
Real-Time Software
Exceptions and Low-level Programming

René Rydhof Hansen

2 November 2010

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 1 / 35

Today’s Goals

Exceptions and Exception Handling (briefly)

Low-level programming

Input/output
Language support
Memory management

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 2 / 35

Part II

Exceptions and Exception Handling

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 3 / 35

General Requirements for Exception Handling

R1 The facility must be simple to understand and use

R2 The code for exception handling should not obscure
understanding of the program’s normal error-free operation

R3 The mechanism should be designed so that run-time
overheads are incurred only when handling an exception

R4 The mechanism should allow the uniform treatment of
exceptions detected both by the environment and by the
program

R5 The exception mechanism should allow recovery actions to
be programmed

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 4 / 35

Exception Handling

Error return

Functions return a value outside “normal” range, indicating
success/failure
Classic C/UNIX/POSIX
Alternative: use global/shared error variable for error indication

Non-local goto

In C: setjmp and longjmp
Requires more “clean-up” than local goto, e.g., call stack

“High-level” exceptions

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 5 / 35

Exception Handling in Real-Time Java

Exceptions in Java are integrated into the OO model

In Java, all exceptions are subclasses of the predefined class
java.lang.Throwable

The language also defines other classes, for example: Error,
Exception, and RuntimeException

Not all blocks can have exception handlers

Domain exception handlers must be explicitly indicated using
try/catch

t r y {
// statements which may raise exceptions

}
catch (ExceptionType e) {

// handler for e

}

Real-Time Java supports termination model

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 6 / 35

Resumption versus termination model

Should the invoker of the exception continue its execution after the
exception has been handled

If the invoker can continue, then it may be possible for the handler to
cure the problem that caused the exception to be raised and for the
invoker to resume as if nothing has happened

This is referred to as the resumption or notify model

The model where control is not returned to the invoker is called
termination or escape

Clearly it is possible to have a model in which the handler can decide
whether to resume the operation which caused the exception, or to
terminate the operation; this is called the hybrid model

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 7 / 35

The Resumption Model

Problem: it is difficult to repair errors raised by the RTS

Eg, an arithmetic overflow in the middle of a sequence of complex
expressions results in registers containing partial evaluations; calling
the handler overwrites these registers

Implementing a strict resumption model is difficult, a compromise is
to re-execute the block associated with the exception handler; Eiffel
provides such a facility.

Note that for such a scheme to work, the local variables of the block
must not be re-initialised on a retry

The advantage of the resumption model comes when the exception
has been raised asynchronously and, therefore, has little to do with
the current process execution

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 8 / 35

Exception Propagation

If there is no handler associated with the block or procedure

regard it as a programmer error which is reported at compile time
but an exception raised in a procedure can only be handled within the
context from which the procedure was called
eg, an exception raised in a procedure as a result of a failed assertion
involving the parameters

CHILL requires that a procedure specifies which exceptions it may
raise (that is, not handle locally); the compiler can then check the
calling context for an appropriate handler

Java allows a function to define which exceptions it can raise;
however, unlike CHILL, it does not require a handler to be available in
the calling context

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 9 / 35

Alternative Approach

Propagating the exception: Look for handlers up the chain of
invokers; the Ada and Java approach

A problem occurs where exceptions have scope; an exception may be
propagated outside its scope, thereby making it impossible for a
handler to be found

Most languages provide a catch all exception handler

An unhandled exception causes a sequential program to be aborted

If the program contains more than one process and a particular
process does not handle an exception it has raised, then usually that
process is aborted

However, it is not clear whether the exception should be propagated
to the parent process

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 10 / 35

Part III

Low-level Programming

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 11 / 35

Hardware Input/Ouput Mechanisms

Input/output performed through device registers

Two approaches to I/O: port mapped and memory mapped

Port mapped I/O

Requires special I/O bus and I/O address space (ports)

Special machine instructions

Better (high granularity) control (potentially)

More explicit, easier to detect automatically (program analysis)

Memory mapped I/O

Special addresses in normal memory address space

Uses same (logical) bus as normal data traffic

Only uses normal memory access instructions

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 12 / 35

Controlling Input/Output

Polling (aka. status driven)

Active polling of device status
Historically cheaper than interrupt driven
More deterministic than interrupt driven
Three kinds of instructions (typically) needed

1 Test operations
2 Control operations
3 I/O operations

Interrupt-driven

Device coomunicates by requesting an interrupt
More efficient/better utilisation (typically) than polling
Several variations

1 Interrupt-driven program-controlled
2 Interrupt-driven program-initiated (I/O controllsers, DMA)
3 Interrupt-driven channel-program controlled (I/O coprocessor)

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 13 / 35

Controlling I/O: Interrupt-driven I/O

Interrupt-driven program-controlled I/O

Device requests interrupt when data is ready
Running task suspended
I/O performed
Suspended task resumed
More non-deterministic than polling, esp. when interrupts are
unbounded

Interrupt-driven program-initiated I/O

Program asks DMA to perform I/O
Data transfer handled by DMA
DMA requests interrupt when transfer is complete
DMA uses memory cycles: cycle stealing
May add to non-determinism

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 14 / 35

Controlling I/O: Interrupt-driven I/O

Interrupt-driven channel-program controlled

Used by I/O co-processor

Three major components
1 The hardware “channel”
2 The channel program
3 I/O instructions

May increase non-determinism

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 15 / 35

Interrupt-driven I/O: Requirements

Context-switching mechanism

Interrupt device identification

Interrupt identification

Interrupt control

Priority control

Hardware support for context switch

Three levels (commonly):
1 Basic: only program counter (PC)
2 Partial (most common): PC and program status word (PSW)
3 Complete: full context (rare)

Basic and partial often requires extra support in software

Complete may be too specialised

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 16 / 35

Interrupt-driven I/O: Requirements

Interrupt device identification

What device generated an interrupt?

Especially problem for multiplexed devices

Interrupt vector (IV) table: each device (or device function) is
assigned separate entry in IV table

Status: necessary information stored in shared memory or accesible
through status instructions; useful for generalised ISR

Polling: when interrupt occurs, ask everyone who did it

High-level language primitive: automatic translation (often using
above techniques at a lower level) to high-level concept, e.g., message
or event.

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 17 / 35

Interrupt-driven I/O: Requirements

Interrupt identification

Why was an interrupt generated?

Information communicated through (shared memory) status word or
by binding a device to multiple interrupts

Interrupt Control

Disabling/enabling interrupts form a particular device

May be controlled individually by interrupt masking

May be organised in a hierarchy

Devices (currently) running at a lower logical level cannot interrupt
when the processor (currently) runs at a higher logical level

Priority Control

Prioritising devices, often controlled using the interrupt control facility.

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 18 / 35

Language Support for Low-level Programming

Modularity and encapsulation

In particular: ways to encapsulate non-portable parts of the program;
typically the low-level parts

Not only relevant for RTSs!

Abstract models of device handling

Manipulating device registers

Representation of interrupts

Procedure call
Sporadic task invocation
Asynchronous notification
Shared-variable condition synchronization
Message based synchronization

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 19 / 35

Language Support: Real-Time Java

Manipulating device registers

Direct access to memory through the RawMemoryAccess
Can only be used for simple types, i.e., not for user defined objects

pub l i c c l a s s ControlAndStatusRegister {
RawMemoryClass rawMemory;

pub l i c ControlAndStatusRegister(l ong base , l ong size) {
rawMemory=RawMemoryAccess.create(IO_Page ,base ,size);

}
pub l i c vo id setControlWord(sho r t value) {

rawMemory.setShort(0,value);
}
...
channel = 6;
shadow = (channel << 8) | start | enable;
csr.setControlWord(shadow);

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 20 / 35

Memory Management in RTSJ: RawMemoryAccess

pub l i c c l a s s RawMemoryAccess {
protected RawMemoryAccess(RawMemoryAccess memory ,

l ong base , l ong size);

pub l i c s t a t i c RawMemoryAccess
create(java.lang.Object type , l ong size)
throws SecurityException , OffsetOutOfBoundsException ,

SizeOutOfBoundsException ,
UnsupportedPhysicalMemoryException;

pub l i c s t a t i c RawMemoryAccess create(java.lang.Object type ,
l ong base , l ong size)

throws SecurityException , OffsetOutOfBoundsException ,
SizeOutOfBoundsException , UnsupportedPhysicalMemoryException;

pub l i c byte getByte(l ong offset)
throws SizeOutOfBoundsException , OffsetOutOfBoundsException;

pub l i c vo id setByte(l ong offset , byte value)
throwsSizeOutOfBoundsException , OffsetOutOfBoundsException;

}

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 21 / 35

Language Support: Real-Time Java

Interrupt Handling

RTSJ views an interrupt as an asynchronous event

The interrupt is equivalent to a call of the fire method

The association between the interrupt and the event is achieved via
the bindTo method in the AsyncEvent class

The parameter is of string type, and this is used in an
implementation-dependent manner—one approach might be to pass
the address of the interrupt vector

When the interrupt occurs, the appropriate handler’s fire method is
called

Now, it is possible to associate the handler with a schedulable object
and give it an appropriate priority and release parameters

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 22 / 35

Language Support: Real-Time Java

Interrupt Handling

AsyncEvent Interrupt = new AsyncEvent ();
AsyncEventHandler InterruptHandler = new

BoundAsyncEventHandler(priParams ,
releaseParams ,
nu l l , nu l l , n u l l);

Interrupt.addHandler(InterruptHandler);
Interrupt.bindTo("0177760");

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 23 / 35

Language Support: C/Real-Time POSIX

Low-level Programming in C

By design.

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 24 / 35

Memory Management

Memory often very limited in RTSs

Heap must be managed
Manually, e.g., C: malloc and free

Hard to get right

Garbage collected, e.g., Java

May lead to unpredictable timing behaviour
Future: real-time garbage collection

Stack must be managed

Often through worst case memory consumption (WCMC) analysis
Similar to WCET analysis

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 25 / 35

Memory Management in Real-Time Java

1 MemoryArea
1 HeapMemory (singleton)
2 ImmortalMemory
3 ImmortalPhysicalMemory
4 ScopedMemory

1 LTMemory
2 VTMemory

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 26 / 35

Memory Management in Real-Time Java: MemoryArea

pub l i c ab s t r a c t c l a s s MemoryArea {
protected MemoryArea(l ong sizeInBytes);

pub l i c vo id enter(java.lang.Runnable logic);
// associate this memory area to the current thread

// for the duration of the logic.run method

pub l i c s t a t i c MemoryArea getMemoryArea(java.lang.Object object);
// get the memory area associated with the object

pub l i c long memoryConsumed ();
// number of bytes consumed in this memory area

pub l i c long memoryRemaining ();
// number of bytes remaining

...
pub l i c synchron i zed java.lang.Object newInstance(

java.lang.Class type) throws IllegalAccessException ,
InstantiationException , OutOfMemoryError;

// allocate an object

pub l i c long size (); // the size of the memory area

}

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 27 / 35

ImmortalMemory

Immortal memory is shared among all threads in an application

Objects created in immortal memory are never subject to garbage
collection and are freed only when the program terminates

pub l i c f i n a l c l a s s ImmortalMemory
extends MemoryArea

{
pub l i c s t a t i c ImmortalMemory instance ();

}

ImmortalPhysicalMemory has the same characteristics as immortal
memory but allows objects to be allocated from within a range of
physical addresses

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 28 / 35

ScopedMemory

A memory area where the objects have a well-defined lifetime

May be entered explicitly (through the use of the enter method) or
implicitly by attaching it to a RealtimeThread at thread creation
time

Associated with each scoped memory is a reference counter which is
incremented for every call to enter and at every associated thread
creation

It is decremented when the enter method returns and at every
associaated thread exit

When the reference counter reaches zero, all objects residing in the
scoped memory have their finalization method executed and the
memory is reclaimed

Scoped memory can be nested by nested calls to enter

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 29 / 35

ScopedMemory

pub l i c ab s t r a c t c l a s s ScopedMemory
extends MemoryArea

{
pub l i c ScopedMemory(l ong size);

pub l i c vo id enter(java.lang.Runnable logic);

pub l i c i n t getMaximumSize ();

pub l i c MemoryArea getOuterScope ();

}

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 30 / 35

ScopedMemory

To avoid the possibility of dangling pointers, a set of access restrictions are
placed on the use of the various memory areas

Heap objects can reference other heap objects and objects in immortal
memory only (i.e. it cannot access scoped memory)

Immortal objects can reference heap objects and immortal memory objects
only;

Scoped objects can reference heaped objects, immortal objects and
objects in the same scope or an outer scope only

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 31 / 35

ScopedMemory: Example

import javax.realtime .*;
pub l i c c l a s s ThreadCode implements Runnable
{

p r i v a t e vo id computation ()
{

f i n a l i n t min = 1*1024;
f i n a l i n t max = 1*1024;
f i n a l LTMemory myMem = new LTMemory(min , max);

myMem.enter(new Runnable ()
{

pub l i c vo id run()
{

// code here which requires access

// to temporary memory

}
});

}

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 32 / 35

ScopeMemory: Example (continued)

The thread can now be created; note, no parameters other than the
memory area and the Runnable are given

ThreadCode code = new ThreadCode ();

RealtimeThread myThread = new RealtimeThread(
nu l l , nu l l , nu l l , ImmortalMemory.instance(),
nu l l , code);

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 33 / 35

Stack Management

Embedded programmers also have to be concerned with stack size

Specifying the stack size of a task/thread requires trivial support (for
example, in Ada it is via the Storage Size attribute applied to a task;
in POSIX it is via pthread attributes)

Calculating the stack size is more difficult; as tasks enter blocks and
execute procedures their stacks grow

To estimate the maximum extent of this growth requires knowledge of
the execution behaviour of each task

This knowledge is similar to that required to undertake WCET
analysis

WCET and worst-case stack usage bounds can be obtained from
control flow analysis of the task’s code

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 34 / 35

Summary

Exceptions and Exception Handling (briefly)

Low-level programming

Input/output
Language support
Memory management

TSW (2010e) (Lecture 13) Real-Time Software 2 November 2010 35 / 35

	Introduction
	Exceptions and Exception Handling
	Low-level Programming
	Conclusion

