
Interrupt Handlers in Java

Stephan Korsholm
Department of Computer Science

Aalborg University DK-9220 Aalborg
stk@cs.aau.dk

Martin Schoeberl
Institute of Computer Engineering

Vienna University of Technology, Austria
mschoebe@mail.tuwien.ac.at

Anders P. Ravn
Department of Computer Science

Aalborg University DK-9220 Aalborg
apr@cs.aau.dk

Abstract

An important part of implementing device drivers is to
control the interrupt facilities of the hardware platform and
to program interrupt handlers. Current methods for handling
interrupts in Java use a server thread waiting for the VM to
signal an interrupt occurrence. It means that the interrupt
is handled at a later time, which has some disadvantages.
We present constructs that allow interrupts to be handled di-
rectly and not at a later point decided by a scheduler. A
desirable feature of our approach is that we do not require
a native middelware layer but can handle interrupts entirely
with Java code. We have implemented our approach using
an interpreter and a Java processor, and give an example
demonstrating its use.

1 Introduction

In an embedded system which is implemented as a collec-
tion of cooperating threads, interrupt handlers are more simi-
lar to subroutines than to threads. The handlers are not sched-
uled as threads; they may be invoked any time and even inter-
rupt the thread scheduler, because interrupts are dispatched
by the hardware as response to external events.

Current profiles for real-time Java [5, 2] attempt to hand
over interrupts to normal sporadic threads as quickly as pos-
sible. This can be done by installing a piece of native code,
called the first level interrupt handler, to be invoked by the
hardware, and let this code register the interrupt occurrence
and then return. Then at each reschedule point the interrupt
mark is checked and a waiting thread is unblocked to handle
the interrupt (this is sometimes called the second level inter-
rupt handler). Examples of this approach are found in e.g.
the Squawk VM [11] and the JamaicaVM from aicas [1].
Squawk reports an average latency of 0.1 milliseconds and
a worst case latency of around 13 milliseconds. From [4]
we see that the JamaicaVM has an average latency of 50 mi-
croseconds and a worst case latency of 250 microseconds. In

both cases the interrupts are handled out-of-context.
An advantage of this approach is that the execution of the

second level interrupt handler is controlled by the normal
thread scheduler and thus observes the priorities and schedul-
ing principles of it. Less desirable features are:

Latency: A delay is introduced from the occurrence of the
interrupt until the point in time when it is handled.

Out-of-context execution: The interrupt is handled out of
the context of the first level interrupt handler. This means that
any computation that requires this context cannot be done in
Java, but must be done in native code. If the context depen-
dent part can be kept stereotypical, this is less of a problem.
In other cases where device dependent actions are needed,
the native middelware layer becomes complex.

The contribution of this paper consists in the design and
implementation of a mechanism for handling interrupts in
Java. It does not hand over the interrupt to a sporadic thread,
but handles the interrupt completely in the context of the first
level interrupt handler. We call this mechanism in-context
interrupt handling. An important feature of in-context in-
terrupt handling is that actions that need to be done in the
context of the first level interrupt handler can now be done in
Java, in effect eliminating the need for a native middelware
layer. This mechanism does not preclude the standard way of
handling interrupts in real-time Java, but complements it and
can be used in cases where the standard method is inadequate
for one of the reasons given above.

In Section 2 we will describe how interrupts are handled
in legacy systems. In Section 3 we introduce our design for
in-context interrupt handling, and discuss how the method
can be supported in existing Java execution environments. In
Section 4 we demonstrate how the design has been imple-
mented for two different execution environments for Java:
the JOP Java processor and the SimpleRTJ interpreter. Then
in Section 5 we show a simple example of using our inter-
rupt handling implementations. We conclude the paper in
Section 6.

volatile uint16 P0_UART_RX_TX_REG @ 0xFFE032;
volatile uint16 P0_CLEAR_RX_INT_REG @ 0xFFE036;
volatile uint16 RESET_INT_PENDING_REG @ 0xFFE202;

#define CLR_UART_RX_INT_PENDING 0x0010
#define CLEAR_UART_RI_FLAG P0_CLEAR_RX_INT_REG = 0
#define CLEAR_PENDING_UART_RI_INTERRUPT \

RESET_INT_PENDING_REG = CLR_UART_RX_INT_PENDING

__interrupt void Uart_RX_Interrupt(void) {
UartRxBuffer[UartRxWrPtr++] = P0_UART_RX_TX_REG;
if (UartRxWrPtr>=sizeof(UartRxBuffer)) {

UartRxWrPtr=0;
}
CLEAR_UART_RI_FLAG;
CLEAR_PENDING_UART_RI_INTERRUPT;

}

Figure 1. An example interrupt handler in C

2 Conventional Interrupt Handling

Interrupts are used to signal external events for example,
detecting that a button has been pressed. When an interrupt
occurs the processor simply stops executing the code it runs,
and jumps to an interrupt routine instead. The jump saves
the environment of the interrupted process so that it may be
restored later; this includes saving the CPU registers and the
processor status register. This makes it possible to continue
the execution of the original code when the interrupt routine
has been executed.

Saving the interrupted context and setting up a new con-
text for the interrupt handler is called a context switch. Some
hardware platforms implement a full context switch in hard-
ware, where other platforms implements a partial context
switch in hardware. In the latter case the programmer must
save those parts of the interrupted context that he needs to
overwrite in the interrupt handler.

As an example interrupt handler, Figure 1 shows an ex-
cerpt of code implementing the RS232 receive interrupt for
an existing legacy system. The RS232 receive interrupt is
generated by the hardware when the RS232 interface re-
ceives a byte on the serial line. It is the job of the interrupt
handler to retrieve the byte from the proper device register
and clear the receive interrupt flag.

Though this example contains non-standard compiler di-
rectives and runs on a particular piece of hardware, it illus-
trates the following general features:

I/O Memory: Through the compiler directive name @ ad-
dress the name, e.g. P0 UART RX TX REG is designated to re-
fer directly to a physical memory location, in this case one of
the memory mapped device registers of the UART. Any as-
signment or query of these names in the code will correspond
to reads and writes of the particular register.

Interrupt handlers: Through the compiler directive

interrupt the function void Uart RX Interrupt(void) becomes an
interrupt routine. This basically means that exit and entry
code is generated by the compiler to save and restore the state
of the interrupted process.

The circular buffer UartRxBuffer can be read by user code
outside the context of the interrupt to handle the bytes re-
ceived. Some kind of mutual exclusion between user code
and the interrupt handler may be required. This is typically
implemented by disabling interrupts.

3 In-context Interrupt Handling

Our goal is to be able to implement the interrupt handler
from Figure 1 in pure Java. The two important tasks that the
Uart RX Interrupt handler must do are:

1. Retrieve the received byte from the proper device regis-
ter and save the byte in a data structure.

2. Clean up from the interrupt, in this case clear the
UART receive interrupt flag (CLEAR UART RI FLAG;
CLEAR PENDING UART RI INTERRUPT).

Using the RTSJ profile [2] for Java the above tasks can natu-
rally be solved in the following manner:

Ad 1) Using the raw memory access supplied by RTSJ
through the class RawMemoryAccess, it is possible to read the
received byte from the proper device register. A detailed ex-
ample on how this looks is available in [3] (Chapter 15.5).

Ad 2) The suggested way to handle interrupts in RTSJ
is to use the AsyncEvent and AsyncEventHandler classes.
Again [3] includes a detailed example. In the RTSJ an inter-
rupt occurring is equivalent to the fire method being called on
the AsyncEvent object. This in turn will call the run() method
on all installed handlers. But, to handle the interrupt from
Figure 1 in pure Java, the fire method must be called in the
context of the interrupt. The reason is that the receive in-
terrupt flag must be cleared before exiting the interrupt con-
text. Failing to do so will cause the interrupt to recur. In all
implementations of RTSJ that we know of, handling of the
AsyncEvent corresponding to the interrupt will be scheduled
outside the context of the interrupt. This does not allow us to
implement the handler from Figure 1 in pure Java.

As a complementary way to handle interrupts in Java we
suggest that the native code implementing the first level in-
terrupt handler is used to call the JVM and start executing
the appropriate interrupt handler immediately, or in other
words, before returning from the interrupt. It makes it pos-
sible to handle the interrupt completely in its context. Thus,
we will be able to implement the example in Figure 1 in pure
Java, which includes to clear the interrupt receive flag from
inside Java code.

Whether it is possible to reenter the JVM inside the con-
text of the first level interrupt handler in order to execute the
Java part of the interrupt handler depends on the scheduling
mechanism and the GC strategy. In the remainder of this

section we will look at the consequences of the proposal for
different types of Java execution environments.

3.1 Scheduling

If native threads are used and attached to the VM e.g
through the JNI [6] function JNI AttachCurrentThread it should
be straightforward to reenter the JVM while it is interrupted,
because from the point of view of the JVM the interrupt han-
dler is not different from a normal high priority thread that
has been switched in by the external scheduler.

If an internal scheduler is used (also called green threads)
it will most likely require some work to refactor the JVM
implementation to support reentry at any time. The reason is
that the JVM implementation knows when thread switching
can occur and explicitly or implicitly has used this knowl-
edge when accessing global data. The SimpleRTJ VM [7],
used for one of the experiments described in Section 4, in-
cludes an internal scheduler and the section shows the work
required to make the JVM reenterable.

3.2 Garbage Collection

When executing the Java first level interrupt handler1 in
the context of the interrupt, it becomes very important that
the handler is short lived. The reason for this restriction is
that while an interrupt handler is executing, no other inter-
rupts of the same type can be handled. In many cases no
other interrupts at all can be handled, thus making it particu-
larly important to complete the interrupt handler swiftly. In
particular, this means that the interrupt handler cannot block
waiting for a thread.

In normal execution environments for Java, threads syn-
chronize around garbage collection (GC) to avoid disturbing
an ongoing GC. In the case of interrupt handlers, this become
impossible. Fruthermore, it is not feasible to let interrupt
handlers start a lengthy GC process. Both these facts affect
the interoperability of interrupt handlers with a GC.

Stop-the-world GC Using this strategy the entire heap is
collected at once and the collection is not interleaved with ex-
ecution. The collector can safely assume that data required
to do an accurate collection will not change during the col-
lection. Using stop-the-world collection an interrupt handler
may not change data used by the GC to complete the collec-
tion. In the general case this means that the interrupt handler
is not allowed to create new objects, or change the graph of
live objects.

Incremental GC The heap is collected in small incremen-
tal steps. Write barriers in the mutator threads and non-
preemption sections in the GC thread synchronize the view

1In this section when we use the term “interrupt handler” we mean an
interrupt handler executed in-context as described in Section 3

of the object graph between the mutator threads and the GC
thread. Using concurrent collection it should be possible to
allow for allocation of objects and changing references inside
an interrupt handler (as it is allowed in any normal thread).
With a real-time GC the maximum blocking time due to GC
synchronization with the mutator threads should be known.

Moving Objects Interruption of the GC during an object
move can result in access to a stale copy of the object inside
the handler. A possible solution to this problem is to allow
for pinning of objects reachable by the handler (similar to
immortal memory in the RTSJ). Concurrent collectors have
to solve this issue anyway for the concurrent threads. The
simplest approach is to disable thread switching and interrupt
handling during the object copy. As this operation can be
quite long for large arrays, several approaches to split the
array into smaller chunks have been proposed.

4 Supporting Interrupt Handlers

To experiment with our design for in-context interrupt
handling we have added such support to the SimpleRTJ in-
terpreter [7] and the experimental Java processor JOP.

4.1 Interrupt Handlers in SimpleRTJ

The SimpleRTJ JVM uses a simple stop-the-world
garbage collection scheme. This means that within handlers,
we prohibited use of the new keyword and writing references
to the heap. Additionally we have turned off the compaction
phase of the GC to avoid the problems with moving objects
mentioned in Section 3.2.

Reentering the JVM

The SimpleRTJ JVM uses green threads. This means that
it had to be refactored quite a bit to allow for reentering the
JVM from inside the first level interrupt handler. What we
did was to get rid of all global state (all global variables)
used by the JVM and instead allocate shared data on the C
stack. For all parts of the JVM to still be able to access shared
data we pass around a single pointer to the shared data now
allocated on the stack.

Context Switching at Interrupt

The SimpleRTJ JVM contains support for a skimmed
down version of the RTSJ style interrupt handling facili-
ties using the AsyncEvent and AsyncEventHandler classes. Us-
ing the javax.events package supplied with the JVM a server
thread can be started waiting for events to occur. This server
thread runs at highest priority. The SimpleRTJ JVM resched-
ule points are in between the execution of each bytecode.
This means that before the execution of each bytecode the
JVM checks if a new event has been signaled. If so the server
thread is scheduled immediately and released to handle the

event. To achieve in-context interrupt handling we force a
reentry of the JVM from inside the first level interrupt han-
dler by calling the main interpreter loop. Prior to this we
have marked that an event is indeed pending, resulting in the
server thread being scheduled immediately. To avoid inter-
ference with the GC we switch the heap and stack with a new
temporary (small) Java heap and a new temporary (small)
Java stack. Currently we use 512 bytes for each of these
items, which have proven sufficient for running non-trivial
interrupt handlers so far.

The major part of the work was to get rid of the global
state. How difficult this is, will vary from one JVM imple-
mentation to another, but since global state is a bad idea in
any case, JVMs of high quality should use very little global
state. Using these changes we have experimented with han-
dling the RS232 receive interrupt. The final receive interrupt
handler implemented in pure Java is shown in Section 5.

4.2 Interrupt Handlers on JOP

We have implemented a priority based interrupt controller
in JOP. The numbers of interrupt lines can be configured.
An interrupt can also be triggered in software. There is one
global interrupt enable and a local enable for each interrupt
line.

In JOP there is a translation stage between Java bytecodes
and the JOP internal microcode [8]. On a pending inter-
rupt (or exception generated by the hardware) we can use
this translation stage to insert a special bytecode into the in-
struction stream. This trick keeps the interrupt completely
transparent to the core pipeline. Interrupts are accepted at
bytecode boundaries and clear the global enable flag when
accepted. This feature avoids immediate handling of an ar-
riving higher priority interrupt during the first part of the han-
dler. Therefore, the execution of the interrupt handler starts
with global disable. The interrupts have to be enabled again
by the handler at a convenient time.

The special bytecode can be handled in JOP as any other
bytecode: execute microcode, invoke a special method from
a helper class, or execute Java bytecode from JVM.java.

Interrupt Handling

All interrupts are mapped to one bytecode. Therefore, we
perform the dispatch of the correct handler in Java. On an
interrupt the static method interrupt() from a system internal
class gets invoked. The method reads the interrupt number
and performs the dispatch to the registered Runnable. The
timer interrupt (index 0) is handled specially. On a timer
interrupt the real-time scheduler of JOP gets invoked. At
system startup the table of Runnables is initialized with a no-
op handler.

Applications provide handlers via objects that implements
Runnable and register the object for a interrupt number. We
reuse here the I/O Factory presented in [9]. Figure 2 shows a
simple example of an interrupt handler implemented in Java.

public class InterruptHandler implements Runnable {
public static void main(String[] args) {

InterruptHandler ih = new InterruptHandler();
IOFactory fact = IOFactory.getFactory();
// register the handler
fact.registerInterruptHandler(1, ih);
// enable interrupt 1
fact.enableInterrupt(1);
.....

}

public void run() {
System.out.println("Interrupt fired!");

}
}

Figure 2. An interrupt handler as Runnable

For interrupts that should be handled by a sporadic thread
under the control of the scheduler, the following needs to be
performed on JOP: (1) Create a SwEvent (similar to the RTSJ
AsyncEventHandler) that performs the second level interrupt
handler work; (2) create a short first level interrupt handler
as Runnable and invoke fire() of the corresponding software
event handler; (3) register the first level interrupt handler as
shown in Figure 2 and start the real-time scheduler.

Garbage Collection

The runtime environment of JOP contains a concurrent
real-time GC [10]. The GC can be interrupted at a very fine
grain level. During sections that are not preemptive (e.g.
data structure manipulation for a new, write barriers on ref-
erence field write, object copy during compaction) interrupts
are simply turned off. The longest blocking time due to the
GC work is on an object or array copy. In [10] we have ob-
served maximum blocking times of 40 µs induced by the GC
with medium sized arrays.

5 Using Interrupt Handler

We have not seen any need for adding to the RTSJ style
of programming with interrupts (described in Section 3). We
have just changed the way that the AsyncEvent gets scheduled.
In our approach the server thread bound to the handling of the
event gets released immediately inside the context of the first
level interrupt handler and not at some later point. Using the
skimmed down version of the javax.events package distributed
with the SimpleRTJ JVM, the legacy interrupt handler for
the RS232 receive interrupt illustrated in Figure 1, can be
translated into pure Java as it is shown in Figure 3.

5.1 Accessing Device Registers

A very important part of what interrupt handlers normally
need to do is to access device registers. To perform this ac-
cess efficiently, which is a requirement for interrupt handlers,

public class RS232ReceiveInterruptHandler
extends InterruptHandler {

private RS232 rs232;
private InterruptControl interruptControl;
private short UartRxBuffer[];
private byte UartRxWrPtr;

public RS232ReceiveInterruptHandler(RS232 rs232,
InterruptControl interruptControl) {

super(INT_RS232RX); // Subscribe to the UART receive int.
this.rs232 = rs232;
this.interruptControl = interruptControl;
UartRxBuffer = new short[32];
UartRxWrPtr = 0;

}
protected void handleInterrupt() {

UartRxBuffer[UartRxWrPtr++] =
rs232.P0_UART_RX_TX_REG;

if (UartRxWrPtr >= UartRxBuffer.length) {
UartRxWrPtr = 0;

}
rs232.P0_CLEAR_RX_INT_REG = 0;
interruptControl.RESET_INT_PENDING_REG =
RS232.CLR_UART_RX_INT_PENDING;

}
}

Figure 3. An example RS232 interrupt handler

we use hardware objects as defined in [9]. The hardware
objects rs232 and interruptControl has been defined to fit the
physical hardware platform and allows the interrupt handler
to access appropriate device registers directly.

6 Conclusion

We have introduced the concept of in-context interrupt
handling and shown its implementation in an interpreter and
on a Java processor. An example shows that in-context in-
terrupt handling allows for a greater portion of the interrupt
handler to be written in Java. On legacy systems imple-
mented in C/assembler the default is for interrupt handlers to
be executed in-context, so adding this option as well on Java
based systems will seem natural to experienced programmers
of embedded systems.

The proposal has an impact on the safety, portability and
maintainability of an application. It is clear that Java code
with interrupt handlers may bring the system down, but that
is not different from having the handlers in middleware.
Yet, the basic safety features of Java (pointer checks, index
checks, type checking) are with the proposal brought to bear
on such low level code and thus the safety is improved. Inter-
rupt handlers are highly platform dependent and not portable;
but they are essential for applications, so placing them out-
side the Java application only seemingly makes it portable.
With the good structuring facilities of packages, classes and

interfaces, a well-architected application will preserve porta-
bility by placing interrupt handlers in separate hardware ab-
straction packages. Finally, maintainability will be improved
by having one language for an application, where common
documentation standards are more likely to be applied.

The current proposal comes in this paper with a proof of
concept, but in order for it to really succeed, it needs at some
point in time to enter as part of a standard profile and most
importantly be included in the JVM platforms.

Acknowledgements

We are grateful to the reviewers for their useful comments.

References

[1] aicas. http://www.aicas.com/jamaica.html. Visited June 2007.
[2] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and

M. Turnbull. The Real-Time Specification for Java. Java Se-
ries. Addison-Wesley, June 2000.

[3] A. Burns and A. J. Wellings. Real-Time Systems and Pro-
gramming Languages: ADA 95, Real-Time Java, and Real-
Time POSIX. Addison-Wesley Longman Publishing Co., Inc.,
2001.

[4] J. M. Enery, D. Hickey, and M. Boubekeur. Empirical evalua-
tion of two main-stream rtsj implementations. In JTRES ’07:
Proceedings of the 5th international workshop on Java tech-
nologies for real-time and embedded systems, pages 47–54,
New York, NY, USA, 2007. ACM.

[5] J. Kwon, A. Wellings, and S. King. Ravenscar-Java: A high
integrity profile for real-time Java. In Proceedings of the 2002
joint ACM-ISCOPE conference on Java Grande, pages 131–
140. ACM Press, 2002.

[6] S. Liang. The Java Native Interface - Programmers Guide
and Specification. Addison-Wesley, 1999.

[7] RTJComputing. http://www.rtjcom.com. Visited June 2007.
[8] M. Schoeberl. A Java processor architecture for embedded

real-time systems. Article in press and online: Journal of Sys-
tems Architecture, doi:10.1016/j.sysarc.2007.06.001, 2007.

[9] M. Schoeberl, S. Korsholm, C. Thalinger, and A. P. Ravn.
Hardware objects for Java. In Proceedings of the 11th IEEE
International Symposium on Object/component/service-
oriented Real-time distributed Computing (ISORC 2008),
Orlando, Florida, USA, May 2008. IEEE Computer Society.

[10] M. Schoeberl and J. Vitek. Garbage collection for safety
critical Java. In Proceedings of the 5th International Work-
shop on Java Technologies for Real-time and Embedded Sys-
tems (JTRES 2007), pages 85–93, Vienna, Austria, September
2007. ACM Press.

[11] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White.
Java on the bare metal of wireless sensor devices: the squawk
java virtual machine. In VEE ’06: Proceedings of the 2nd
international conference on Virtual execution environments,
pages 78–88. ACM Press, 2006.

