
Real-Time Software
Timing Faults — Where Theory Meets Practice

René Rydhof Hansen

26 October 2010

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 1 / 26

Today’s Goals

Timing Faults

Deadline miss detection
WCET overrun detection
Sporadic Overrun

Damage Confinement

Execution time servers

Error Recovery

Mode Change

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 2 / 26

Timing Faults

How to spot a timing fault

Missed deadlines

Where do Timing Faults Come From? ... or: Theory Meets Practice

WCET calculation incorrect
Underestimated blocking times
Invalid assumptions in schedulability analysis
Errors in schedulability analysis
Wrong schedulability theory
System working outside design parameters

Detecting and Tolerating Timing Faults

Deadline miss
WCET overrun
Sporadic overrun
Overuse of resources

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 3 / 26

Timing Faults

How to spot a timing fault

Missed deadlines

Where do Timing Faults Come From? ... or: Theory Meets Practice

WCET calculation incorrect
Underestimated blocking times
Invalid assumptions in schedulability analysis
Errors in schedulability analysis
Wrong schedulability theory
System working outside design parameters

Detecting and Tolerating Timing Faults

Deadline miss
WCET overrun
Sporadic overrun
Overuse of resources

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 3 / 26

Detecting a deadline miss

Ada

No built-in/explicit support for detecting missed deadlines
Use separate watchdog thread
Use ‘select delay until ... then abort ...’ (ATC)

C/Real-Time POSIX

No built-in/explicit support for detecting missed deadlines
Use separate watchdog thread

Real-Time Java

Yes built-in/explicit support for detecting missed deadlines
Throws exception when deadline miss is detected
Handled by “normal” exception handler

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 4 / 26

Detecting a deadline miss: C/Real-Time POSIX

#inc l ude <signal.h>
#inc l ude <timer.h>
#inc l ude <pthread.h>

timer_t timer; /* shared btw. monitor and server */

s t r u c t timespec deadline = ...;
s t r u c t timespec zero = ...;
s t r u c t itimerspec alarm_time , old_alarm;
s t r u c t sigevent s;

vo id server(timer_t *watchdog) {
/* perform service */

TIMER DELETE(* watchdog);
}

vo id watchdog_handler(i n t signum , siginfo_t *data ,
vo id *extra) {

/* SIGALRM handler - server is late */

}

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 5 / 26

Detecting a deadline miss: C/Real-Time POSIX

vo id monitor () {
pthread_attr_t attributes;
pthread_t serve;

sigset_t mask , omask;
s t r u c t sigaction sa , osa;
i n t local_mode;

SIGEMPTYSET (&mask);
SIGADDSET (&mask , SIGALRM);

sa.sa_flags = SA_SIGINFO;
sa.sa_mask = mask;
sa.sa sigaction = &watchdog handler;

SIGACTION(SIGALRM , &sa , &osa); /* assign handler */

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 6 / 26

Detecting a deadline miss: C/Real-Time POSIX

alarm_time.it_value = deadline;
alarm_time.it_interval = zero; /* one shot timer */

s.sigev_notify = SIGEV_SIGNAL;
s.sigev_signo = SIGALRM;

TIMER_CREATE(CLOCK_REALTIME , &s, &timer);
TIMER_SETTIME(timer , TIMER_ABSTIME ,

&alarm_time , &old_alarm);

PTHREAD_ATTR_INIT (& attributes);
PTHREAD_CREATE (&serve ,& attributes ,

(vo id *)server , &timer);
}

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 7 / 26

Detecting a deadline miss: Real-Time Java

Recall: Generic Periodic Thread

pub l i c c l a s s Periodic extends RealTimeThread {
pub l i c Periodic(PeriodicParameters P) {...};

pub l i c vo id run() {
boolean deadlineMet = t rue ;
wh i l e (deadlineMet) {

// task code

...
deadlineMet = waitForNextPeriod();

}
}

}

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 8 / 26

Detecting a deadline miss: Real-Time Java

Handling a deadline miss

Threads with a detected deadline miss are automatically de-scheduled

Must be explicilty re-scheduled

waitForNextPeriod() along with miss counter (deadlineMiss)
indicates status

Class RealTimeThread support for de-/re-scheduling

package javax.realtime;
pub l i c c l a s s RealTimeThread extends Thread

implements Schedulable {
...
pub l i c boolean waitForNextPeriod ();
pub l i c vo id deschedulePeriodic ();
pub l i c vo id schedulePeriodic ();
...

}

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 9 / 26

Issues in Deadline Miss Detection

No support for specifying temporal constraints for miss handlers

Block level deadline miss detection possible in research languages

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 10 / 26

Worst-Case Execution Time Overrun

Why bother?

Localise and confine faults

Deadline miss may be caused by other tasks

Execution Time Clocks in C/Real-Time POSIX

Create watchdog for execution time

Two special, execution time, clocks (per thread/process) supported:

CLOCK PROCESS CPUTIME ID
CLOCK THREAD CPUTIME ID

Standard clock functions supported

clock_settime(CLOCK_PROCESS_CPUTIME_ID,...)
clock_gettime(CLOCK_PROCESS_CPUTIME_ID,...)
clock_getres(CLOCK_PROCESS_CPUTIME_ID,...)

Also supports monitoring of other threads/processes

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 11 / 26

Worst-Case Execution Time Overrun

Execution Time Monitoring in Ada

Supported by the Execution Time package (and sub-packages)
Defines execution time clocks at the task level
Timers based on execution time clocks can fire events
Handled by “standard” event handling
Requires manipulation of ceiling priorities

Execution Time Monitoring in Real-Time Java

Execution time clocks not supported (in general)
Monitoring of ‘cost’ is supported through exceptions

Similar to deadline miss detection:

Implementation dependent: support for execution time/cost mapping

Uses asynchronous events (interrupts) to communicate
Co-operates with scheduler

Some support for execution time/cost statistics

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 12 / 26

Worst-Case Execution Time Overrun: Summary

Attempt to localise and confine timing faults

Highly langugae dependent

C/Real-Time POSIX: low level primitives with execution time clocks
Ada: low/medium level primitives with execution time clocks and
timing events
Real-Time Java: high-level primitives with abstract/vague notion of
execution cost

Execution time clocks: requires hardware and OS support

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 13 / 26

Sporadic Overrun

Definition (Sporadic Overrun)

A sporadic event firing more frequently than anticipated, i.e., the minimal
inter-arrival time (MIT) was overestimated.

Example (Classic)

First landing on the moon: CPU on Lunar Landing Module flooded with
radar data interrupts.

Solutions

Reduce firing rate of sporadic event to comply with MIT

Hardware supported solutions (rare, except interrupt disable/enable)
Implement sporadic interrupt controller

Bound CPU time used for handling a given sporadic event

Execution time server

Consider (at least) two event types: hardware interrupts, software events.
TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 14 / 26

Handling Sporadic Overrun in Ada

Receive interrupt from device
Disable interrupts from device
Set timer to MIT
Re-enable interrupts when timer expires
Device-dependent what happens when interrupts are ignored

Sporadic Interrupt Controller for Hardware Interrupts

protected Sporadic_Interrupt_Controller i s
procedure Interrupt; -- mapped onto real interrupt

ent ry Wait_For_Next_Interrupt;
p r i v a t e

procedure Timer(Event: i n out Timing_Event);
Call_Outstanding : Boolean := False;
MIT : Time_Span := Milliseconds (...);

end Sporadic_Interrupt_Controller;

Event : Timing_Event;

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 15 / 26

Handling Sporadic Overrun in Ada

protected body Sporadic_Interrupt_Controller i s
procedure Interrupt i s
beg in

-- disable interrupts

Set_Handler(Event , MIT , Timer ’Access);
Call_Outstanding := True;

end Interrupt;

ent ry Wait_For_Next_Interrupt when Call_Outstanding i s
beg in

Call_Outstanding := False;
end Wait_For_Next_Interrupt;

procedure Timer(Event: i n out Timing_Event) i s
beg in

-- enable interrupts

end Timer;
end Sporadic_Interrupt_Controller;

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 16 / 26

Handling Sporadic Overrun in Ada

Sporadic Interrupt Controller for Software Events

Similar to solution for HW interrupts
Monitor task release instead of interrupts
Throw exception if MIT is violated (no interrupt disable)

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 17 / 26

Handling Sporadic Overrun in Real-Time Java

MIT violation detected directly by the run-time system (JVM)

Programmer specified policy for handling violations

mitViolationIgnore: the release event is ignored
mitViolationExcept: throw an exception (in the releasing thread)
mitViolationReplace: the last release event is overwritten with the
current event
mitViolationSave: the release event is delayed to comply with MIT

Interrupt handlers in Real-Time Java are second level

Cannot be used to directly control interrupts
Must adopt sporadic interrupt controller similar to Ada

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 18 / 26

Overuse of Resource(s)

Sources of resource abuse

A task may monopolise resource longer than anticipated

Resource contention not taken into account during design/analysis

In particular: large systems, many libraries, ...

Timeouts not enough

For priority inheritance, blocking is cumulative

With ICPP/OCPP blocking starts before task execution

Timeout not generally supported for critical sections, e.g., Java
synchronised

Solutions?

Move control to block level

Careful, explicit monitoring of all resource access

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 19 / 26

Damage Confinement

Definition (Damage confinement)

To prevent the propagation of errors to other components in the system

In particular...

Protect the system from unbounded sporadic and aperiodic activity

Support composability and temporal isolations

Confining Sporadic and Aperiodic Activity

Solution: execution time servers

Group sporadic/aperiodic tasks together

Use periodic task to schedule group(s) of sporadic/aperiodic tasks

Enables schedulability analysis on sporadic/aperiodic tasks

Impact of unbounded sporadic/aperiodic activity is confined

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 20 / 26

Implementing Sporadic Servers in C/Real-Time POSIX

Sporadic servers directly supported as a scheduling policy
Applicable for both threads and processes

Sporadic Server

Two priorities: “high” and “low”

Has execution time budget to spend on sporadic events

Executes at “high” priority when spending budget on handling
sporadic events

Executes at “low” priority when replenishing budget

Can be analysed as a periodic task

Aperiodic Server?

Cannot use Sporadic Server directly

Use Sporadic Server process: all aperiodic threads collected in one
process

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 21 / 26

Implementing Sporadic Servers in C/Real-Time POSIX

#de f i n e SCHED_SPORADIC ...
#de f i n e PTHREAD_SCOPE_SYSTEM ...
#de f i n e PTHREAD_SCOPE_PROCESS ...

typedef ... pid_t;
s t r u c t sched_param {

...
timespec sched_ss_repl_period;
timespec sched_ss_init_budget;
i n t sched_ss_max_repl
...

};

i n t sched_setparam(pid_t pid ,
const s t r u c t sched_param *param);

i n t sched_get_priority_max(i n t policy);
i n t sched_get_priority_min(i n t policy);
i n t pthread_attr_setscope(pthread_attr_t *attr ,

i n t contentionscope);
i n t pthread_attr_setschedparam(pthread_attr_t *attr ,

const s t r u c t sched_param *param);

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 22 / 26

Implementing Servers in Real-Time Java

Built-in Support

Cost monitoring and enforcement (optional)
Sporadic release parameters
Processing group parameters

Class ProcessingGroupParameters

package javax.realtime;
pub l i c c l a s s ProcessingGroupParameters

implements Cloneable {

pub l i c ProcessingGroupParameters(
HighResolutionTime start , RelativeTime period ,
RelativeTime cost , RelativeTime deadline ,
AsyncEventHandler overrunHandler ,
AsyncEventHandler missHandler)

}

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 23 / 26

Error Recovery

Strategies for WCET Overrun

For hard real time tasks: plan with plenty of slack and do nothing(!),
active monitoring and graceful degradation, dedicated recovery task(s)
For soft/firm real-time tasks: ignore (if isolation works), lower task
priority, skip/abort current release

Strategies for Sporadic Overrun

Like Real-Time Java: Ignore, throw exception, overwrite, or delay.

Strategies for Deadline Miss

For hard real-time tasks: active monitoring/two deadlines and
graceful degradation
For soft real-time tasks: count misses and otherwise ignore... until
miss threshold is reached, then inform
For firm real-time tasks: terminate since result is useless anyway

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 24 / 26

Mode Change

Systems may (deliberately) enter situations with high degree of
expected deadline misses

Adapt, dynamically, by re-configuring

Example (Missions in space)

Space vehicles often have different modes corresponding to different
phases of the overall mission: take-off, in-flight, landing.

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 25 / 26

Summary

Timing Faults

Deadline miss detection
WCET overrun detection
Sporadic Overrun

Damage Confinement

Execution time servers

Error Recovery

Mode Change

TSW (2010e) (Lecture 12) Real-Time Software 26 October 2010 26 / 26

	Introduction
	Timing Faults
	Deadline Miss Detection
	WCET Overrun
	Sporadic Overrun
	Overuse of Resource
	Damage Confinement
	Error Recovery
	Mode Change

	Conclusion

