
Message-Based Process 
Synchronization

Alexandre David
1.2.05

adavid@cs.aau.dk



05-10-2010 TSW'10 2

Aims
Understand concepts related to process 
synchronization.

synchronous
asynchronous
general mechanisms

Map those concepts to a few target 
languages.



05-10-2010 TSW'10 3

Types of synchronization
Via shared memory and related mechanisms

semaphore
mutex
pipes (can be classified as message)

Via messages
send/receive messages
synchronous
asynchronous
group communication



05-10-2010 TSW'10 4

Message-based – classification
Asynchronous

sender (or receiver) does not block/wait
→ light-weight, the catch: extra logic.

Synchronous
sender (or receiver) blocks/waits
→ easier to use, the catch: heavier.

Remote invocation
caller has the illusion that a call is local
→ abstract from message, the catch: very heavy.
Sender/receiver are not good names in this case.



05-10-2010 TSW'10 5

Asynchronous vs synchronous
Analogy:

asynchronous = postcard, may be delayed, out-
of-date.
synchronous = phone call, often referred as 
rendezvous.

Asynchronous:
buffers are needed, additional logic for 
acknowledgments, maybe more communication, 
more complex.

Synchronous:
simpler to use but no concurrency.



05-10-2010 TSW'10 6

Synchronous
send

transfer control to sending implementation
(library/driver)
wait for interrupt from driver, or time-out
read answer
re-send if necessary (nack, time-out)
return control if success

receive
transfer control to recv implementation
wait for interrupt from driver
send ack, or nack and wait again
return control



05-10-2010 TSW'10 7

Synchronous

task 1 task 2

sending receiving

blocked
blockedmessage

ack

time time



05-10-2010 TSW'10 8

Asynchronous
Buffered or not buffered?
Not buffered:

invoke library call with a pointer
return while the transfer is being done
check later when it’s finished to reuse memory

Buffered:
the call will copy the data before returning so it 
can be reused immediately, no need to check 
later.



05-10-2010 TSW'10 9

Asynchronous
send

call library
concurrent thread/task runs

return
sending finishes at some point

check status

receive
call library

concurrent thread/task runs

return status
may be finished if message was arrived, maybe not

may try again later



05-10-2010 TSW'10 10

Asynchronous

task 1 task 2

sending receiving

message

ack

time time

“driver” “driver”

receiving

check



05-10-2010 TSW'10 11

Remote invocation – principle
synchronous send 
query

wait reply

wait query
process query
synchronous send reply

There more to it:
illusion of local call
passing data across the network



05-10-2010 TSW'10 12

Naming
Who do you send to?
Direct or explicit:

give task/process as argument
Indirect:

give channel/mailbox as argument
→ interface between communicating processes.

Apply to sender:
send to ID or mailbox
broadcast to group

Apply to receiver:
receive from ID or mailbox
receive from any



05-10-2010 TSW'10 13

Message passing in Ada
Tasks declare an entry.

Defines interface for receiving messages.
Entry family = array of entries.
task type Foo is

entry Family(number)(Data: Type);
entry Recv(Data: Type);

end Foo

Actual reception: accept.
Exception handling

exception
when BadException =>
something;

end



05-10-2010 TSW'10 14

Message passing in POSIX
C/Real-time POSIX message queues

type mqd_t
Named when opened with mq_open.
Send/receive from/to a buffer with mq_send and 
mq_receive.

Buffer full → block.

Error codes returned, no exception.

mq_send mq_receive

buffer



05-10-2010 TSW'10 15

Guarded commands
Dijkstra 1975
if x <= y -> m := x

x >= y -> m := y
fi

Guarded commands by a boolean expression.
Choice non-deterministic if several evaluate to 
true.
Not an if-then-else.
If the command is a message operator, it is a 
selective waiting (Hoare 1978).



05-10-2010 TSW'10 16

Ada select
Map selective waiting concept.

task Server is
entry S1(…);
entry S2(…);

end Server;
task body Server is
…

begin
loop

select
accept S1(…) do

…
end S1;

or
accept S2(…) do

…
end S2;

end select;
end loop;

end Server;

If none → Program_Error
If several → choose one



05-10-2010 TSW'10 17

Remote procedure calls RPC
Abstraction from messages and 
communication protocol.

Similar to a “standard” procedure call.

Principle:

Client

Client
stub network

Server

Server
stub



05-10-2010 TSW'10 18

Steps of RPC
Client stub:

find address of remote procedure (like DNS)
convert parameter for transmission – marshalling
send request
wait for reply
unmarshal the result
return result or raise exception

Server stub:
receive requests
unmarshal paramaters
execute, catch exceptions
marshal the result or exceptions
send the result back



05-10-2010 TSW'10 19

Distributed object model
Distributed or remote objects:

created remotely and dynamically
identified remotely
methods transparently invoked

transparent run-time dispatching across the network

Support
Ada – static allocation, identification or remote Ada
objects, remote execution.
Java – send code & create instances remotely, remote 
execution, via remote method interface.
C – CORBA implementation (common object request 
broker architecture) as library, skeleton code to fill for 
client and server, has a special interface language: IDL –
interface definition language.


