
Concurrent Programming

Alexandre David
1.2.05

adavid@cs.aau.dk



05-10-2010 TSW'10 2

Disclaimer
Overlap with PSS

Threads
Processes
Scheduling

Overlap with MVP
Parallelism
Thread programming
Synchronization

But good summary of concepts in a practical 
context.



05-10-2010 TSW'10 3

Disclaimer’
The ADA examples are irrelevant w.r.t. the 
language itself.

⇒ Extract general concepts and constructs.
⇒ Map them to different languages.

We are not ADA experts and we do not need 
to be.



05-10-2010 TSW'10 4

Overview
Introduction to concurrent programs.

Amdahl’s law.

Tasks & task support.
Examples.



05-10-2010 TSW'10 5

Why concurrent programming?
Natural parallelism in real-world.

Reflect inherent parallelism of systems.

Use more efficiently processors.
CPU speeds >> input/output: busy wait, polling, 
or blocking are not good.

Parallel computations.
The speed of light + heat limit processor speeds.
The catch: Amdahl’s law.



05-10-2010 TSW'10 6

Amdahl’s law
Inherent sequential costs will limit speedup.

If a problem of size W has a serial
component WS then the speedup
S≤W/WS for any p.

Size W corresponds to the serial execution time.
TP=serial part+(non-serial part)/p
S=TS/TP=W/(WS+(W-WS)/p) ≤ W/WS.

For WS=(1-P)W we have S≤1/(1-P)

Note: Problem size here = execution time to abstract
from particular problem complexities.



05-10-2010 TSW'10 7

Processes/Threads/Tasks
Process = program + context + memory 
space.

Thread = program + parent (shared) memory 
space + private stack.

Task: Abstraction on OS and execution 
means.

Program/procedure.

OS/platform view

Logical view



05-10-2010 TSW'10 8

Processes/Threads/Tasks
DO NOT CONSIDER TASKS=THREADS like 
the book is suggesting.
Reasoning at the task level is better.

Better granularity.
Logical view.
Abstraction from the platform.
Up to a library/language to map tasks to threads.
See Intel’s Threading Building Blocks, nice read.



05-10-2010 TSW'10 9

So how do we do it?
MVP main topic.
Hints here:

Decompose problems into tasks.
Run tasks in parallel.
Synchronize tasks whenever needed.
Be careful with shared resources.



05-10-2010 TSW'10 10

Terminology
A concurrent program is a collection of 
autonomous sequential tasks, executing 
(logically) in parallel.

Each task is mapped to a single thread.
One thread may execute several tasks.

Possible execution:
Tasks run on one processors 
(multiprogramming).
Tasks run on an SMP machine (multiprocessing).
Tasks run on different machines (distributed 
processing).



05-10-2010 TSW'10 11

Created

Non-existing

Initializing

Executable

Terminated

Task States
Simplified.
Abstract running,
blocked, suspended...
Programmer’s view.



05-10-2010 TSW'10 12

Support for parallelism
Library level

C/C++, pthreads.

Language level
Java/ADA, language threads.

Different structures: static/dynamic.
Different levels: flat/nested.



05-10-2010 TSW'10 13

What you can do
Start tasks (or threads).
Synchronize tasks

semaphores, mutex, condition variables.
Use inter-process communication (IPC)

message passing, pipes, shared memory.
Stop tasks.

Exception, exit, cancel, never.

Constraints: dependencies (task dependency 
graph), shared resources (exclusive access).



05-10-2010 TSW'10 14

Nested tasks
Hierarchies of tasks.
Relationship:

Parent/child tasks.
Guardian/dependent: Logical block entered by 
the guardian (parent) that creates tasks 
(children).

The guardian may exit the block when all dependent 
have terminated.
Structure: fork()…wait() or create_thread()…join().



05-10-2010 TSW'10 15

Task representation
Fork & join
cobegin
task declaration



05-10-2010 TSW'10 16

Fork & join concepts

fork

join

join

Parent calls join 1st. Child finishes 1st.

map to…



05-10-2010 TSW'10 17

Cobegin concept

cobegin
statement;
statement;
…

coend



05-10-2010 TSW'10 18

Task declaration
Explicit declaration of tasks.

Task A() {…} Task B() {…}
Main program setups parameters (periods) and 
enters a loop – may listen to events there.



05-10-2010 TSW'10 19

Language vs. OS supported 
concurrency

+ language
+readable +maintainable programs
≠ types of OS, same lang. → +portable programs
possible to have no OS

- language
Models of concurrency are language specific
→ delicate to mix ≠ languages.
May be difficult to implement efficiently the 
language model of concurrency of top of an OS.
POSIX standard for OS API, better portability.



05-10-2010 TSW'10 20

Ada
Unit of concurrency = task.

Explicitely declared.
Created implicitly.

Tasks communicate & synchronize via
rendezvous (~sync message passing)
protected units (~monitor, condition variable)
shared variables



05-10-2010 TSW'10 21

Example Task Structure
task type Server (Init : 
Parameter) is
entry Service;

end Server;

specification

body

task body Server is

begin
...

accept Service do

-- Sequence of 
statements;

end Service;
...

end Server;



05-10-2010 TSW'10 22

Activation, Execution, & Finalization

Activation: task declaration, allocation of 
variables, creation of the task (~constructor).

Execution: execute statements in the body.

Finalization: execute finalization code 
associated with declared objects 
(~destructor).



05-10-2010 TSW'10 23

Task states in Ada
non-existing

created

activating

executable

terminated

finalizing

completed

elaboration of
declarative part

elaboration
successful

activation
successful

completion of
task body

exception
raised

exception
raised



05-10-2010 TSW'10 24

Task Identification
Type in Ada.
Integer in C (process ID) or type (pthread_t).
Reference to Thread in Java.
Way to identify a task to

communicate
wait for it
cancel it.



05-10-2010 TSW'10 25

Java
Class Thread

methods run(), start(), isAlive(), join()…
and interface Runnable.
public interface Runnable {

public abstract void run();
}
Running object is Thread so you can either

extend Thread, or
implement Runnable and create new Thread(runMe).

Interface is there to avoid extending Thread 
(single inheritance in Java).



05-10-2010 TSW'10 26

Java threads
Dynamic thread creation.
Pass any data to constructor.
Thread groups (no master/guardian).
Main program terminates when all threads 
terminate.
One thread can wait for another by calling its 
join().
Some thread specific exception.



05-10-2010 TSW'10 27

POSIX
Process

fork(): copies current process (everything).

Thread
pthread_create(): create a thread in the address 
space of its parent process.

Mutex, condition variable, and semaphores.
Shared memory

threads share the same address space or
process can allocate shared memory.



05-10-2010 TSW'10 28

Summary
Concurrency important:

Real-world inherently concurrent.
Support by OS or language (better).
Modeled as tasks.

States.

Variations in the task model, different 
mapping to different languages.

static/dynamic, flat/nested, fine/coarse,
how to terminate,
how to declare/create (fork, join, cobegin, explicit 
declaration).


