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Classical approach to RTS
Decompose the 
controller as

a set of tasks
computations
running on a RTOS
scheduler

Constraints:
timing – deadlines
QoS
task model – release 
pattern

heater
timer
temperature monitor
security switch
anti-bread-burning
…

How to get it right?
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How to get a correct controller?

Verification -
Model-checking

Is my system correct?
Does it satisfy its
requirements?

Code synthesis

?

Generate the code
for a correct controller.

UPPAAL TIGA

A bit of both: Check design – schedulability,
generate scheduler, put together the tasks. Times
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Research directions

Real Time Scheduling [RTSS ...]
Task models, Schedulability analysis
Real time operating systems

Automata/logic-based methods
[CAV,TACAS ...]

FSM, PetriNets, Statecharts, Timed Automata
Modelling,  Model checking ...

(RT) Programming Languages [...]
Esterel, Signal, Lustre, Ada ...
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Motivation
Classic RTS scheduling:

define tasks, computation time C, period T, 
deadline D, assign priority P
different scheduling policies

fixed: rate monotonic (T), deadline monotonic (D)
dynamic: EDF (D)

analytical solving
But in practice tasks have

shared resources
dependencies
complex control structures & interactions
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Wish List
From a timed model to executable code.

Generated → guarantee correctness
dependencies, timing, shared resources…

Timing analysis of RTS.
Different scheduling policies.
WCRT
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Approach with Times
Use TA to model the arrival pattern of tasks.

Have default policies included for convenience.

Augment the model with a scheduler.
And shared resources + dependencies.

Check for schedulability using UPPAAL as the 
back-end model-checker.
Generate code of the scheduler (with custom 
arrival pattern).
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Problem Statement
Schedulability analysis

(A1 || A2 || .. An || Scheduler)    φ ?
Scheduler given with a policy.
φ is a requirement – formula in some logic.

Schedule synthesis
Find X s.t. (A1 || A2 || .. An || X)    φ TIGA

Times
UPPAAL
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Modeling
RTS behavior: TA.

General approach, general model-checker.

Schedulability analysis: TA + tasks.
Add tasks to the model.
TA used to model the task arrival pattern.
Idea: any pattern available, with any kind of 
dependency, including resource sharing.
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Example: Periodic Task

x==100
x=0

x≤100

x=0

task1

Whenever you enter that location,
release task1.
Model → every 100 time units.
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Modeling with Tasks
From a modeling point of view
a task = some external program.

Can interact with the model through an interface.

Parameters:
WCET
Deadline
Period
Dependencies
Resource access
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Model of the System Execution

Event
Plant
…

P

release task

Q  R  S

queue task

execute task

How to queue & pick a task:
Scheduling policy.

pick task

Scheduler
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TAT Example
Event handler:

Release P initially.
Run-to-completion semantics:

whenever a? and x>10,
release Q
then whenever b? and y≤50, 
release P,
or whenever f, release R
…

Task handler
schedule & compute tasks

x>10
a?
y=0

y≤50
b?
x=0

f? y≥2
r?

P(1,7)

Q(3,9)

R(2,2)

Task(C,D)
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What is a TAT?
Take a TA <L,l0,T,I>

Locations, initial location, Transition relation, 
Invariants.

Add a mapping M: L → 2P with P being a set 
of tasks.

Semantics
TA states: (l,v)
location vector + clock valuations
TAT states: (l,v,q)
… + task queue
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TAT Example

A

B

C

x>10
a?
y=0

y≤50
b?
x=0

f? y≥2
r?

P(1,7)

Q(3,9)

R(2,2)

Initial State: (A, x=y=0, [P(1,7)])

Example transitions:

delay 0.6 → (A, x=y=0.6,    [P(0.4,6.4)])
delay 9.5 → (A, x=y=10.1,  [] )
action a → (B, x=10.1,y=0, [Q(3,9)])
action f  → (C, x=10.1,y=0, [Q(3,9),R(2,2)])
delay 2  → (C, x=12.1,y=2, [Q(3,7)])
action r → (B, x=12.1,y=2, [Q(3,7),Q(3,9)])
action b → (A, x=0,y=2,      [Q(3,7),Q(3,9),P(1,7])
…
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Semantics
(l,v,q) → (l’,v’,q’) by 2 kinds of transitions:

actions: tasks may be added, q grows
(l,v,q) →g,a,r (l’,v’, Sch(M(l’),q)) if g

delay: tasks are executed, q shrinks
(l,v,q) →d (l,v+d, Run(d,q)) if I(l)(v+d)

Sch & Run: functions to update the queue.
Sch: scheduling policy.
Run: execute the first task.
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Schedulability
Bound instances of tasks.
Bound the queue.
Check that the queue is schedulable

stays within bounds
all deadlines are met
A state (m,u,q) is schedulable with Sch if
(given Sch(q)= [P1(c1,d1)P2(c2,d2)…Pn(cn,dn)])
(c1+…+ci)<=di for all i ≤ n.
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Decidability Results
[1998]
For Non-preemptive scheduling strategies, the schedulability
of an automaton can be checked  by reachability analysis on 
ordinary timed automata.

[TACAS 2002]
For Preemptive scheduling strategies, the schedulability of 
an automaton can be checked by reachability analysis on 
Bounded Subtraction Timed  Automata (BSA).

Natural coding: Stop time when you preempt
→ stop-watches → undecidable.
Alternative: Use subtraction to “cancel” non-executed time.

[TACAS 2003]
For fixed-priority scheduling, the problem can be solved
using TA with only 2 extra clocks.
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Undecidability Result
[TACAS 2004]
The problem is undecidable if the following

conditions hold together:
Preemptive scheduling
Interval computation times
Feedback i.e. the finishing time of tasks may
influence the release times of new tasks.



01-10-2010 TSW'09, Aalborg University 20
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Your Project
You can use UPPAAL or Times, or both

to check for schedulability
correctness of your protocols/programs.

You can play with the UPPAAL scheduler 
template.
Problems:

Where do you get C? → Measurements.
Where do you get D? → Safety criteria.
Where do you get T? → Sampling, control 
algorithm…


