
Performance considerations for mobile web services

M. Tian*, T. Voigt1, T. Naumowicz, H. Ritter, J. Schiller

Institut für Informatik, Freie Universität Berlin, Takustr. 9, 14195 Berlin, Germany

Abstract

Web services are an emerging technology that provides a flexible platform for web interaction. We evaluate Web service performance of

handheld resource-constrained clients using different wireless technologies. Due to the usage of XML, message sizes in Web services are

larger than in traditional web technologies and therefore, compression of Web service messages is attractive. As shown in our experiments,

this especially holds for mobile clients with poor connectivity and high communication costs. However, compression requires CPU time at

both the server and the clients. We present measurement results of a simple dynamic scheme that provides benefits by compressing responses

only when the required server resources are available.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Web service; Overhead; XML; Compression; SOAP

1. Introduction

Traditionally, Internet servers such as web servers served

mainly static content. During recent years, more and more

web sites have started serving dynamic content, thus

enabling personalization of web pages as well as more

complex interaction such as on-line commerce and

electronic banking. The latest trends in the field of web

interaction are Web services. Web services are software

components that can be accessed over the Internet using

popular web mechanisms and protocols such as HTTP.

Public interfaces of Web services are defined and described

using Extensible Markup Language (XML) based defi-

nitions. Examples of Web services range from simple

requests such as stock quotes or user authentication to more

complex tasks such as comparing and purchasing items over

the Internet.

In contrast to traditional web interaction, Web services

incorporate some additional overhead. In particular, due to

the usage of XML, requests and replies are larger compared

to traditional web interactions and the need for parsing the

XML code in the requests adds additional server overhead.

We present a typical web application that requires the

transmission of four to five times more bytes if implemented

as a Web service compared to the same service implemented

as a traditional dynamic program (in our case as an Active

Server Page (ASP) application). Therefore, compression of

Web service interactions is attractive. It is easy to imagine

that in the future clients using mobile devices will generate a

large percentage of all Web service requests. Although the

computing power of handheld devices is increasing rapidly

the CPU time required for decompression might eliminate

the benefits of compression for these types of devices. We

present experiments that quantify the decompression over-

head on a handheld computing device with constraint

processing capabilities. As expected, mobile clients benefit

from compression when the available bandwidth is scarce,

for example when the client is connected via GPRS. But

even when resource-constrained devices have better con-

nectivity, the performance loss caused by decompression is

almost negligible. Note that mobile clients also might prefer

compressed responses since they are often charged by

volume rather than by connection time, e.g. in the case of

GPRS [1].

A lightly loaded server can afford the extra cost of

compressing responses. We present measurements that

show that the throughput of a heavily loaded server can

decrease substantially when it is required to compress Web

service responses. At the same time the response times

experienced by the clients increase. We propose a simple

scheme that allows clients to specify whether they want to

receive data compressed when requesting a Web service.

Depending on the current server load, the server compresses

only the requests of the clients that required such a service.

We present experiments that demonstrate that this approach

0140-3664/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2004.01.015

Computer Communications 27 (2004) 1097–1105

www.elsevier.com/locate/comcom

1 Visiting from the Swedish Institute of Computer Science.

* Corresponding author. Tel.: þ49-83875209; fax: þ49-83875194.

E-mail address: tian@inf.fu-berlin.de (M. Tian).

http://www.elsevier.com/locate/comcom


works as expected and that both the server and clients with

poor connectivity benefit during high server demand.

The main contributions of this paper are the evaluation of

Web service performance for mobile clients as well as a

scheme that supports a server in the decision whether to

compress Web service responses.

The rest of the paper is outlined as follows: Section 2

presents some background information on Web services and

the associated overhead. Section 3 motivates and discusses

our dynamic compression approach. The following section

presents our experiments. After presenting related work in

Section 5, we conclude with a short summary of our findings

and discuss some future work.

2. Web services

A Web service is a software system identified by a URI,

whose public interfaces and bindings are defined and

described using XML [2]. The definition of a Web service

can be exported to a file, published to a lookup service, and

discovered by other software systems. These systems may

then interact with the Web service in a manner prescribed by

its definition, using XML based messages conveyed by

Internet protocols.

The Web service architecture defined by the W3C

enables application to application communication over the

Internet. Web services allow access to software components

through standard Web technologies, regardless of platforms,

implementation languages, etc.

In term of the Internet reference model, the Web service

layer could be placed between the Transport and Appli-

cation Layer. The Web service layer is based on several

standard Internet protocols, whereby the protocols WSDL,

SOAP, and typically HTTP as depicted in Fig. 1 should be

supported by all Web service implementations for

interoperability.

The HTTP protocol that builds the first layer of the

interoperable part of the protocol stack is, because of its

ubiquity, the de facto transport protocol for Web services.

But any other transport protocols such as SMTP, MIME,

and FTP for public domains as well as CORBA and

Message Queuing protocols for private domains could be

used instead.

The XML-based SOAP forms the next layer. SOAP

provides XML-based messaging. In combination with

HTTP, XML function calls can be sent as payload of

HTTP POST. Because of the extensibility of SOAP, one can

define customized messages using SOAP headers. The

highest interoperable layer is the XML-based Web Services

Description Language (WSDL). A WSDL document serves

as a contract to be followed by Web service clients. It

defines the public interfaces and mechanisms of Web

service interactions.

2.1. Web service overhead

Since both SOAP and WSDL are XML-based, XML

messages have to be parsed on both the server and the client

side and proxies have to be generated on the client side

before any communication can take place. The XML

parsing at runtime requires additional processing time,

which may result in longer response time of the server in

case of a Web service server.

In order to demonstrate the quantity of the additional

bytes Web services generate for transfer, we have

implemented the same ‘service’ both as a traditional

dynamic program, in our case as an ASP application, and

as a Web service. The implemented application is an

electronic book inventory system. The clients send the

ISBN of a book to the server and the server returns

information about the book such as the title, author name,

price, and so on.

When sending small amounts of content using SOAP on

HTTP, such as sending an ISBN for querying book

information, the major part of the entire conversation will

consist of HTTP headers, SOAP headers including the XML

schema as well as brackets. In our case, the Web service

accepts the ISBN of a book as input parameter and returns

the book information in form of a dataset. The actual content

of both request and response consists of a total of 589 bytes,

thereof 10 bytes for the ISBN and the rest for the

information about the book. But more than 3900 bytes

have to be sent and received for the entire conversation.

Fig. 2 depicts the bytes on the wire for the actual content and

the overhead when it is transmitted as HTML or XML. The

disproportion is not as big for traditional web interaction

with HTML. The total amount of the request and response

for transferring the same information value is about

1200 bytes.

The overhead of the Web service stems mainly from the

usage of XML producing human readable text and is

employed when interoperability with other Web servicesFig. 1. Web Service architecture.

M. Tian et al. / Computer Communications 27 (2004) 1097–11051098



and applications is essential [3]. Others have compared

XML’s way of representing data with binary encodings.

They quantify the overhead as 400% [4].

3. A dynamic approach for reduction of web service

responses

The growth of the Web service message size, which

results in higher data transmission time, creates a critical

problem for delay sensitive applications. One way to

achieve a compact and efficient representation is to

compress XML-especially when the CPU overhead required

for compression is less than the network latency [3].

Compression is both useful for clients that are poorly

connected as well as for clients that are charged by volume

and not by connection time by their providers. The latter

group contains mobile users connected with handheld

devices such as people accessing a service via GPRS. This

group of users is expected to increase rapidly in the next

years. However, the Web service application on the server

does not have any information about the delay, for example

the current round trip time estimated by TCP, and about the

available bandwidth between client and server.

Thus, we have decided to let the Web service users

specify whether they want the response compressed. Mobile

users usually know if they are charged by volume and often

know how they are connected. Thus, it seems reasonable to

let them decide whether they want the server to compress

the response. Note, that a smart software component could

take over this task as well. In our current design we let users

decide between three options:

† Do not compress the response

† Compress the response

† Compress the response if possible

If users choose the last option, the server is free to choose

what the server considers best. To give users an incentive to

choose this option, commercial Web service providers could

decide to charge a lower price for this option. The choice of

the users is reflected in the request. When the last option is

chosen and the server demand is low, the server compresses

the responses to all clients that have asked for compressed

replies and to those clients that have not specified a

preference. During high server demand, the server com-

presses only responses to clients that have asked for

compressed data. Since compression requires mainly CPU

time, we regard the server demand as high when the CPU

utilization of the server exceeds a certain threshold.

Note that in this approach, the server can still become

overloaded. Mechanisms for server overload protection

have been studied elsewhere [5].

4. Experiments

In this section we describe our experimental setup and

the application we have implemented as well as our

experiments and the corresponding results.

4.1. Testbed

Our testbed consists of three 1 GHz Pentium III

machines with 256 MB memory, a Pentium III laptop with

700 MHz and 384 MB RAM and an iPAQ Pocket PC 3970

running Windows CE 3.0 with a 400 MHz XScale Processor

(see Fig. 3). Our Internet server is a standard Internet

Information Server version 5.0 with the default configur-

ation. The other two Pentiums run Linux. One is running the

sclient traffic generator (see below) and the other runs NIST

Net [6]. NIST Net emulates a wide variety of network

conditions such as low bandwidth and large round trip

times. The iPAQ handheld device is connected to the server

via the laptop and the machine running NIST Net.

For background load generation, we use the sclient traffic

generator [7]. Sclient is able to generate client request rates

that exceed the capacity of the Internet server. This is done

by aborting requests that do not establish a connection to the

server in a specified amount of time. This timeout is set to

50 ms in our experiments. The exact timeout value does not

impact the results, as long as it is chosen small enough to

avoid that TCP SYNs dropped by the server are retrans-

mitted. However, the larger the value, the higher the risk

that the request generator runs out of socket buffers. Sclient

does not take the aborted requests into account when

calculating the average response time.

In order to emulate poorly connected clients we use the

host running NIST Net to add additional delays and

decrease the available bandwidth. We emulate a GPRS

network based on the results from measurements in a real

GPRS network by Chakravorty et al. [8]. They measure the

delay on the uplink to about 500 ms and on the downlink to

Fig. 2. Overhead of server page and Web service.

M. Tian et al. / Computer Communications 27 (2004) 1097–1105 1099



about 800 ms. We do not take the variations into account in

our experiments. For the bandwidth the theoretical values

are 40.2 kbit/s on the downlink and 13.4 kbit/s on the uplink

meaning that the mobile device listens simultaneously on

three downlink channels while sending on one uplink

channel as many mobile telephones do. The values

measured by Chakravorty vary substantially based on the

current network conditions with the best conditions coming

very close to the maximum values. We use both the

theoretical values as the best case from the clients’ point of

view as well as the values they measured when link

conditions were poor. The latter are 12.8 kbit/s on the

downlink and 4 kbit/s on the uplink.

4.2. Test application

The implemented application is a modification of our

electronic book inventory system described in Section 2.1

that returns responses of different sizes depending on the

request. The additional requests are for a small Hello World

service, and more detailed (‘heavy’) information (including

more detailed information, user ratings and hints on similar

books etc.) about one, two, three and five books. The

corresponding sizes of the SOAP body in both compressed

and uncompressed form are shown in Table 1. Note that

additional bytes are needed for the SOAP header (approx.

150 Bytes), the SOAP envelope (approx. 200 Bytes) and the

HTTP header. We only compress the SOAP body in our

experiments. We see that except for the small ‘Hello

World!’ response the compression factor is about three.

The Web service running on a Microsoft Internet

Information Server is implemented with the .NET frame-

work 1.1 beta [9]. The Web service client is implemented

with the .NET compact framework and is deployed on the

iPAQ. Since SOAP is used for the client server interaction,

we have extended the SOAP headers with the SOAPExten-

sion class of the .NET framework class library in order to

modify (on the client side) and to inspect (on the server side)

SOAP messages. The client sets a parameter in the SOAP

header instructing the server either to compress or not to

compress the data part of the SOAP response or to let the

server decide by itself. For compression we use the

SharpZipLib library [10], but other compression algorithms

may be used, too.

4.3. Experimental results

In this section, we present three different set of

experiments. In the first subsection, we evaluate the

performance of Web services for different wireless net-

works. These experiments show that mobile clients can gain

from compression when their connectivity is poor. How-

ever, compression requires server resources and, therefore,

we quantify the server overhead for compression. In the

second subsection, we demonstrate that compression can

degrade server performance severely. The experiments in

the final subsection validate our dynamic approach, where

during high server load the server compresses only

responses for clients that have indicated that the server

should compress the response.

4.3.1. Web service performance for handheld devices

Due to the large message sizes of Web services we

assume that compressing Web service responses is useful.

However, the cost of decompression on resource-con-

strained devices may invalidate this assumption.

Fig. 3. Testbed.

Table 1

Response size without and with compression, compression and decompression time

Original data size

(byte)

Data size after compression

(byte)

Compression time on server

(ms)

Decompression time on client

(ms)

‘Hello World’ response 209 256 1 41

Lite information for 1 book 3366 1390 12 200

Heavy information for 1 book 16055 6038 24 497

Heavy information for 2 books 28153 10222 36 747

Heavy information for 3 books 36049 12350 79 877

Heavy information for 5 books 50205 15470 89 1122

M. Tian et al. / Computer Communications 27 (2004) 1097–11051100



In the following we investigate the performance of Web

Services on handheld devices when connected to different

networks, namely with 802.11 b wireless LAN, Bluetooth as

well as GPRS networks with both good and poor

connectivity, as described in Section 4.1. The server in

this scenario is lightly loaded because the client is the single

user. Table 1 shows the compression times on the server and

the decompression times on the client for different data

sizes. The results indicate that the compression time on the

server is much lower than the decompression time on

the resource-constrained handheld device. On the iPAQ, the

decompression time is more than one second for the largest

response while compressing on the server requires less

than 90 ms.

Figs. 4–7 show the experimental results with different

network connections. The x-axis shows the original message

size of Web service responses ranging from 0 to

50000 bytes. The y-axis is the service time in millisecond.

The service time denotes the time interval between

the moment the client requests the service, e.g. by clicking

on a button and the moment the client has received and

processed the result. We expect that mobile clients will

benefit from compression when the bandwidth is scarce but

experience small performance degradation when the

available bandwidth is larger, i.e. when the service is

requested over the wireless LAN or Bluetooth.

Since the available bandwidth in a wireless LAN is

higher than in a Bluetooth network, we expect the service

time in the wireless LAN to be lower than the service time

over Bluetooth. Indeed, as shown in Figs. 4 and 5 the service

time in the wireless LAN scenario is about 2 s faster than in

the Bluetooth scenario for all message sizes. There is no

significant difference between service time for compression

and no compression when the iPAQ is connected via a

wireless LAN or Bluetooth network. At its maximum, the

time difference for receiving compressed or non-com-

Fig. 4. iPAQ service time over wireless LAN.

Fig. 5. iPAQ service time over wireless Bluetooth.

Fig. 6. iPAQ service time over emulated GPRS network.

Fig. 7. iPAQ service time over emulated GPRS with poor connectivity.

M. Tian et al. / Computer Communications 27 (2004) 1097–1105 1101



pressed responses is about 4% for the largest request over

the wireless LAN. This shows that the overhead caused by

compression is not severe in these scenarios.

When the iPAQ is connected via a low bandwidth

network such as GPRS, the service time is lower for larger

response sizes when the response is compressed. This means

that the benefit of compression is higher than the cost of

decompressing the response. As Fig. 7 shows, when

connectivity is poor the service time is halved when

compressing the largest response.

These experiments demonstrate that compressing Web

service responses is useful when the available bandwidth is

scarce even for clients using resource-constrained devices.

4.3.2. Impact of compression on server performance

Compression requires CPU time at the server, too. In this

section, we evaluate the impact of compression on server

performance. We use the sclient workload generator to

sustain a certain request rate independent of the load on the

server. The traffic generator makes requests at a certain rate

for the electronic book Web service described in Section

4.3.1.

The test scenario increases the request rate across runs

and conducts three runs for each request rate with each of

the runs lasting for 3 min. We measure the average

throughput and response time. We expect that the response

time will be quite low when the request rate is below the

capacity of the server, no matter whether compression is

used or not. However, using compression we expect that the

server will reach its maximum capacity at a lower request

rate. When the request rate is above the capacity of the

server, the response time will increase rapidly due to the

waiting time that requests spend queuing before they can be

processed. Also, the throughput will increase with the

request rate until the maximum server capacity is reached.

When the request rate is higher than the capacity of the

server, the throughput will not increase anymore. During

severe overload the throughput might even decrease since

CPU time is wasted on requests that cannot be processed

and are eventually discarded [7].

For compression we use the SharpZipLib library. This

way, we can reduce the overall number of bytes for the

‘lite information’ scenario from more than four KBytes

to around two Kbytes (cf. Table 1). Without com-

pression, three TCP segments are needed for the response

while the compressed response fits into two TCP

segments. Note that in our experiments the client, i.e.

the traffic generator, is not required to decompress or to

process the received data in some other way.

Due to the additional CPU time the server spends on

compressing data, we assume that the response time

increases and the throughput (measured in connections per

second) decreases when the response is compressed. Fig. 8

shows that this is indeed the case. The response time during

overload is about three seconds higher and the throughput is

about 45 conn/sec lower when compression is used. Fig. 9

shows that the maximum server throughput decreases from

about 135–90 conn/s when compression is used. These

experiments show that when a server compresses all replies,

the maximum server throughput decreases substantially and

the response time experienced by the clients is affected

negatively. This gives reason for our approach that is based

on the assumption that servers should only compress replies

to clients that can benefit from compression.

4.3.3. Dynamic server compression

The first experiments have shown that mobile clients

with poor connectivity benefit from compression while the

experiments in Section 4.3.2 have demonstrated that

compression reduces server performance during high

demand. In the experiment in this section, we investigate

Fig. 8. Comparison of response time with and without compressing the

response.

Fig. 9. Comparison of throughput with and without compressing the

response.

M. Tian et al. / Computer Communications 27 (2004) 1097–11051102



if the dynamic compression approach described in Section 3

is able to give us the best of both worlds, i.e. compressed

data for clients that wish to receive compressed data while

achieving high server throughput.

The next experiment compares the server performance

when

† all responses are compressed

† no responses are compressed

† the server decides which responses to compress

As in the experiment in Section 4.3.2, we use sclient to

request the lite information on a book. Sclient first requests

that all responses are to be compressed, then that no

responses are compressed and finally 50% of the responses

to be uncompressed and for the other 50%, the server is

asked to decide. In the latter setting, which we call dynamic,

when no compression indication is given for a request, the

server compresses the response when the CPU utilization of

the server is below a threshold of 80%. If the CPU utilization

is higher than 80% it does not compress such a response in

order to save processing time. Using this approach, the

performance should be almost as high as without com-

pression. Figs. 10 and 11 show the response time and the

throughput, respectively. As expected, using the dynamic

approach the server performance is almost as high as when

the server does not use compression. Further inspection of

the results reveals that the server compresses all responses it

is allowed to compress (50% of the requests that have

indicated that they do not have any preferences) until a

request rate of 60 requests/s is reached. When the request

rate reaches 120 requests/s only 20% of the requests without

preference indication are compressed while no requests are

compressed at request rates larger than 140 requests/s.

However, the performance gap should be smaller, i.e. the

difference between the dynamic approach and no

compression should be almost nothing, since the only

extra task required from the server is to check the current

CPU utilization when processing a request that has not

indicated any preference. This indicates that this task is

more expensive than one would expect.

In the next experiments we want to validate that a client

with a poor connection to the server may indeed benefit

from this approach. In these experiments, the sclient varies

the request rate and requests the ‘lite information for one

book’ for two different scenarios. In the first scenario sclient

requests compressed responses while in the second scenario

sclient requests 50% of the responses as compressed and

50% of the responses without compression preference. In

both scenarios, the iPAQ requests the ‘heavy information

for one book’. The mobile client is connected via the

emulated GPRS network to the server.

The results shown in Table 2 indicate that our approach is

beneficial for both the server and for mobile clients with

poor connectivity. As expected for some sclient request

rates, the service time experienced by the mobile client is

much better when the server uses the dynamic approach,

namely when the sclient request rates are between 100 and

140 requests/s which corresponds to the results in Fig. 10.

This is the request range where the CPU time required for

processing would overload the server and would degrade

performance but the server still performs well when it does

not need to compress the responses.

Fig. 10. Response time of the dynamic approach.

Fig. 11. Throughput of the dynamic approach.

Table 2

Impact of the dynamic approach on the response time of the mobile client

Sclient rate (request/s) 80 100 120 140 160

All compressed (ms) 9985 10495 16492 17104 17176

Dynamic (ms) 9370 9850 10468 10538 17131

M. Tian et al. / Computer Communications 27 (2004) 1097–1105 1103



5. Related work

Web Services are a young area of research, thus not much

about Web services has been published yet. Cai et al.

compare alternative encoding mechanisms, namely binary

and XML, for Web services [3]. Their aim is to discuss the

performance trade-off associated with these two alterna-

tives. They develop a model that allows them to estimate the

throughput depending on factors such as server bandwidth

and packet loss. In our work we implement the described

approach and demonstrate experimentally the benefits for

both the server and poorly connected clients. Chiu et al.

have investigated the limits of SOAP performance for

scientific computing [11]. They describe an efficient SOAP

implementation specifically targeted at systems with

stringent memory and bandwidth requirements while we

improve the performance of an existing implementation

during high demand and particularly considering poorly

connected clients.

Krashinsky investigates optimizing the final critical link

between a mobile web client and a stationary base station by

compressing HTTP request and reply [12]. While they use a

proxy for compression over the last link we use end-to-end

compression if desired by the clients. Ardon et al. present a

generic content adaptation architecture using a distributed

proxy architecture [13]; our focus is on compression for

Web services which can be deployed exclusively on the

server. While in our approach the clients themselves decide

if they want compressed replies, Krishnamurthy and Willis

classify client connectivity based on information collected

during previous client access to the same web server [14]. In

particular, they measure the delay between the base object

and the first embedded object as well as the delay between

the base object and the last object in a sequence. Ardaiz et al.

measure the service time of web clients by extending web

server logs to contain more precise information and

compute the service time from the server logs [15]. Note

that in both cases there is no information about a client

available when she makes her first request to the web site.

In contrast to traditional web interaction, little is known

about request size and file distributions of Web services.

Furthermore, the performance issues of traditional web

servers are well understood [16] and mechanisms to cope

with server overload have been developed [5].

6. Conclusions and future work

Compression is one way of dealing with the problem of

large message sizes of Web services. We show that

compression is useful for poorly connected clients with

resource-constrained devices despite the CPU time required

for decompressing the responses. Compression also

decreases server performance due to the additional CPU

time required. In the approach presented in this paper, we let

the clients decide whether they want their responses

compressed. During low demand, the server compresses

the responses for all clients that have asked for compressed

responses as well as for clients that have not indicated any

preference. During high server demand, only responses to

clients that have asked for compressed response are

compressed. Our experiments have shown that both the

server and the clients, in particular clients that are poorly

connected, benefit from this approach.

In the presented experiments, the client can instruct the

server to compress the returned data. This information could

be seen as some kind of quality of service (QoS). We think

that a general QoS support for Web services will play an

important role for the success of this emerging technology.

Providers of QoS aware Web services can specify QoS

related statements on the services they offer, while the

clients can specify QoS related statements on services they

require. The statements made by both the service provider

and service requestor should be able to be matched,

adjusted, and controlled at runtime. In our experiments,

we have used the SOAP headers for a single QoS attribute.

But we think that the WSDL is a better place for further

integration of QoS information. In an ongoing research

project [17], we are examining QoS integration for Web

services in a general way.

References

[1] J. Schiller, Mobile Communications, second ed., Addison-Wesley,

New York, 2003.

[2] W3C, Web services Activity, http://www.w3.org/2002/ws/.

[3] M. Cai, S. Ghandeharizadeh, R. Schmidt, A. Song, A Comparison of

Alternative Encoding Mechanisms for Web Services, 13th Inter-

national Conference on Database and Expert Systems Applications,

Aix en Provence, France, September, 2002.

[4] A. Mani, A. Nagarajan, Understanding Quality Of Service for Web

services, January, 2002, http://www-106.ibm.com/developerworks/

library/ws-quality.html.

[5] T. Voigt, R. Tewari, D. Freimuth, A. Mehra, Kernel Mechanisms for

Service Differentiation in Overloaded Web Servers, 2001 Usenix

Annual Technical Conference, Boston, MA, USA, June, 2001.

[6] NIST Net, National Institute of Standards and Technology, http://

snad.ncsl.nist.gov/itg/nistnet/.

[7] G. Banga, P. Druschel, Measuring the capacity of a web server,

Usenix Symposium on Internet Technologies and Systems, Decem-

ber, 1997.

[8] R. Chakravorty, J. Cartwright, I. Pratt, Practical Experience with TCP

over GPRS, IEEE GLOBECOM 2002, Taipei, Taiwan, November,

2002.

[9] .NET Framework class library, version 1.1.4322 (November 2002).

[10] SharpZipLib, http://www.icsharpcode.net/OpenSource/SharpZipLib/

default.asp.

[11] K. Chiu, M. Govindaraju, R. Bramley, Investigating the Limits of

SOAP Performance for Scientific Computing, IEEE International

Symposium on High Performance Distributed Computing, Edinburgh,

Scotland, July, 2002.

[12] R. Krashinsky, Efficient Web Browsing for Mobile Clients using

HTTP Compression, Distributed Operating Systems term project,

Massachusetts Institute of Technology, December, 2000.

[13] S. Ardon, P. Gunningberg, Y. Ismailov, B. Landfeldt, M. Portmann,

A. Seneviratne, B. Thai, Mobile Aware Server Architecture:

M. Tian et al. / Computer Communications 27 (2004) 1097–11051104

http://www.w3.org/2002/ws/
http://www-106.ibm.com/developerworks/library/ws-quality.html
http://www-106.ibm.com/developerworks/library/ws-quality.html
http://snad.ncsl.nist.gov/itg/nistnet/
http://snad.ncsl.nist.gov/itg/nistnet/
http://www.icsharpcode.net/OpenSource/SharpZipLib/default.asp
http://www.icsharpcode.net/OpenSource/SharpZipLib/default.asp


a distributed proxy architecture for content adaptation, INET 2001,

Stockholm, Sweden, June, 2001.

[14] B. Krishnamurthy, C. Wills, Improving Web experience by client

characterization driven server adaptation, Proceedings of WWW 2002

Conference, Hawaii, May, 2002.

[15] O. Ardaiz, F. Freitag, L. Navarro, Estimating the Service Time of Web

Clients using Server Logs, ACM SIGCOMM Workshop on Data

Communication in Latin America and the Caribbean, San Jose, Costa

Rica, SIGCOMM Latin America, 2001.

[16] E. Nahum, T. Barzilai, D. Kandlur, Performance Issues in WWW

servers, IEEE/ACM Transactions on Networking 10 (1) (2002).

[17] M. Tian, A. Gramm, M. Nabulsi, H. Ritter, J. Schiller, T. Voigt, QoS

Integration in Web Services, DWS 2003, Technologies and

Applications of XML, Berlin, Germany, October, 2003.

M. Tian et al. / Computer Communications 27 (2004) 1097–1105 1105


	Performance considerations for mobile web services
	Introduction
	Web services
	Web service overhead

	A dynamic approach for reduction of web service responses
	Experiments
	Testbed
	Test application
	Experimental results

	Related work
	Conclusions and future work
	References


