
Model-Checking,
Scheduling Analysis

(and Code Synthesis):
Times

Alexandre David
1.2.05

adavid@cs.aau.dk
Thanks to Wang Yi

01-10-2010 TSW'09, Aalborg University 2

Classical approach to RTS
Decompose the
controller as

a set of tasks
computations
running on a RTOS
scheduler

Constraints:
timing – deadlines
QoS
task model – release
pattern

heater
timer
temperature monitor
security switch
anti-bread-burning
…

How to get it right?

01-10-2010 TSW'09, Aalborg University 3

How to get a correct controller?

Verification -
Model-checking

Is my system correct?
Does it satisfy its
requirements?

Code synthesis

?

Generate the code
for a correct controller.

UPPAAL TIGA

A bit of both: Check design – schedulability,
generate scheduler, put together the tasks. Times

01-10-2010 TSW'09, Aalborg University 4

Research directions

Real Time Scheduling [RTSS ...]
Task models, Schedulability analysis
Real time operating systems

Automata/logic-based methods
[CAV,TACAS ...]

FSM, PetriNets, Statecharts, Timed Automata
Modelling, Model checking ...

(RT) Programming Languages [...]
Esterel, Signal, Lustre, Ada ...

01-10-2010 TSW'09, Aalborg University 5

Motivation
Classic RTS scheduling:

define tasks, computation time C, period T,
deadline D, assign priority P
different scheduling policies

fixed: rate monotonic (T), deadline monotonic (D)
dynamic: EDF (D)

analytical solving
But in practice tasks have

shared resources
dependencies
complex control structures & interactions

01-10-2010 TSW'09, Aalborg University 6

Wish List
From a timed model to executable code.

Generated → guarantee correctness
dependencies, timing, shared resources…

Timing analysis of RTS.
Different scheduling policies.
WCRT

01-10-2010 TSW'09, Aalborg University 7

Approach with Times
Use TA to model the arrival pattern of tasks.

Have default policies included for convenience.

Augment the model with a scheduler.
And shared resources + dependencies.

Check for schedulability using UPPAAL as the
back-end model-checker.
Generate code of the scheduler (with custom
arrival pattern).

01-10-2010 TSW'09, Aalborg University 8

Problem Statement
Schedulability analysis

(A1 || A2 || .. An || Scheduler) φ ?
Scheduler given with a policy.
φ is a requirement – formula in some logic.

Schedule synthesis
Find X s.t. (A1 || A2 || .. An || X) φ TIGA

Times
UPPAAL

01-10-2010 TSW'09, Aalborg University 9

Modeling
RTS behavior: TA.

General approach, general model-checker.

Schedulability analysis: TA + tasks.
Add tasks to the model.
TA used to model the task arrival pattern.
Idea: any pattern available, with any kind of
dependency, including resource sharing.

01-10-2010 TSW'09, Aalborg University 10

Example: Periodic Task

x==100
x=0

x≤100

x=0

task1

Whenever you enter that location,
release task1.
Model → every 100 time units.

01-10-2010 TSW'09, Aalborg University 11

Modeling with Tasks
From a modeling point of view
a task = some external program.

Can interact with the model through an interface.

Parameters:
WCET
Deadline
Period
Dependencies
Resource access

01-10-2010 TSW'09, Aalborg University 12

Model of the System Execution

Event
Plant
…

P

release task

Q R S

queue task

execute task

How to queue & pick a task:
Scheduling policy.

pick task

Scheduler

01-10-2010 TSW'09, Aalborg University 13

TAT Example
Event handler:

Release P initially.
Run-to-completion semantics:

whenever a? and x>10,
release Q
then whenever b? and y≤50,
release P,
or whenever f, release R
…

Task handler
schedule & compute tasks

x>10
a?
y=0

y≤50
b?
x=0

f? y≥2
r?

P(1,7)

Q(3,9)

R(2,2)

Task(C,D)

01-10-2010 TSW'09, Aalborg University 14

What is a TAT?
Take a TA <L,l0,T,I>

Locations, initial location, Transition relation,
Invariants.

Add a mapping M: L → 2P with P being a set
of tasks.

Semantics
TA states: (l,v)
location vector + clock valuations
TAT states: (l,v,q)
… + task queue

01-10-2010 TSW'09, Aalborg University 15

TAT Example

A

B

C

x>10
a?
y=0

y≤50
b?
x=0

f? y≥2
r?

P(1,7)

Q(3,9)

R(2,2)

Initial State: (A, x=y=0, [P(1,7)])

Example transitions:

delay 0.6 → (A, x=y=0.6, [P(0.4,6.4)])
delay 9.5 → (A, x=y=10.1, [])
action a → (B, x=10.1,y=0, [Q(3,9)])
action f → (C, x=10.1,y=0, [Q(3,9),R(2,2)])
delay 2 → (C, x=12.1,y=2, [Q(3,7)])
action r → (B, x=12.1,y=2, [Q(3,7),Q(3,9)])
action b → (A, x=0,y=2, [Q(3,7),Q(3,9),P(1,7])
…

01-10-2010 TSW'09, Aalborg University 16

Semantics
(l,v,q) → (l’,v’,q’) by 2 kinds of transitions:

actions: tasks may be added, q grows
(l,v,q) →g,a,r (l’,v’, Sch(M(l’),q)) if g

delay: tasks are executed, q shrinks
(l,v,q) →d (l,v+d, Run(d,q)) if I(l)(v+d)

Sch & Run: functions to update the queue.
Sch: scheduling policy.
Run: execute the first task.

01-10-2010 TSW'09, Aalborg University 17

Schedulability
Bound instances of tasks.
Bound the queue.
Check that the queue is schedulable

stays within bounds
all deadlines are met
A state (m,u,q) is schedulable with Sch if
(given Sch(q)= [P1(c1,d1)P2(c2,d2)…Pn(cn,dn)])
(c1+…+ci)<=di for all i ≤ n.

01-10-2010 TSW'09, Aalborg University 18

Decidability Results
[1998]
For Non-preemptive scheduling strategies, the schedulability
of an automaton can be checked by reachability analysis on
ordinary timed automata.

[TACAS 2002]
For Preemptive scheduling strategies, the schedulability of
an automaton can be checked by reachability analysis on
Bounded Subtraction Timed Automata (BSA).

Natural coding: Stop time when you preempt
→ stop-watches → undecidable.
Alternative: Use subtraction to “cancel” non-executed time.

[TACAS 2003]
For fixed-priority scheduling, the problem can be solved
using TA with only 2 extra clocks.

01-10-2010 TSW'09, Aalborg University 19

Undecidability Result
[TACAS 2004]
The problem is undecidable if the following

conditions hold together:
Preemptive scheduling
Interval computation times
Feedback i.e. the finishing time of tasks may
influence the release times of new tasks.

01-10-2010 TSW'09, Aalborg University 20

System AnalysisSystem Specification

Editor

Task parameters

Control structure

Extended
Timed

Automata

T

Table,
Task Code

Scheduling strategy

EDF,
FIXED, etc.

XML

Analyser

Code
Generator

Simulator

Optimal Schedule

Scheduler
generator

Controller
Synthesizer

Yes, schedulable

No, not schedulable

Code

Execution Trace

Uppaal
Verifier

Task Code
Library

Scheduler
Analyser

An Overview of TIMES

Modeling

Analysis

Synthesis

01-10-2010 TSW'09, Aalborg University 21

Your Project
You can use UPPAAL or Times, or both

to check for schedulability
correctness of your protocols/programs.

You can play with the UPPAAL scheduler
template.
Problems:

Where do you get C? → Measurements.
Where do you get D? → Safety criteria.
Where do you get T? → Sampling, control
algorithm…

