An introduction to Uppaal and
Timed Automata

MVP5

What is Uppaal?

(http://www.uppaal.com/)

* A simple graphical interface for drawing
extended finite state machines (automatons +
shared variables

* A graphical simulator — including MSC’s

* An analyser (model checker)

* In addition, Uppaal supports the notion of timed
automatons

MVP5 2

Transitions in Uppaal

« Automata transitions are labelled with the following

(optional) parts:

A set of guards on variables
A label (input? or output!)
A set of variable assignments

counter

<3
up?
I++

=0
down?

*A transition can be taken when:
*All guards are true

A synchronization 1s possible with
another process

MVP5

Transitions in Uppaal

m *1<3 holds
ecounter and
i<3 i>0 1
Lp? down? Incrementer may
i ” synchronize

MVP5

-~

A Uppaal system

* Consists of at set (network) of automata

e System state = snapshot of each machines control
location + local variables + global variables

counter

incrementer
<3 i>0
up? down? || Up'
i++ ==
docrementer -1oix]
YWariables
ount 1
down!

MVP5

4 Parallel Composition:
interleaving

5@ 51

- ﬂlp sllde 5
Flipper © >O 2 states

Speaker

3 states

2*3 states

Lecturer = ' ' g ;
Speaker || Flipper flip_slide |.... .fllp sllde _____ e .fll_p sllde _____ e

o

MVP5 from FIipr?er from Speaker

Home-Banking?

int accountA, accountB; //Shared global variables
//Two concurrent bank costumers

Thread costumerl () { Thread costumer?2 () {
int a,b; //local tmp copy int a,b;
a=accountAh; a=accountAh;
b=accountB; b=accountB;
a=a-10;b=b+10; a=a-20; b=b+20;
accountA=a; accountA=a;
accountB=b; accountB=b;

 Are the accounts 1in balance after the
transactions?

MVP5 7

Home Banking

pc1

a:=accountA,

b =accountb

a.=a-10,
br=hn+10

accountd, =3

accountB:=b

Feacs,

readb

computing

writeA,

writeb

finished

pc2

a:=accountA,

b:=accountb

a.=3-20,
br=h+20

accountt =3

accountB: =k

=]y

readb

computing

wiritEA,

wiriteB

finished

\ A[] (pcl.finished and pc2.finished) imply (accountA+accountB==200)?

J

MVP5

int accountA,
Semaphore A, B;

accountB;

Home Banking

//Shared global variables
//Protected by sem A,B

//Two concurrent bank costumers

Thread costumerl ()
int a,b; //local

down (A) ;

down (B) ;
a=accounthi;
b=accountB;
a=a-10;b=b+10;
accountA=a;
accountB=b;

up (A) ;

up (B) ;

{ Thread costumer?
tmp copy int a,b;
down (B) ;
down (A) ;

a=accountA;
b=accountB;
a=a-20; b=b+20;
accountA=a;
accountB=b;

up (B) ;

up (A) ;

()

MVP5

Semaphore FSM Model

Binary Semaphore

Counting Semaphore

cbunﬂhg

MVP5

10

Semaphore Solutlon’?

mc2 bsem1 hsem2

mc1 mc2
@ " @requestEi
recue
doan_ A
-l clown_Bl
()‘ terUESE (j‘request.&
down_Bl clown_4A)
()‘ criticd _s=dion (jl critical _section
a:=au:::::uunt.ﬂ-.() & =acCOUntL
b =accountE b =accourtB
a=a-10, a=a-20,
b=h+10 | br=h+20
aooourt & =3 accourt =g
acoourtB:=h accourtB:=h
relesses, relesseb
Lp_A
up_B!
relessel
relessed,
up_Bl Lp_ &l
finizhed finizhed

[FEQUEST.&.][requestE] [npen] [Dpen]

dawn_A

[closea)

dawn_B

| reguests closed
|

1. Race conditions?
Consistency? (Balance)
3. Deadlock?

requestB

N

1. A[] (mcl.finished and
mc2.finished) imply
(accountA+accountB==200)

2. E<> mcl.critical section
and mc2.critical section

3. AJ[] not (mcl.finished and
mc2.finished) imply not
deadlock

v

v

J

MVP5

11

Reachability Analysis

« Compute all possible execution sequences
* And consequently a/l states of the system
o Exhaustive search => proof

* Check 1f each state encountered has the (un)-
desired property

MVP5

4)
UPPAAL Property Specification

Language

° Zkl:] P e E<> P

* A<> p + E[]1 p
P -->q

\ L/

p::=a.l | gad | gc | p and p |
porp | not p | p imply p |
(p) | deadlock(only for A[],E<>)

\\‘ A[] (mcl.finished and mc2.finished) 1mply (accountA+accountB==200) A//

MVP5 13

E<> p BPossible

Lo

Ll P potentially always

A

' Uppaal “Computation Tree Logic”

p always

A<> p Npevale

p --> 9 Neads-to

MVP5

R

-
Reachability Analysis

Passed: =0 //already seen states
Waiting:={S 0} //states not examined yet
While (waiting!=d) {
Waiting:=Waiting\{s 1}
if s 1 ¢ Passed
whenever (s jJ — s j) then
walting:=waliting U s]

Depth First maintain waiting as a stack Order:0136748259

Breadth First maintain waiting as a queue
\ (shortest counter example) Order:0123456789

J

MVP5

15

-~

Eg.:

Hybrid & Real Time Systems

Control Theory

SENSOrs

Computer Science

Plant

Continuous

Pump Control
Air Bags

Robots

Cruise Control
ABS

CD Players
Production Lines

actuators

N ‘
Controller Program
Discrete

Real Time System

A system where correctness not only
depends on the logical order of events but
also on their timing

MVP5

16

Timed Automata

Intelligent Light Control

press?
Press??

Press?

WANT: if press is issued twice quickly
then the light will get brighter; otherwise the light is
turned off.

MVP5

17

Timed Automata

Intelligent Light Control

press?

X<=3

press? Press?

=0 Light

Press?
X>3

Solution: Add real-valued clock x

MVP5

18

Action
used

for synchronization

~

Timed Automata s sowisw

Clocks: x, y

n Guard
Boolean combination of comp with
/ integer bounds
x<=5&y>3 Reset

Action performed on clocks

_a State
(Jocation, x=v , y=u) wherev,uarein R
x:=0 Transitions
Y
(n, x=2.4, y=3.1415) a 5
(m, x=0, y=3.1415)
N e(1.1
« \ (n, x=2.4, y=3.1415) CEVN

(n, x=3.5, y=4.2419

MVP5

19

(Henzinger et al, 1992)

Timed Safety Automata =

Timed Automata + Invariants

n
/ <=5 Clocks: x, y
X<=58& y>3 Transitions e&/Z)
Location (n, x=2.4, y=3.1415) YA
Invariants a

e(l.1
(n, x=2.4, y=3.1415) (L1
(n, x=3.5, y=4.2415)

Invariants ensure progress!!

/

MVP5 20

Clock Constraints

For set C of clocks with z,y € C, the set of clock constraints over C, ¥(C), is
defined by

o:::=m*<c‘m—y~<c‘ —ncu‘(ce A)

where c€ N and < € {<, <}

MVP5 21

Timed (Safety) Automata

A timed automaton A is a tuple (L, ly, E, Label, C, clocks, guard, inv) with

L, a non-empty, finite set of locations with initial location Iy € L
E C L x L, aset of edges

Label : L — 24F, a function that assigns to each location | € L a set
Label(l) of atomic propositions

C, a finite set of clocks

clocks : E — 2¢, a function that assigns to each edge e € E a set of clocks
clocks(e)

guard : E — ¥(C), a function that labels each edge e € E with a clock
constraint guard(e) over C, and

inv: L — ¥(C), a function that assigns to each location an invariant.

MVP5

22

Timed Automata: Example

~

MVP5

23

location

\ z39 of &
—()) G :

Timed Automata: Example

guard

L

|

reset

~

MVP5

x<3

—@))

Timed Automata: Example

W

2

~

MVP5

25

x<3

3
H@D {o} ?

Timed Automata: Example

|

value
9 of z

W

~

MVP5

Timed Automata: Example

~

27

Timed Automata: Example

~

Light Switch

MVP5

29

Light Switch

« Switch may be
turned on whenever
at least 2 time units
has elapsed since
last “turn off”

MVP5

30

Light Switch

« Switch may be
turned on whenever

@ 22 gt least 2 time units

has elapsed since

uSh (11 79
P last “turn off

 Light automatically
switches off after 9
time units.

MVP5

31

Semantics

o clock valuations: V(C) v:C—->Rz=o

* state: (I,v) where €L and veV(C)

e Semantics of timed automata is a labeled
transition system (S,—)

where §={ (l,v) |veV(C) and leL}

* action transition (1,v)—<s1',v'") iff (D-€-27()
g(v) and Vv'=vV|r]| and Inv(l')(V')
* delay Transition (1.yy —4_y(1 v+d) iff
Inv(l)(v+d'") whenever d'<d e R

Y,

MVP5 32

Semantics: Example

(off ,x=y=0)—2(off ,x =y =3.5)—2L

push

(on,x=y=0)—">(on,x =y =r)

A
I4

(on,x=0,y=1)——(on,x =3,y =1 +3)——2

(on,x=9—(7+3),y=9)—L% S(0ff, x=0,y=9)...

MVP5

Uppaal

Network of timed automata

— Uppaal
r’ Yes

Timing requirement

No!

Uppsala (6 persons), Aalborg (10 persons),
1995-
21 papers, 6 invited talks/tutorials

9 industrial case studies
http.//www.docs. uu.se/docs/rtmvy/uppaal/index.shtm/
\ (or www.uppaal.com)

MVP5

34

-~

o

Timed Automata in UPPAAL

* Networks of Timed Safety Automata
+ urgent actions
+ urgent locations

(1.e. zero-¢

+ committed

(1.e. zero-d

clay locations)
locations
clay and atomic locations)

+ data-variables (integers with bounded domains)

+ arrays of ¢

+ guards anc

arrays...

ata-variables

| assignments over data-variables and

~

J

MVP5

35

Networks of Timed Automata

+ Integer Variables + arrays

If a URGENT CHANNEL

g Timed Automata in UPPAAL

X=n - inv:=x<n|x<nl|inv,inv

\ <=2 // T i

L= Exp 4 x<=5&y>3
Expr .=1i|i Expr T

ol —Expr a gi=gc|gi|g,g
\\ gei=x<n|x<y+n

Expr + Expr |

\
Expr — Expr | Y gd 1= LExpr op Expr
Expr* Expr | @ <e{<, <=,=,>=,>)
Expr/ Expr | e op €{<,<=,=,>=,>,1=}
_ (ga? Expr : Expr)

MVP5 37

Urgent Channels

urgent chan hurry;

Informal Semantics:

* There will be no delay if transition with urgent action can be

taken.

Restrictions:
* No clock guard allowed on transitions with urgent actions.

e Invariants and data-variable guards are allowed.

MVP5

38

Urgent Locations

Click “Urgent” in State Editor.

Informal Semantics:
* No delay in urgent location.

Note: the use of urgent locations reduces the number of states

in a model, and thus the complexity of the analysis.

MVP5

39

Committed Locations

Click “Committed” in State Editor.

Informal Semantics:
* No delay in committed location.
* Next transition must involve automata in committed location.

Note: the use of committed locations reduces the number of

states 1n a model, and allows for more space and time efficient

analysis.

o

MVP5

40

-~

. ,\\QJ ‘\&
¢

Urgent and Committed Locations

(m| p,x=0)

23

(m| p,x=2.5)

(n] q,lx =2.5) 2% (n|r,x=2.5)

a

v
(0|Q9x:())

\ 4
(0|r9x:O)

%(nlq,X=2.5+d)

(0|q,x:2.5+d)

~

41

Uppaal Demo

MVP5

42

-~

Exercise: The Coffee Machine

ﬁerson \
Gllachine \ ‘47 /Observer \

Start
* takes time to brew i coin! « complain if more than

« time-out if coffee not y:=0 pub! 8 time-units between

taken before time-limitl cof Wait1 two consecutive publ.
y<=3

y=3 pUb

coin

_ J

\ ;‘ia:;z / Design Machine
and Observer

MVP5

