software Ti:stfng; QED Information
Sciences, 1984), Beizer [BEI84], Ould and Unwin (Testing in Software Development,
Cambridge University Press, 1986), Marks (Testing Very Big Systems, McGraw-Hill,
1992, and Kaner et al (Testing Computer Software, second edition, Van Nostrand-Rein-
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hold, 1993) delineate the steps of an effective testing strategy, provide a set of tech-
niques and guidelines and suggest procedures for controlled and tracking the test-
ing process. Hutcheson (Software Testing Methods and Metrics, McGraw-Hill, 1996)
presents testing methods and strategies but also provides a detailed discussion of
how measurement can be used to achieve efficient testing.

Guidelines for debugging are contained in a book by Dunn (Software Defect Removal,
McGraw-Hill, 1984). Beizer [BEI84] presents an interesting “taxonomy of bugs” that
can lead to effective methods for test planning. McConnell (Code Complete, Microsoft
Press, 1993) presents pragmatic advice on unit and integration testing as well as
debugging.

A wide variety of information sources on software testing and related subjects
are available on the internet. An up-to-date list of world wide web references that
are relevant to testing concepts, methods and strategies can be found at
http://www.pressman5.com



