
Real-Time Software
The Not So Simple Process Model

René Rydhof Hansen

9. november 2010

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 1 / 21



Today’s Goals

To be able to use RTA to determine schedulability

Both for the simple process model
As well as for relevant extensions

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 2 / 21



Simple Process Model

The application has a fixed set of processes

All processes are periodic, with known periods

All processes have a deadline

The processes are independent of each other

All processes have a worst-case execution time

All context-switching costs etc. are ignored

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 3 / 21



Sporadic Processes

Use minimum inter-arrival time (MIT) as period

Require D < T

Response time analysis applies

Deadline monotonic priority assignment is optimal

Equivalent to rate monotonic priority assignment for D = T

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 4 / 21



Aperiodic Processes

No minimum inter-arrival time

Can run at a lowest priority

Alternative: use a server

Period T
Capacity C
Often with highest priority

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 5 / 21



Simple Process Model

The application has a fixed set of processes

Sporadic and periodic processes have known T

All processes have a deadline

The processes are independent of each other

All processes have a worst-case execution time

All context-switching costs etc. are ignored

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 6 / 21



Simple Process Model

The application has a fixed set of processes

Sporadic and periodic processes have known T

All processes have a deadline

The processes are independent of each other

All processes have a worst-case execution time

All context-switching costs etc. are ignored

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 7 / 21



Process Interactions: Blocking

A process waiting for a lower-priority process suffers priority inversion

The process is blocked

Example

Periodic processes: a, b, c, and d
Resources: Q and V

Process Priority Execution Sequence Release Time
a 1 EQQQQE 0
b 2 EE 2
c 3 EVVE 2
d d EEQVE 4

Remember: 1 is lowest priority

Priority Inheritance

Task P suspended waiting for Q: priority of Q is raised to mathc priority
of P

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 8 / 21



Calculating Blocking

Worst Case Blocking Time

Bi =
K∑

k=1

usage(k, i)C (k)

where K is the number of critical regions and

usage(k , i) =

{
1 if ∃Pj s.t. Pj uses k and pri(Pj) < pri(Pi )
0 otherwise

Worst Case Response Time

Ri = Ci + Bi + Ii

Note

Assumes simple priority inheritance protocol

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 9 / 21



Priority Ceiling Protocols

Two forms

Original ceiling priority protocols (OCPP)

Immediate ceiling priority protocol (ICPP)

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 10 / 21



Original Ceiling Priority Protocol (OCPP)

Each process has a static default priority

Each resource has a static ceiling: maximum priority of the processes
that use it

A process’ dynamic priority is maximum of its own static priority and
inherited priorities (from blocked higher-priority processes)

A process can only lock a resource if its dynamic priority is higher
then the ceiling of any currently locked resource (excluding any that
it has already locked itself)

Calculating Worst Case Blocking Time under OCPP

Bi =
K

max
k=1

usage(k, i)C (k)

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 11 / 21



Immediate Ceiling Priority Protocol (ICPP)

Each process has a static default priority

Each resource has a static ceiling: the maximum priority of the
processes that use it

A process has a dynamic priority: maximum of its own static priority
and the ceiling of any resources it has locked

A process will only suffer a block at the very beginning of its execution

Calculating Worst Case Blocking Time under ICPP

Bi =
K

max
k=1

usage(k, i)C (k)

Note: same as for OCPP

Real-Time Java

ICPP is called priority ceiling emulation

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 12 / 21



Properties of priority ceiling protocols

On a single processor

A high-priority process is blocked at most once duing its execution by
lower-priority processes

Deadlocks are prevented

Transitive blocking is prevented

Mutual exclusive access to resources is ensured by the protocol itself

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 13 / 21



Comparing Priority Ceiling Protocols

OCPP versus ICPP

Worst-case behaviour is identical (from a scheduling view point)

ICPP is easier to implement than the original (OCPP) as blocking
relationships need not be monitored

ICPP blocks prior to first execution: fewer context switches

ICPP requires more priority movements as this happens with all
resource usage

OCPP changes priority only if an actual block has occurred

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 14 / 21



Extending Response-Time Analysis for FPS

Release jitter

Arbitrary deadlines

Fault tolerance

Interrupts

Context switches

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 15 / 21



Release Jitter

Definition (Release jitter)

Maximum variation in a tasks’ release is called release jitter

Response Time Analysis with Release Jitter

Ri = Ci + Bi +
∑

j∈hp(i)

⌈
Ri + Ji

Ti

⌉
Cj

Does not generally occur for periodic tasks

Mainly for sporadic tasks

May also occur when restricting granularity of system clock:

Rperiodic
i = Ri + Ji

where Rperiodic
i is the response time relative to the “real” release time

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 16 / 21



Arbitrary Deadlines

Assumption

A task is allowed to complete before it is released again

Overlapping releases are analysed in separate windows:

wn+1
i (q) = Bi + (q + 1)Ci +

∑
j∈hp(i)

⌈
wn

i (q)

Tj

⌉
Cj

where “stable q” can be found by iteration (fix-point computation)

Ri (q) = wn
i (q)− qTi

Number of iterations bounded by min{q|Ri (q) ≤ Ti}

Worst Case Response Time with Arbitrary Deadlines

Ri = max
q=0,1,2,...

Ri (q)

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 17 / 21



Fault Tolerance

Definition (Fault Model)

In a RTS deadlines should be met even when a certain level of faults
occur, this level is called the fault model.

Response Time Analysis with Simple Fault Model

Ri = Ci + Bi +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj + max

k∈hep(i)
FC f

k

where C f
k is the extra computation time resulting from an error in process

i and F the maximum number of faults tolerated.

Can be changed to model minimum inter-arrival time between faults

Assumption

Error recovery runs at same priority as faulty process

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 18 / 21



Interrupts (drivers)

Allowing drivers to interrupt

Idea: treat drivers as sporadic processes and add their worst-case response
time to the worst-case response time of all processes.

Worst Case Response Time with Interrupts

Ri = Ci + Ii + Bi +
∑

d∈Drivers

⌈
Ri

Td

⌉
Cd︸ ︷︷ ︸

RT for d

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 19 / 21



Context Switches

Nothing is free

Must take cost of context switching into account

Worst Case Response Time with Context Switches

CS1: cost of switching to the task; CS2: cost of switching from the task

Ri = Ci + Ii + Bi + CS1

Ii =
∑

j∈hp(i)

⌈
Ri

Tj

⌉
(CS1 + Cj + CS2)

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 20 / 21



Summary

Response time analysis is flexible and caters for:

Periodic and sporadic processes
Blocking caused by IPC
Release jitter
Arbitrary deadlines
Fault tolerance
Interrupts
Context switches
...

TSW (2010e) (Lecture 14) Real-Time Software 9. november 2010 21 / 21


	Introduction
	Scheduling
	Sporadic and aperiodic processes
	Priority inversion and blocking
	Extensions of FPS
	Release Jitter
	Arbitrary Deadlines
	Fault Tolerance
	Interrupts
	Context Switches


	Conclusion

